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In this lecture, You will learn some basics of FT-IR microscopy,
e A glimpse of theory

® Highlight into current FT-IR microscopy instrumentation
® Current applications
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Infrared radiation - low energy, high significance!
The IR spectrum in brief

The IR spectrum radiation is a region of the electromagnetic
spectrum for wavelengths ranging from 700 nm - 1 mm.
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Fig. 1: The IR spectrum [1]
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Foundations of vibrational spectroscopy

Molecule as a simple harmonic oscillator.

In all, IR spectroscopy is a powerful
technique based on the vibrations of the
atoms of an molecule. An IR spectrum is
obtained by passing infrared radiation
thorough the sample and calculating what
the fraction of incident beam is absorbed
at particular energy [9].

Fig. 2: "Molecular dance" - unknown artist ;).
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Foundations of vibrational spectroscopy

Molecule as a simple harmonic oscillator.

Faotential energy
of form

1,2
Skx

According to the basic model, a molecule
can be treated as a system of masses
joined by chemical bonds with "spring-like
properties, namely it is so-called harmonic
oscillator. Each harmonic oscillator is
allowed to perform 3N-5 (linear molecules)
or 3N-6 (non-linear molecules) modes of
vibrations [7].

x=0 represents the equilibrium
separation between the nuclel.

Fig. 2: Potential energy of a diatomic molecule as
a function of the atomic displacement during
vibrations of a simple harmonic oscillator [2].
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Foundations of vibrational spectroscopy

Molecule as a simple harmonic oscillator.

For any mode in which atoms vibrate
with simple harmonic motion (i.e. obeying
Hooke's law), the vibrational energy states
can be described by simple equation
(famous solution of Schrodinger’s equation
for simple harmonic oscillator): [7]

V(i) = ( + %) (1)

Where:

- v; - vibrational quantum number of i-th
mode of vibration, where: v; = 0,1,2...,

- v; - fundamental frequency of a given
vibration [Hz] (typically, (for MIR) in order
of 1013 [Hz] (0.2 eV)).

Faotential energy
of form

1,2
Skx

x=0 represents the equilibrium
separation between the nuclel.

Fig. 2: Potential energy of a diatomic molecule as
a function of the atomic displacement during
vibrations of a simple harmonic oscillator [2].
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Foundations of vibrational spectroscopy

Molecule as a simple harmonic oscillator.

Faotential energy

1
of farm Energy

Where: e
- v; - vibrational quantum number of i-th
mode of vibration, where: v; =0,1,2...,

- v; - fundamental frequency of a given
vibration [Hz] (typically, (for MIR) in order
of 1013 [Hz] (0.2 eV)).

Based on the selection rules for simple
harmonic oscillator, all transitions
involving changes in v; by +1 would be

x=0 represents the equilibrium
allowed [7]' M separalion between the nuclel.

Fig. 2: Potential energy of a diatomic molecule as
H . a function of the atomic displacement during
ence: . - . N .
vibrations of a simple harmonic oscillator [2].
Av; = +1 ()
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Normal modes of vibration

Basics steps in a molecular dance

Except from selection rules, additional
condition has to be fulfilled, namely the
molecule is only promoted to the excited

state if its dipole moment, p.,, changes

during the vibration, hence for transitions ]
between ground level and higher we may = \
ite: )
wr i\ 2 (a) vs =~ 2920em ™.
5o~ (%) 3)
dgq

Permanent dipole moment must change
due to vibrational motion of oscillator
for the vibration to be capable of - -1
absorbing an IR photon [7]!!!! (b) vas ~ 2850cm

Where:
- p - dipole moment of a given molecule
[71-

Fig. 3: Various modes of vibration for —C Hgy—
group: (a) symmetric stretching (b) antisymmetric
stretching [3].
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Normal modes of vibration

Basics steps in a molecular dance

Except from selection rules, additional
condition has to be fulfilled, namely the
molecule is only promoted to the excited
state if its dipole moment, ., changes
during the vibration, hence for transitions
between ground level and higher we may

write: ) L
d _
Boi ~ (7#) (3) (a) 6 = 1470cm ™.

u M,

dg
Where:
- p - dipole moment of a given molecule

[l

Permanent dipole moment must change
due to vibrational motion of oscillator e \
for the vibration to be capable of =
absorbing an IR photon [7]!!!! (b) 7~ 1370cm !
Fig. 3: Various modes of vibration for —C Ho—

group: (a) bending (b) twisting [3].
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Normal modes of vibration

Basics steps in a molecular dance

Except from selection rules, additional

condition has to be fulfilled, namely the
molecule is only promoted to the excited
state if its dipole moment, ., changes

during the vibration, hence for transitions
between ground level and higher we may
write:

Boi ~ (%)2 3) (a) p ~ 720cm™!
q

Where:

- p - dipole moment of a given molecule
[71-

Permanent dipole moment must change
due to vibrational motion of oscillator
for the vibration to be capable of
absorbing an IR photon [7]!!!!

e

(b) w =~ 1350 — 180cm™

Fig. 3: Various modes of vibration for —C Hy—
group: (a) rocking (b) wagging [3].
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Foundations of vibrational spectroscopy

Molecule as an anharmonic oscillator - is it more freestyle?.

Real molecules are not perfect harmonic
oscillators since force constant of a
chemical bond is not constant for

molecular vibrations of different amplitude.

It turns out that V; must be described
using an anharmonic, i.e. Morse-type
potential function (ge = 0):

40000

30000

20000

10000+

. . , r[nm]

02 03 04

Fig. 4: Potential energy of a diatomic molecule as a
function of the atomic displacement during
vibrations of an aharmonic oscillator [3].



Theory Instrumentation FTIR mapping 2D FTIR imaging System modeling
00@000 [©] (e]e] [e]e]e} 0000

Foundations of vibrational spectroscopy

Molecule as an anharmonic oscillator - is it more freestyle?.

Real molecules are not perfect harmonic
oscillators since force constant of a
chemical bond is not constant for
molecular vibrations of different amplitude. 30000
It turns out that V; must be described
using an anharmonic, i.e. Morse-type
potential function (ge = 0):

40000

20000

10000+

U=D(1-e"0)" ()

. . , r[nm]

02 03 04

Where:

- D - potential well depth,

- B - the factor describing "curvature" of
the potential [9] Fig. 4: Potential energy of a diatomic molecule as a
function of the atomic displacement during
vibrations of an aharmonic oscillator [3].
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Foundations of vibrational spectroscopy

Molecule as an anharmonic oscillator - is it more freestyle?.

U(a)=D(1- e*B'Q)Q (4)

Where:

- D - potential well depth,

- B - the factor describing "curvature" of
the potential [9].

Based on the Schrodinger equation, applied
for a "Morse-like" potential, the eigen
value of energy of an anharmonic oscillator
is given the formula presented below:

i = i | U4 3 ViZi | Vi 3

(5)
Where:
- v;, v; - asin eq. 2,
- x; - the anharmonicity constant; usually:
0.001 < z; < 0.02 [9].
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10000+

. . , r[nm]

02 03 04

Fig. 4: Potential energy of a diatomic molecule as a
function of the atomic displacement during
vibrations of an aharmonic oscillator [3].

System modeling
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Foundations of vibrational spectroscopy

Molecule as an anharmonic oscillator - is it more freestyle?.

_ 1 1\? 40000
E; = hy; ’Ui+§ — hv;x; vi+§

(4) 30000
Where:

- Vi, vy - asin eq. 2,
- x; - the anharmonicity constant; usually:
0.001 < z; < 0.02 [9].

20000

1no0n-
The effect of anharmonicity is to relax
selection rules for harmonic oscillator.

02 03 0.4

0 I [nm]
»

Therefore, transitions involving:

Av; = 41,42, £3, ... (5)

Fig. 4: Potential energy of a diatomic molecule as a
function of the atomic displacement during

|
become allowed [7] vibrations of an aharmonic oscillator [3].
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Instrumentation for FT-IR microscopy

How to measure FT-IR spectra

It can be interesting to measure how much of the incident IR radiation gets absorbed
at specific wavelengths as it they pass through a sample!!!!

Sample holder

(Substrate) Detector

IR Source
‘ Sample
I IR Light “ ! [

Fig. 5: Idea of transmission IR experiments [8].

It can be interesting to measure it as absorbance:

A(p) = zog(é((’?)) — ccland 7 = 27” (6)

Where: I - the intensity of the "reference" (background), I - intensity of the
attenuated radiation; ¢ - molar absorptivity [dm3/(mol - cm)]; ¢ - concentration
[mol/dm3]; I - path-length [cm].
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Instrumentation for FT-IR microscopy

How Michelson Interferometer works?

The interferogram of a collimated beam of
monochromatic radiation of intensity I(vp)
at wavenumber 1y at an optical path

difference ¢ is given by following equation:

Fixad Mirror

n—»

I1(6) =0.5-I(vp) - cos(2mvpd)  (7) Viiatod Mot

To obtain the true spectrum B(7), the
cosine FT must be calculated from

equation: " Chigar
|| samote
+OO Detector
BD):/I&-D5~00327rD<5d6 8
( (6) - D(9) - cos(2w76)ds (8) EeN
—o0 Ca——
iip:Ipersembahanku. wordpress.com
Where:
_ D(é) - so-called apodization function Fig. 6: Schematic of a FTIR Michelson

(i.e. "box-car", triangular, Happ-Genzel, interferometer [5].

etc.) [9, 7, 4].
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Instrumentation for FT-IR microscopy

How Michelson Interferometer works?

The interferogram of a collimated beam of
monochromatic radiation of intensity I(vp)
at wavenumber vy at an optical path

difference § is given by following equation:

Beamsplitter

I(6) = 0.5 I(vp) - cos(2mvpd)  (7)

To obtain the true spectrum B(7), the
cosine FT must be calculated from

IR Source Mirror

J
Optical Path

equation: .
+oo Mirror_
B(5) = / 1(8) - D(5) - cos(276)d5 (8)
— 00 Mirror
Where: ) . . Sample Compartment
- D(d) - so-called apodization function
(|e "box-car" triangular Happ—GenzeI Fig. 6: Schematic of a FTIR Michelson

interferometer [5].

etc.) [9, 7, 4].
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Instrumentation for FT-IR microscopy

How Michelson Interferometer works?

The interferogram of a collimated beam of
monochromatic radiation of intensity I(vp)
at wavenumber 1y at an optical path

difference ¢ is given by following equation:

1(0) =0.5-I(v) - cos(2mipd)  (7)

To obtain the true spectrum B(7), the ry
cosine FT must be calculated from :
equation: : x [cm]
-E Ao AN A R A n
too 2 AV vARYAY; U v AVAATACAY
%
B() = / 1(8) - D(5) - cos(2n55)ds (8) £ 0
5=}
— 00
Where:

- D(8) - so-called apodization function
(i.e. "box-car", triangular, Happ-Genzel,
etc.) [9, 7, 4] Fig. 6: Interferogram.
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Measurement modalities

FTIR microscopy

2D FTIR imaging
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Fig. 8: Example measurement modalities in FT-IR microscopy: a) single point; b) raster scanning; c)
o
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Glial tumors - proteins vs malignancy grade [11]

® Background: around 80% of malignant
brain tumorous are gliomas. They are
classified into four malignancy grades: |
(benign) - IV (malignant) as proposed by
the World Health Organization (WHO).

® Aim: discrimination between the glial
tumors of various types and malignancy
grades based on their protein secondary
structure.

M

® Methods: SR-FTIR micro-spectroscopy
(SMIS beamline, SOLEIL, Saint Aubin, (b)
France) + chemometrics (MATLAB +
Python) involving the use of artificial
neural networks (ANNs).

v

Narzedzia: sieci neuronowe, analiza statystyczna

® Objectives: seeking the best training
dataset, optimization of networks’
topology, training, predictions.

Badania FTIR struktury drugorzedowej bialek

(©

Fig. 9: Layout of the prediction procedure.
[m] [l = =
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Glial tumors - proteins vs

® Background: around 80% of malignant
brain tumorous are gliomas. They are
classified into four malignancy grades: |
(benign) - IV (malignant) as proposed by
the World Health Organization (WHO).

® Aim: discrimination between the glial
tumors of various types and malignancy
grades based on their protein secondary
structure.

® Methods: SR-FTIR micro-spectroscopy
(SMIS beamline, SOLEIL, Saint Aubin,
France) + chemometrics (MATLAB +
Python) involving the use of artificial
neural networks (ANNs).

® Objectives: seeking the best training
dataset, optimization of networks’
topology, training, predictions.

’D FTIR imaging tem modeling
0000

malignancy grade [11]

Input Amide I-ITI FTIR spectrum

[ uondIpaIg }(—{ Surureay, ]

Output fraction (%) of:
- a helix
- P sheets
- B turns
- random coils

Fig. 9: Layout of the prediction procedure.
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Glial tumors - proteins vs malignancy grade [11]
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Fig. 10: Average values of protein secondary structure contents vs tumor’s malignancy grade for:
a) a-helices; b) B-sheets, respectively. c) Amide I-1l spectra of the glial tumors, averaged over the
malignancy grade, normalized to the maximum of amide |; d) amide |l spectrum normalized to its
maximum (the arrows show the increase in the malignancy grade).
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Glial tumors - proteins vs malignancy grade [11]

Benigin Malignant
gliomas gliomas

Second discriminant function
|

Second discriminant function

=3 -2 7 T T
First discriminant function

a)
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derived .

Second discriminant function

Second discriminant function

= Oligodendroglial-
] oLiGo derived
+*s+ ASTRO . ~—
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First discriminant function

Fig. 10: Linear discri

¥ T
First discriminant function

inant analysis (LDA): distribution of the data points in the space of discriminant

functions for the classification with respect to: a) malignancy grade; b) general malignancy grade;

c) histological origin; d) general histological origin.
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Glial tumors - proteins vs malignancy grade [11]

nts in the space of discriminant
general malignancy grade;
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FT-IR imaging for neuro-research [13]
Protein burden in Alzheimer disease

"HESTER
e Background: Aj plaques are -"a"gpgfgigggggfggs

considered CaSual for‘ The University of Manchester

neurodegeneration in Alzheimer 3-Tg-APP-PSI-TAU

disease (AD). However, their Early-stage

ici i i | t A':Iznhd:ilmn:r
part|C|paFlon. In early-stage e
pathologies is unknown.
- . . The ammal: scarifriced

® Aim: Characterization of local at 15" month

biochemical burden occurring in Brain removal and

senlmmng (CaF,)

close proximity of AS in the
3-Tg-APP-PS1-TAU mouse model of
early-stage Alzheimer disease.

® Methods: FTIR imaging (Agilent
Cary 620-IR imaging microscope:
128 x 128 matrix, pixel: 1.1 pum)
and spectral band fitting.

nm FPA imaging (transmission)

® Objectives: development of the ; s
in-house code (Python) by image Microscopic image et
processing and chemometrics. Data analysis - Python 2.7

Fig. 11: Experimental outline.
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Data analysis

(e]e] oeo 0000

Amide | spectra were analyzed by the curve fitting approach. The fitting model was

optimized to yield the best performance and sensitivity.
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¢
Fig. 12: The procedure for spectral band fitting: a) coefficient of determination vs peak FWHM value;
b) coefficient of determination vs Lorentzian fraction in a peak; c-d) curve-fitted amide | spectra of the
Ap and neuropil, respectively.

FTIR mapping 2D FTIR imaging System modeling
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Image analysis and results [13]

Immediate areas around the identified A3 deposits were determined by image
processing (in-house code implemented in Python).
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. g 04 B Projection onto PC2
R g2
il] o 02
22 i
§ E*ﬂ.z
233 o
z 00
»
11 22 33 44

F-turns Ghellx  unordered -sheets
Protein component

Distance (um)

b) d)
Fig. 13: a) FTIR image of the A3 deposit (3-sheets); b) processed image of the deposit; principal
component analysis (PCA): c) projection of the data points onto the PCA1 vs. PC2 space; d) the
corresponding loadings plot (PCA1, PCA2).
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For correcting against major obscuring effects in FT-IR microscopy a novel
MLR-MR (ang. Multiple Linear Regression Multi-Reference), model was

proposed:
Reference spectra
ZApp(i;) = Zbas(i}) + Zsubs (i)) + me(i;) + Zchem(ﬂ) + 6(1;) (9)
Baseli Substrat Fri E
aseline ubstrate ringes rror

Brain sample on Ultralene

IR beam

Zchem (V)
Zsubs (’;)
Brain
specimen _ Substrate

Fig. 14: Physical properties of analyzed tissue samples .
] = =

n
it
N)
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For correcting against major obscuring effects in FT-IR microscopy a novel
MLR-MR (ang. Multiple Linear Regression Multi-Reference), model was

proposed:
Reference spectra
ZApp(ﬂ) = 2bas (17) + Zsubs (17) + Zfri(i;) + Zchem(ﬂ) + 6(’;) (9)
——— N — N~
Baseline Substrate Fringes Error
Sample Uncorrected
15 —— Ultralene® spectrum
Substrate Referenc~es ZAmp (&)
§ Zsubs (17 ) Zchem(u) Fringes
£10 Baseli D
. IIIC Zfri(u)
g Zpas (V)
<
0.5
0.0

1000 1500 2000 2500 3000 3500
Wavenumber (cm™1)

Fig. 14: Raw spectra from a single point.
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For correcting against major obscuring effects in FT-IR microscopy a novel
MLR-MR (ang. Multiple Linear Regression Multi-Reference), model was

proposed:

ZApp(i;) = Zbas (i}) + Zsubs (ﬂ) +Zfri (’;)"'Zchem(i;)"‘e(i})
——

Baseline Substrate

Constant and linear baseline effects
a - baseline offset;

b - baseline slope

¥ - the wavenumber vector [cm ™|

\N]

)

I
S}
+
f=p
N

Zbas(

Structural variability of the substrate
Zouvs (B) = ¢ - U(D) ¢ - a substrate contribution constant
s U(D) - the substrate (Ultralene®) spec-
trum

«4O> «Fr «=)» «
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Conclusions

FT-IR microscopy is a versatile micro-spectro-chemical method
allowing for:

® fast mapping and imaging of a variety of thin biological
samples.

® analyzing chemical homogeneity of industrial materials in 3D.
® studying biochemistry/biophysics behind pathological states.

Despite great progress in instrumentation, there is still a gap in
understanding major physical effects obscuring relevant spectral
information!
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Fig. 14: Another artistic view on a molecular dance [6]

Thank You for Your attention!!!!

DA
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