
Machine Learning
IntroductionTomasz Szumlak

AGH-UST

A quick overwiev – ML is a large beast!

Can start on a
serious note…

A quick overwiev – ML is a large beast!

Can start on a
serious note…

…or not so serious

A quick overwiev
 The first part will discuss the ML in general

We start slow, but I will try to inject advanced topics into the course

 The point is to understand the innerworkings as much as possible, then
if you wish you can jump into PyTorch, Keras, Tensorflow, … what-not

 The second part will be more practical, we discuss a few fundamental
applications such as ANN, PCA, GAN and TMVA framework

 I will provide ready-to-use code – have a lot of fun with it!

Outline
 Today
 High-level view on the Machine Learning landscape – what we want

to do with it

 Detailed discussion of artificial neuron training – the algorithm

 Loss function – how to know if we are doing a good job

 Principal Component Analysis (PCA) as a data preprocessing and
visualisation aid tool

Setting the scene (I)

We are living in interesting times – data come in abundance and ability to process them and
gain knowledge is of great value: data is very precious resource (like iron, gold or water)

We want to process the data fast and in a robust way

 Cutting out all the technobabble and buzzwords we can say that Machine Learning (ML), which
is a part of data mining business, allows us to use computer algorithms to make sense of data
or to turn them into knowledge

What is more exciting we have a lot of open source libraries that implements the most
sophisticated algorithms on the market and they are free!

 In this lecture we cover: the generic concepts of ML, terminology (knowing the vocabulary is
always good!) and different types of learning, architecture of ML systems and a couple of key
concepts

6

Setting the scene (II)
 Large (structured and un-structured) data set are produced in many fields
 Scientific experiments

 Social media

 Data bases (customers, patients, ect.)

 ML evolved as a part of artificial intelligence – self-learning algorithms to gain
knowledge from data and able to make predictions based on that knowledge

 Decisions made by trained algorithms are data driven – can evolve in time and
improve

 Significant impact on our everyday life: spam filters, high quality Web search engines,
efficient text and speech recognition, games, banking, self-driving cars, cameras (e.g.
face recognition), you name it!

7

Types of machine learning

 In general we have three types of learning:
 Supervised learning

 Unsupervised learning

 Reinforcement learning

 The supervised learning in a nutshell – our s/w learns a model using labelled
training data set, this will allow it to make a prediction regarding new unseen
data in the future

 By supervised learning in this context we mean using the training samples
for which the required output signals (labels) are already known

 For instance we want to train a spam killer algorithm – for this we can use a
number of spam e-mails and a number of genuine messages

8

Supervised learning

9

Training

Application

Supervised learning

 In case of a classification task we want to have a system that can predict the
categorical class labels of new instances (new data samples) using past
experiences (training data)

 These discrete labels, without any particular ordering, can be understood as
the group membership tags of the new data samples (instances)

 For instance, the e-mail spam killer is an example of a binary classification
task, since we have two possible classes: genuine messages and spam e-mails

We can also have non-binary sets of class labels – text recognition will have as
many classes as letters

 Here an interesting problem can be encountered: say, we train an algorithm to
recognise letters – what is going to happen if we pass a number to it?

10

Binary classification
 The idea of a binary classification can be understood using the following example: say, we
have given 30 training samples – half of them is negative (noise) and half positive (signal)

 Our algorithm must learn a rule to separate these two classes and classify a new instance into
one of these classes given values 𝑥1, 𝑥2
 This rule is also called decision boundary (black dashed line)

11

𝑥1

𝑥2 2D data set – each data
instance has two values
𝑥1, 𝑥2 associated with it

 Using them separately is going
to yield poor results!

 Try to imagine we project the
data on the respective axes

Regression
 Regression is a second type of supervised learning and is used to predict continuous
outcomes

 Here, we are given a number of predictor variables (explanatory variables) and a continuous
response variable (outcome)

 The goal is to find a model that describes a relationship between predictors and outcome –
having that we could predict an outcome for any future data

 For instance imagine the following: a University Principal asked if it is possible to predict the
outcome of Physics final exams based on previous experience?

 Let’s assume that there is a relationship between the time spent studying for the final exams and
previous partial scores and the final score

We could use this „training data” to teach the model and make predictions regarding the scores for
new students

12

Regression

 The term regression was devised by Francis Galton in 1886 as a conclusion of his studies on
height variance in a population

 The plot below shows an idea of linear regression with predictor 𝑥 and response 𝑦

 The model can be described now by the intercept and slope (gradient) – can be used to predict
the outcome of new data

13

𝑥

𝑦

predictor

outcome

intercept

model

slope

Reinforcement learning
 Can be considered as a type of supervised learning, but the supervision here is much more
subtle (we do not use labels)

 In case of reinforcement learning we train an agent that evolves by interacting with the
environment

 An agent can asses its actions using a reward function

 Using an exploratory trial-and-error method (or planning) an agent learns a series of actions
that maximises the reward function

 For instance: a chess engine – an agent observes the board (the environment), the reward is
win/lose of the game

14

Unsupervised learning
 In both supervised and reinforcement learning we kind of know the right answer
beforehand (via labels or reward function)

 In unsupervised learning we do not know the structure of data (unlabelled data) – we can
extract knowledge without guidance of a known outcome or reward function

Main exploratory technique of data analysis is clustering, which makes possible to organise
the data into meaningful sub-groups (clusters) without any prior information of their
membership

 Each set of objects that share a certain degree of similarity can be assign to a cluster

 Objects assigned to a given cluster are, in turn, more dissimilar to objects in other groups (clusters)

 Clustering is often called unsupervised classification

 The best example is creating distinct marketing programs

15

Unsupervised learning
 The idea of unsupervised classification can be described by a simple sketch as below:

 In case of clusterisation we can encounter problem of dissimilarities within groups and between groups

 Not a trivial matter!

16

𝑥1

𝑥2

Terminology
 One example thet we will consider is flower classification, can discuss the terminology a
bit here (see for example: Yu Yang „A study of pattern recognition of Iris flower based on
Machine Learning”)

 Imagine, each flower sample can be stored as rows and each variable is stored as column
(i.e., matrix notation is helpful!) in feature matrix ℱ

17

ℱ =

𝑥1
(1)

𝑥2
(1)

𝑥1
(2)

𝑥2
(2)

𝑥3
(1)

𝑥4
(1)

𝑥3
(2)

𝑥4
(2)

.

.

.

.

.

.

𝑥1
(150)

𝑥2
(150)

.

.

.

.

.

.

𝑥3
(150)

𝑥4
(150)

Terminology

18

𝑥(𝑖) = 𝑥1
(𝑖)
, … , 𝑥𝑛

(𝑖)
- one instance

𝑥𝑗 =

𝑥𝑗
(1)

.

.

.

𝑥𝑗
(𝑚)

A deeper look… Let’s get back to the source
 The whole story began in 1943 with McCullock-Pitts neuron model

 They described a nerve cell using a simple binary logic gate with binary output(s) – such
perceptron (or artificial neuron) accepts multiple input signals, integrates (combines) them
and if signal exceeds a certain threshold the perceptron is able to produce an output signal

 Using the biological language, the signal arrives via dendrites, is then processed by a cell body and
the output is propagated via axon

 Axon can have many terminals connecting the perceptron with others

 Next in 1957 Rosenblatt came with an brilliant idea on how to efficiently train such
perceptrons

With this learning rule it is possible to determine automatically the best weights that decide
if the perceptron fires or not

19

Perceptron model

20

Rosenblatt approach
With Rosenblatt method we use the supervised learning to train a set of weights

 They are then multiplied with the input data (features) and based on the result a decision is
made: fire/not fire

 Trained perceptron algorithm can be subsequently used to make a decision regarding a
sample membership (classification)

 In order to provide a bit more formal description, let’s assume that we are dealing with a
binary classification task with two classes, we then call one a positive (+1) and the other a
negative (−1)

 In order to define our perceptron behaviour we need to define an activation function: 𝜙(𝑧)

21

𝜙 𝑧 = ቊ
+1 𝑖𝑓 𝑧 ≥ 𝜃
−1 𝑖𝑓 𝑧 < 𝜃

Predefined
threshold

Some math… (I)

 The activation function, defined in the previous slide as the Heaviside step function (NOTE!
This is not a unique choice) takes a linear combination of given input values and a weight
vector

 Using the two vectors we can calculate the net input 𝒛:

 Usually, we also move the threshold to the left side to facilitate the notation:

22

𝑤 =

𝑤1
𝑤2

⋮
𝑤𝑘

, Ԧ𝑥(𝑖) =

𝑥1
(𝑖)

𝑥2
(𝑖)

⋮

𝑥𝑘
(𝑖)

𝑧(𝑖) = 𝑤1𝑥1
(𝑖)
+ 𝑤2𝑥2

(𝑖)
+⋯+𝑤𝑘𝑥𝑘

𝑖
=

𝑗=1

𝑗=𝑘

𝑤𝑗𝑥𝑗
𝑖
= 𝑤𝑇 Ԧ𝑥(𝑖)

𝑧(𝑖) = 𝑤0𝑥0
(𝑖)
+ 𝑤1𝑥1

(𝑖)
+ 𝑤2𝑥2

(𝑖)
+⋯+𝑤𝑘𝑥𝑘

𝑖
, 𝑤0 = 𝜃, 𝑥0

𝑖
= 1

Some math… (II)
 Here, a critical part is to understand two things:

 How the input information (which may have many components) is translated into a binary
information (+1/−1)?

 How it is used to make the classification?

 Note, that the formulas we wrote in the last slide are identical to the vector dot product – we
reduce the space dimension!

23

𝑥2

𝑥1

Adapted from „Python Machine
Learning”, S. Raschka

The algorithm (I)
 First we reduce the input data and mimic the behaviour of a single neuron (just like in the
brain): fire/not fire

 The perceptron algorithm, then goes like that:

 Initialise the weights vector to 𝟎 or „something small”

 For each training data sample 𝒙(𝒊) do:

 Estimate (predict) the output value (class label) 𝒚(𝒊), using the unit step function

 Update the weights accordingly (update concerns all the weights in one go)

We can write

 The second formula is called perceptron learning rule, and the 𝜼 is called the learning rate
(just a number between 0 and 1)

24

𝑤𝑗 = 𝑤𝑗 + ∆𝑤𝑗

∆𝒘𝒋 = 𝜼 ∙ 𝒚(𝒊) − 𝒚(𝒊) ∙ 𝒙𝒋
(𝒊)

The algorithm (II)
 To update the weight vector we need to know the true class label 𝑦(𝑖) and calculate the
predicted one: 𝑦(𝑖)

 All the weights are updated at once, we do not re-compute the class label before all ∆𝑤𝑗 are

updated

 Looking at our 2D example problem (see slide 7) we would write:

 Before we devour our keyboards in order to implement the perceptron experiment, let’s
make the following „gedanken” experiment to get the better feeling about it

25

∆𝑤0 = 𝜂 ∙ 𝑦(𝑖) − 𝑦(𝑖)

∆𝑤1 = 𝜂 ∙ 𝑦(𝑖) − 𝑦(𝑖) ∙ 𝑥1
(𝑖)

∆𝑤2 = 𝜂 ∙ 𝑦(𝑖) − 𝑦(𝑖) ∙ 𝑥2
(𝑖)

The algorithm (III)
 So, let’s check first what happens to the weights if we predict the class label
correctly/incorrectly:

 If the prediction is wrong, however, we have:

 So, the algorithm will try to push weights toward the value of the target class label

 And what about the value of the sample components?

26

∆𝑤𝑗 = 𝜂 ∙ 𝑦 𝑖 − 𝑦 𝑖 ∙ 𝑥𝑗
𝑖
= 𝜂 ∙ −1 𝑖 − −1 𝑖 ∙ 𝑥𝑗

𝑖
= 0

∆𝑤𝑗 = 𝜂 ∙ 𝑦 𝑖 − 𝑦 𝑖 ∙ 𝑥𝑗
𝑖
= 𝜂 ∙ +1 𝑖 − +1 𝑖 ∙ 𝑥𝑗

𝑖
= 0

∆𝑤𝑗 = 𝜂 ∙ 𝑦 𝑖 − 𝑦 𝑖 ∙ 𝑥𝑗
𝑖
= 𝜂 ∙ 1 𝑖 − −1 𝑖 ∙ 𝑥𝑗

𝑖
= 2 ∙ 𝜂 ∙ 𝑥𝑗

𝑖

∆𝑤𝑗 = 𝜂 ∙ 𝑦 𝑖 − 𝑦 𝑖 ∙ 𝑥𝑗
𝑖
= 𝜂 ∙ −1 𝑖 − 1 𝑖 ∙ 𝑥𝑗

𝑖
= −2 ∙ 𝜂 ∙ 𝑥𝑗

𝑖

The algorithm (IV)
 Consider the following:

 So, the true label is +1, however we predicted −1, with the fixed learning rate it turns out
that the weight update is proportional to the value of the variable

 Next time we encounter such event the weight will be more positive (or negative, depending

on the value of 𝑥𝑗
𝑖

)

 The convergence of the perceptron algorithm is only possible when the two classes are
linearly separable (and with a small learning rate)

 If the above is not true we need to make a decision on a maximum number of epochs (or
how many times we go over a training data) and a maximum number of acceptable errors in
classification

27

𝑦(𝑖) = +1, 𝑦 𝑖 = −1, 𝜂 = 1

∆𝑤𝑗 = 𝜂 ∙ 1 𝑖 − −1 𝑖 ∙ 𝑥𝑗
𝑖
= 1 ∙ 2 ∙ 𝑥𝑗

𝑖

The overview

28

𝑥2 𝑥2 𝑥2

𝑥1 𝑥1 𝑥1

𝑧(𝑖) 𝜙 𝑧

Make some
compromise

Loss function (I)
 In practice we need to have a very good handle on the performance of our model

 Or, in other words we need to have means to penalise the model if it performs poorly and
reward if it does good

We could, for instance, just count the number of good and bad decisions and calculate the
rates. Imagine the situation below

ℳ Ԧ𝑥 = 0

ℳ Ԧ𝑥 > 0 ℳ Ԧ𝑥 < 0Red points are
misclassified ℒ 𝑦𝑖 ,ℳ Ԧ𝑥𝑖 =

1

𝑛

𝑖
𝑦𝑖 ≠ 𝑠𝑖𝑔𝑛 ℳ Ԧ𝑥𝑖

Loss function (II)
 Let’s create „an universal” formula for the loss function, for that imagine we moved all the
correctly classified points on one side and the misclassified on the other (note, we are changing
the meaning of the plot from the last slide!

𝑦 ∙ℳ Ԧ𝑥 < 0 𝑦 ∙ℳ Ԧ𝑥 > 0The opposite signs
The same signs

𝑦 ∙ℳ Ԧ𝑥

30

Max penalty
each time!

ℒ =
1

𝑛

𝑖
1 𝑦∙ℳ Ԧ𝑥𝑖 <0

Loss function (III)
 In theory such loss function is very powerfull, but in practice we cannot optimise such
expression in any easy way and on top of this it has so sensitivity on how bad the decision
was, i.e., each time the penalty is maximal

𝑦 ∙ℳ Ԧ𝑥 < 0 𝑦 ∙ℳ Ԧ𝑥 > 0

Very bad
decision

Close to
good

Close to bad

Very good
decision

𝑦 ∙ℳ Ԧ𝑥

ℒ

AdaBoost

LogReg

Loss function (IV)
 There are some tantalising facts regarding the loss function: the whole training process
depends on the way we measure its performance – more aggressive approach may be more
beneficial, it may determine how long the training process take and if it will be successful at
all – how interesting

 Different loss functions determine upper limits w.r.t 1 𝑦∙ℳ Ԧ𝑥𝑖 <0
one:

 Our main target then should be:

ℒ 𝑦𝑖 ,ℳ Ԧ𝑥𝑖 =
1

𝑛

𝑖
𝑦𝑖 ≠ 𝑠𝑖𝑔𝑛 ℳ Ԧ𝑥𝑖 =

1

𝑛

𝑖
1 𝑦∙ℳ Ԧ𝑥𝑖 <0

≤
1

𝑛

𝑖
𝑓ℳ 𝑦 ∙ℳ Ԧ𝑥𝑖

PCA - Introduction

 Let’s have a look at the plot below:

 Here, u and v are called the principal direction of data variation (𝒖 is the most important one, 𝒗 is
next and perpendicular to u)

 Anything interesting about the transformation (𝑋, 𝑌) → (𝑈, 𝑉)?

 After the transformation data set is compact (mean values are 0) and decorrelated

33

Principal
directions

And reduction…?
 Consider this: what if variation in data is caused by a specific relation? For instance:

 Actually, we could say, that there is no variation along the second principal direction, i.e.,
there is no vital information for ML algo.

 Can treat this as 1𝑑 data set without compromising the overall performance of classification

34

„All data variation” in
the principal direction 𝒖

Noise related to
measurement in 𝒗

Get some feeling

The math behind PCA
Most of the times (or even all of the time) we are going to use libraries to do the job! That is
fine, however, learning a bit what is under the hood is a good thing!

 First given the data we can compute the covariance matrix:

36

Σ𝑖𝑗 = 𝑐𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸 𝑋𝑖 − 𝜇𝑖 𝑋𝑗 − 𝜇𝑗 = 𝐸 𝑋𝑖𝑋𝑗 − 𝜇𝑖𝜇𝑗

Σ =
𝑋1 − 𝜇1 𝑋1 − 𝜇1 ⋯ 𝑋1 − 𝜇1 𝑋𝑘 − 𝜇𝑘

⋮ ⋱ ⋮
𝑋𝑘 − 𝜇𝑘 𝑋1 − 𝜇1 ⋯ 𝑋𝑘 − 𝜇𝑘 𝑋𝑘 − 𝜇𝑘

Σ =
𝑣𝑎𝑟 𝑋1 ⋯ 𝑐𝑜𝑣 𝑋1, 𝑋𝑘

⋮ ⋱ ⋮
𝑐𝑜𝑣 𝑋𝑘 , 𝑋1 ⋯ 𝑣𝑎𝑟 𝑋2

The math behind PCA
 Having the covariance matrix one can find the principal components by computing its eigen-
vectors and eigen-values

 In other words we would say that we want to find a transformation matrix to find the axis
system in which the covariance matrix is diagonal (or in canonical form)

 The eigen-vector corresponding to the largest eigen-value is the direction of the greatest
variation

We start from the characteristic equation (or polynomial) Σ − 𝜆𝕀 = 0, which for Σ matrix
of size 𝑛 × 𝑛 has 𝑛 roots

 Next, we calculate eigen-vectors: Σ𝒙𝑖 = 𝜆𝒙𝑖

 The eigen-vectors should be normalised: 𝒙𝑖 ∙ 𝒙𝑖
𝑇 = 𝒙𝑖

𝑇 ∙ 𝒙𝑖 = 1

We can combine the eigen-vectors and write as a transformation matrix.

37

The math behind PCA
The transformation matrix

So, having calculated e-vectors and e-values, we can use it to transform all data points into a
data set where the variables are not correlated: (𝑋, 𝑌) → (𝑈, 𝑉)

In this new coordinate system the new correlation matrix is diagonal and can be written as Λ

38

𝕋 = 𝒙1 𝒙2 𝒙3 , 𝕋𝕋𝑇 = 𝕋𝑇𝕋 = 𝕀

Σ 𝒙1 𝒙2 𝒙3 = 𝒙1 𝒙2 𝒙3

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

Σ𝕋 = 𝕋Λ → 𝕋𝑇Σ𝕋 = Λ

It is definitely worth considering
 If we have data as follow:

We do the following:
 Calculate the mean values: 𝜇1, 𝜇2 , Σ and the transformation matrix 𝕋

 Now, each data point can be transformed from 𝑥1, 𝑥2 → 𝜙1, 𝜙2 with the equation: 𝒑𝜙 = 𝒑𝑥 − 𝝁𝑥 𝕋

 This kind of data pre-processing is very commonly used for many different types of ML analyses!

 Also, PCA can be used as a visualisation tool

39

