ATLAS experiment

 Tracking trajectories in ATLAScurved by magnetic field

Marek Kowalik Gaja Parda

Supervisor:
Dr Tomasz Botd

ATLAS Detector

ATLAS Inner Detector

In the inner detector direction, momentum and charge of charged particles can be measured. These particles are produced in protonproton collisions.

Hits from >1000 events of peripheral HI collisions

Detector map

$-600<z<600 ; 0<r<40$

They are not always active!

Individual events

Hough Transform

Allows to find linear shapes using voting system in the paramiter space and selecting local maxima. This version iterate through lines with different slope and Y -axis cross (in terms of linear function).

Circular Hough Transform

Allows to find circular shapes using voting system in the paramiter space and selecting local maxima. This algorithm iterate through different radiuses and circles' centers.

Algorithms:

- Linear Hough Transform (for Z-R view):
- Iteration through "y" around (0;0) and slope
- Iteration through points awarding voting array for line with 1/(distance from center)
- Receiving maxima from voting array:
- segmenting array
- finding exact segment maximum
- Filtering wrong classified maxima:
- maxima with overlapping points
- too few points
- too many points around the center of collision
- Filtered maxima $X-Y$ view circle fit:
- minimalisation points' error for different radiuses

Linear
 Hough transform result

Segmenting voting array
 Finding local maxima

Unfitable
Removal points (or maxima) scattered in $x-y$ view

Accepted

Wrong classified point/too few points

Slope too high

Results:

Radius and center coordinates of the particle's path, that may be used for caculating momentum.

Backup:

Explanation

Linear fit for angle dependency

Circle fit publication:

http://www.dtcenter.org/sites/default/files/comm unity-code/met/docs/write-ups/circle_fit.pdf

Backup:

Paralellisation

GPU Parallelisation results:

Time of Hough Transform from number of points
($)$ GPU © $)$ CPU

Perspectives:

- All sub-algorithms paralelisation
- Reformat code to scalable form and choosing optimal parameter precisely
- Deeper Hough transform parallelisation calculating every point weight and combining results using i. e. shared memory

