
Update and upgrade of the GGSS system for ATLAS TRT
detector

Arkadiusz Kasprzak
Jarosław Cierpich

Supervisor: Bartosz Mindur

1/20

Agenda

1 A brief introduction to GGSS

2 Tasks and constraints

3 Overview of changes

4 Plans for future improvements

2/20

Introduction to GGSS

Gas Gain Stabilization System (GGSS) is a project integrated with ATLAS
Detector Control System (DCS).
It helps to ensure proper operation of the TRT (Transition Radiation
Tracker) detector, which is a part of the ATLAS detector at CERN.
GGSS consists of hardware and software layers.
Today we will focus mainly on the software layer.
Most of the codebase is written using C++. There is also some Python
and Bash code.

3/20

GGSS software

Figure: Software components of the GGSS project and their dependencies.

4/20

Tasks

C++ codebase refactoring:
migration to C++11/14 (range-for loops, uniform initialization etc)
removing old, unused code
adding more comprehensive documentation
introducing TDD (Test Driven Development)

CMake files refactoring
creating tools for versioning and Git submodule handling

5/20

Understanding the constraints

The user must be able to build the project using the CERN infractructure
Code refactoring had to be performed with this constraints in mind.
Only old version of CMake (2.8) and GCC (C++11/14, but no 17/20)
available.

6/20

Migration to C++11/14

Example of migration to C++11/14 - replacing iterator loop with range-for one.
Below You can see the old code.

Listing 1: Example of old C++ code (before refactoring).
for (XMLTag :: NestedTags :: const_iterator j = tag. getNestedTags (). begin ()

; j != tag. getNestedTags ().end ()
; j++

)
{

if ((j->second -> getName () == tagName)
&&(j->second -> getAttributeValue ("id") == idValue))
return j-> second ;

else
m_findTagById (*(j-> second), tagName , idValue);

} // endfor

7/20

Migration to C++11/14

Listing 2: Example of new C++ code (after refactoring).
const XMLTag :: NestedTags & nestedTags = startingTag . getNestedTags ();
for(const auto& nestedTag : nestedTags)
{

if ((nestedTag .second -> getName () == tagName) &&
(nestedTag .second -> getAttributeValue ("id") == idValue))

{
return nestedTag . second ;

}
}

using range-for loop increases readability of the code
else clause has been removed - result of the recursive function call was
never used
no need to use the * operator
nestedTag is a better name than j

8/20

Removing old, unused code

The project contained a lot of code (functions/methods) that were never
used.
Some of them could even be harmful if used.
Below example shows two methods that have been removed (why?) from
QueueLimited class (a queue with size limit).

Listing 3: Example of removed code.
// return the whole queue
const std :: deque <T >& getQueue () const {

return c;
}

// return the whole queue
std :: deque <T >& getQueue () {

return c;
}

9/20

Introducing Test Driven Development

For unit tests, we are using Boost.Test, because it is simple and available
when using CERN infrastructure.
Component are tested during refactoring, we make sure that our changes
do not introduce any new bugs.
Each component can be tested separately.

Listing 4: Unit test example
/**

* \ brief Checks if proper exception is thrown when performing pop ()
* operation on empty container .
*/

BOOST_AUTO_TEST_CASE (
testIfExceptionIsThrownWhenTryingToPopFromEmptyContainer)

{
QueueLimited <int > queue {};
BOOST_CHECK_THROW (

queue .pop () ,
QueueLimited <int >:: ReadEmptyQueueException);

}

10/20

Continous Integration

Practice widely used during modern software development.
Developers integrate code into repository frequently.
Each code contribution is automatically built and tested.
This allows for quick error detection.
We use GitLab CI/CD for building and testing the project.

Figure: Example of CI pipeline used in the project.

11/20

CMake files refactoring

GGSS uses CMake for managing the build process of the software.
CMake is platform and compiler independent.
CMake files have been slightly refactored to improve readability by using
macros and functions.

Listing 5: Old version of CMake used for building thread-lib
set(target_name " thread ")
if(NOT TARGET ${ target_name })

set(CMAKE_MODULE_PATH "${ GGSS_MISC_PATH }")
include (BuildLibrary)
include (FindLibraryBoost)
include (SetupDoxygen)
include (SetupTests)

notice the need to set some variables before including the file
set(dependency_prefix "${ CMAKE_CURRENT_SOURCE_DIR }/..")
set(dependencies " handle " "log")
include (BuildDependencies)

endif ()

12/20

CMake files refactoring

Instead of including the CMake template files (which just pastes the code),
we invoke ggss_build_library with named parameters.
Unit tests and Doxygen support has been moved to ggss_build_library
macro, because every library in the project uses them.

Listing 6: New version of CMake used for building thread-lib
set(CMAKE_MODULE_PATH "${ GGSS_MISC_PATH }")
include (BuildLibrary)

ggss_build_library (
TARGET_NAME " thread "
DEPENDENCY_PREFIX "${ CMAKE_CURRENT_SOURCE_DIR }/.."
DEPENDENCIES "log" " sigslot "

)

13/20

Complex submodule struture handling - scripts

GGSS project tree contains a complex repository structure with many
connections between components.
To make it easy to properly initialize project structure git submodules are
being used.

Listing 7: Initialize project structure with one command.
root@host :/# git clone

ssh:// git@gitlab .cern.ch :7999/ atlas -trt -dcs -ggss/ggss -all.git && cd
ggss -all && git submodule update --init --recursive

Cloning into ’/CERN/ggss -all/ggss -dim -cs ’...
Cloning into ’/CERN/ggss -all/ggss - driver ’...
Cloning into ’/CERN/ggss -all/ggss -oper ’...
Cloning into ’/CERN/ggss -all/ggss - runner ’...
Cloning into ’/CERN/ggss -all/ggss - spector ’...
Cloning into ’/CERN/ggss -all/mca -n957 ’...
Cloning into ’/CERN/ggss -all/ggss -dim -cs/external -dim -lib ’...
Cloning into ’/CERN/ggss -all/ggss -dim -cs/ggss -misc ’...
Cloning into ’/CERN/ggss -all/ggss - driver /external -n957 -lib ’...
Cloning into ’/CERN/ggss -all/ggss - driver /ggss -misc ’...
...(13 lines truncated)

14/20

Complex submodule struture handling - scripts

Using submodules requires to take care of commit hashes that are being
linked as a submodule.
There may be a situation that "parent" repository is not using the latest
version of "child" repository.

commit_1 commit_2

Parent Repository

commit_A
commit_B	

(this	version	is	used
by	parent	repository)

Child Repository

commit_C
commit_D

(the	newest	version
on	remote	repository)

Depends on

Figure: Version of submodule differs from version used by parent.

15/20

Complex submodule struture handling - scripts

gitio script is responsible for updating all outdated links between parent
and child repositories.
The goal is achieved by creating dependency tree of all available
repositories.
Starting from the bottom of the tree submodules are being aligned (git
commands: add, commit, push).

Listing 8: Gitio in action.
root@host :/# python gitio .py -p ./ ggss -all/
...(17 lines truncated)
INFO - Aligning ./ ggss -all/mca -n957 repository
INFO - Aligning ./ ggss -all/ggss -dim -cs repository
INFO - Aligning ./ ggss -all/ggss - runner repository
INFO - Aligning ./ ggss -all/ggss - spector repository
INFO - Aligning ./ ggss -all/ggss -oper repository
INFO - Aligning ./ ggss -all/ggss - driver repository
INFO - Aligning ./ ggss -all repository
INFO - Aligning finished .

16/20

Automated versioning

Automated versioning system has been prepared to keep consistent rpm
and release versions throughout whole project.
Every commit to main repository (ggss-all) is being analyzed. If commit
message contains one of specified phrases, new release is being created.

Figure: New commit following eslint convention.

Figure: Commit message analysis.

17/20

Automated versioning

Figure: Newly created release.

18/20

Plans for future improvements

Further code refactoring.
Introducing new features, for example on-start and on-demand GGSS
parameters update.
Creating RPM package with whole project - easy deployment.
Improving Python library and apps for hardware testing. E.g. yaml
scenarios.

19/20

Thanks for Your attention.

20/20

	A brief introduction to GGSS
	Tasks and constraints
	Overview of changes
	Plans for future improvements

