Exceptionally charming tetraquark T_{cc}⁺

Jolanta Brodzicka, IFJ PAN Białasówka, 22-10-2021

Outline

- Motivations & predictions for QQqq states
- Experimental observation of $T_{cc}^{+} \rightarrow D^0 D^{*+}$
- Studies of the T_{cc}⁺ properties

- $m(X) = 3871.59 \pm 0.06 \pm 0.03 \pm 0.01 \text{ MeV} \cong m_{D^0} + m_{D^{*0}}$
- Below/above DD^{*} threshold? bound/virtual state?
- 10×larger BF of X(3872) \rightarrow D⁰ \overline{D} *0
- Charmonium assignment: $\chi_{c1}(2P)$ [based on J^{PC}=1⁺⁺ and mass]
- Most likely a mixture of $c\overline{c}$ and $D\overline{D}^*$ molecule
- JolantaBrodzicka@Białasówka

Belle PRD81 031103 (2010)

Conventional and exotic particles

 Quark Model by Gell-Mann and Zweig (1964): mesons and baryons = <u>conventional states</u> States more complex = <u>exotics</u> also predicted

• Molecule

Meson-antimeson loosely bound by pion exchange Mass ≈ sum of meson masses

Decay: dissociation into constituent particles

• Tetraquark, pentaquark

Quarks tightly bound by gluon exchange Decay: rearrange into mesons/baryons \Rightarrow dissociation Can have non-zero charge [cucd] and/or strangeness [cucs]

• **Hybrid**: QQ + constituent excited gluons Can have exotic J^{PC} : 0⁺⁻, 1⁻⁺, 2⁺⁻...

Large widths for hadronic transitions ($\psi \pi \pi$, $\psi \omega$)

0

anti-meson

meson

Golden Age of spectroscopy: exotics

- About 30 candidates for exotics with heavy quark(s)
- Some of them manifestly exotic
- Charged charmonia: Z_c(3900)⁺, Z_c(4430)⁺ → ψ(2S)π⁺
 Belle PRL100 142001 (2008), Belle PRD80 031104 (2009), LHCb PRL112 222002 (2014)
 Belle PRL110 252002 (2013), BESIII PRL110 252001 (2013)
- Pentaquarks: $P_c(4312)^+$, $P_c(4440)^+$, $P_c(4457)^+ \rightarrow J/\psi p$ LHCb PRL115 072001 (2015), LHCb PRL122 222001 (2019)

Candidates for exotic particles

- Most of them contain $Q\overline{Q}$ ($c\overline{c}$ or $b\overline{b}$)
- Molecular or compact objects? Resonance nature?
- Close to mass thresholds of meson-meson or meson-baryon
- Large widths of O(10-100) MeV
- How about long-lived exotic states?

	States	content
	$X_0(2900), X_1(2900)$ [21,22]	c du s
	$\chi_{c1}(3872)$ [6]	$c\overline{c}q\overline{q}$
	$ \begin{array}{l} Z_{c}(3900) \ [23], \ Z_{c}(4020) \ [24,25], \ Z_{c}(4050) \ [26], \ X(4100) \ [27], \\ Z_{c}(4200) \ [28], \ Z_{c}(4430) \ [29-32], \ R_{c0}(4240) \ [31] \end{array} $	$c\overline{c}u\overline{d}$
	$Z_{cs}(3985)$ [33], $Z_{cs}(4000)$, $Z_{cs}(4220)$ [34]	$c\overline{c}u\overline{s}$
	$\chi_{c1}(4140)$ [35–38], $\chi_{c1}(4274)$, $\chi_{c0}(4500)$, $\chi_{c0}(4700)$ [38], X(4630), X(4685) [34], X(4740) [39]	\overline{ccss}
	X(6900) [14]	$c\overline{c}c\overline{c}$
	$Z_{b}(10610), Z_{b}(10650)$ [40]	$b\overline{b}u\overline{d}$
For references see arXiv:2109.01056	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ccuud
JolantaBrodzicka@Białasówka	$P_{cs}(4459)$ [44]	$c\overline{c}uds$

Quark

6

Any chance for long-lived exotic state?

- $QQ\bar{q}\bar{q}$ states, at $m_Q \rightarrow \infty$ limit, are prime candidates
- QQ forms a compact color anti-triplet object $\Rightarrow QQ\bar{q}\bar{q}$ similar to $\bar{\Lambda}_c$ or $\bar{\Lambda}_b$ antibaryon

Predictions from various models & lattice QCD:

- [bbud] state should be deeply bound, mass: ~200 MeV below BB* threshold
- Unclear about [bcud] and [ccud]
- T_{cc}⁺ ground state with [ccud] J^P=1⁺, I=0

mass: $-300 < \delta m < 300$ MeV, where $\delta m = m(T_{cc}^{+}) - [m(D^{0}) + m(D^{*+})]$

• No consensus if T_{cc}^+ exists and is narrow enough to be detected

Learning from doubly-charmed baryon

- Recently observed $\Xi_{cc}^{++} \rightarrow \Lambda_c K^- \pi^+ \pi^+$ LHCb PRL119 112001 (2017) m(Ξ_{cc}^{++}) = 3621.55 ± 0.23 ± 0.30 MeV LHCb JHEP 02 049 (2020)
- Relationship between properties of Ξ_{cc}⁺⁺ [ccu] and T_{cc}⁺ [ccud] m(ccud) ≈ m(Ξ_{cc}⁺⁺) + [m(Λ_c) - m(D⁰)] + kinematic corrections (~few MeV)

Search for T_{cc}^{+}

- LHCb Run1+2 data, 9/fb, at $\sqrt{s}=7,8,13$ TeV
- Reconstructed $D^0D^0\pi^+$ with $D^0 \rightarrow K^-\pi^+$
- K/ π : p_T>250 MeV, large IP relative to pp collision vertex
- D⁰: good vertex, p_T>1GeV, small IP, flight distance >100μm
- non-D⁰ background subtracted

- one m(D⁰ π^+) with mass close to D*+ mass
- $m(D^0D^0\pi^+)$ calculated with D^0 inv. mass constrained to D^0 mass
- JolantaBrodzicka@Białasówka

K-

π

р

Reconstructed m(D⁰D⁰ π^+)

- Narrow peak in $m(D^0D^0\pi^+)$ close to D^0D^{*+} threshold
- No such structure in $m(\overline{D}^0 D^0 \pi^+)$

Fit to m(D⁰D⁰ π^+)

- T_{cc}⁺ shape: P-wave relativistic Breit-Wigner
- Convolved with exp. resolution: double-Gaussian
- Simulation-based resolution ~400 keV [×1.05 correction from control channels in data]
- Background: random combinations of true D*+ and D⁰ \Rightarrow two-body phase-space
- T_{cc}^{+} yield: 117 ± 16 (22 σ)

$\delta m_{ m BW}$	=	$-273 \pm 61 \pm 5^{+11}_{-14} \text{keV}/c^2$
$\Gamma_{\rm BW}$	—	$410 \pm 165 \pm 43 {}^{+18}_{-38} \mathrm{keV},$

- Mass below D⁰D^{*+} threshold!
- Narrowest exotic state!
- Quark composition [ccud]

Study of the T_{cc}^{+} properties

- Is it isoscalar or isovector? T_{cc}^{0} and T_{cc}^{++} partners exist?
- Decay structure: Decay via D*+?
- Lineshape? Impact of nearby mass thresholds
- How its production in pp compares to other states?
- Quark structure:

loosely-bound DD* molecule

or compact 4-quark?

Unitarised Breit-Wigner descritpion

• State with J^P=1⁺, I=0 and strongly coupling to DD* is:

$$T_{cc}^{+}\rangle = \frac{1}{\sqrt{2}} \left(\left| D^{*+} D^{0} \right\rangle - \left| D^{*0} D^{+} \right\rangle \right)$$

- Consider coupling g to both DD* and couplings to $D^* \rightarrow D\pi/\gamma$
- Decay amplitudes: $T_{cc}^{+} \rightarrow D^0 D^0 \pi^+$, $D^0 D^+ \pi^0$, $D^0 D^+ \gamma$
- Breit-Wigner function for D* decay
- Unitarised Breit-Wigner function for given final sta⁻

Phase $sp_{ace integrated}^{\times 10^{-3}}$ total $D^0 D^0 \pi^+$ $D^+D^0\pi^0$ $D^+D^0\gamma$ **Parameters** peak location $m_{\rm U}$ = mass value wh 15 15.1 15.2coupling g related to width $im_{\rm U}\hat{\Gamma}(s) \equiv |g|^2 \Sigma(s)$ 15.2 15.3JolantaBrodzicka@Białasówka $[\text{GeV}^2]$ s

୍ର

LHCb arXiv:2109.01056 Fit to m(D⁰D⁰ π^+) with unitarised BW

- Similar to BW around the peak; long tail above DD* thresholds
- For small coupling, T_{cc}^+ width determined by |g|
- With increasing g, the width asymptotically reaches D* width

JolantaBrodzicka@Białasówka

$T_{cc}^{+} \rightarrow D^0 D^0 \pi^+$ proceeds via D*+?

- At least one m(D⁰ π ⁺) required to have mass close to D^{*+} mass
- What is decay structure for $m(D^0D^0\pi^+)$ below D^0D^{*+} threshold?

- Signal shape from unitarised BW model, convolved with resolution
- Decay proceeds via off-shell D*+ intermediate state
- Supports J^P=1⁺ assignment

JolantaBrodzicka@Białasówka

Is the T_{cc}^{+} an isosinglet state?

- For isovector expected triplet: T_{cc}^{0} [ccūū] T_{cc}^{+} [ccūd] T_{cc}^{++} [ccdd]
- Mass splitting relative to T_{cc}^+ of ±3 MeV
- Requires studying all DDπ/γ combinations: m(D⁰D⁰π⁰/γ), m(D⁰D⁺π⁰/γ), m(D⁰D⁺π⁺), m(D⁺D⁺π⁰/γ)
- Look for T_{cc} reconstructed with missing π/γ

- Peaks consistent with partially reconstructed $T_{cc}^{+} \rightarrow D^0 D^0 \pi^+$, $D^+ D^0 \pi^0 / \gamma$
- No evidence for T_{cc}^{0} or T_{cc}^{++}
- JolantaBrodzicka@Białasówka

Production of T_{cc}^+ similar to X(3872)?

- Properties of T_{cc}⁺ similar to that of X(3872)
- How about T_{cc}⁺ hadroproduction from pp?
- Suppression of X(3872) relative to $\psi(2S)$ at large track multiplicity

• Explained by Comover Interaction Model: nearby pions/gluons cause X(3872) breakup

Production of T_{cc}^{+}

• Comparison of T_{cc}^{+} yield with low-mass D^0D^0 and $\overline{D^0D^0}$ pairs

- Similar behaviour for T_{cc}⁺ and D⁰D⁰. Unexpected
- No T_{cc}⁺ suppression with large number of tracks. Unlike X(3872)

Summary and outlook

- T_{cc}^+ opens new class of exotic hadrons: $[QQ\bar{q}\bar{q}]$
- Manifestly exotic with [ccud]
- Below D⁰D^{*+} threshold and long-lived

$$\begin{split} \delta m_{\rm BW} &= -273 \pm 61 \pm 5^{+11}_{-14} \, \text{keV}/c^2 \\ \Gamma_{\rm BW} &= 410 \pm 165 \pm 43^{+18}_{-38} \, \text{keV} \,, \end{split}$$

- Consistent with predicted T_{cc}⁺ having J^P=1⁺ and I=0
- Future studies to test the T_{cc}⁺ nature
 - Production measurements in pp [with X(3872) as a reference]
 - Production in e⁺e⁻?
 - Dalitz analysis of $T_{cc}^{+} \rightarrow DD\pi/\gamma$ to confirm J^P
 - Search for T_{bc} and T_{bb}

Backups

T_{cc}⁺ lineshape

For small g resonance too narrow for resolution. For increasing g T_{cc}⁺ width determined by D* width, then g decouples from the resonance shape

JolantaBrodzicka@Białasówka

Systematics on BW parameters

Source	$\sigma_{\delta m_{\rm BW}} \left[{\rm keV}/c^2 \right]$	$\sigma_{\Gamma_{\rm BW}} \ [\rm keV]$
Fit model		
Resolution model	2	7
Resolution correction factor	1	30
Background model	3	30
Model parameters	< 1	< 1
Momentum scale	3	
Energy loss corrections	1	
$D^{*+} - D^0$ mass difference	2	—
Total	5	43
J ^P quantum numbers	$^{+11}_{-14}$	$^{+18}_{-38}$

Systematics on m_U

_	Source	$\sigma_{\delta m_{ m U}}$	$[\text{keV}/c^2]$
	Fit model		
	Resolution model		2
	Resolution correction facto	r	2
	Background model		2
	Coupling constants		1
	Unknown value of $ g $		$+7 \\ -0$
	Momentum scaling		3°
	Energy loss		1
	$D^{*+} - D^0$ mass difference		2
-	Total		$^{+9}_{-6}$

PRL 115, 072001 (2015)

Pentaquarks: at first sight

JolantaBrodzicka@Białasówka

Four $X \rightarrow J/\psi \phi$ **needed**; broader than seen by CDF/CMS

State	Signif	J^{PC}	M [MeV]	$\Gamma \; [{\rm MeV}]$
X(4140)	8.4σ	1^{++}	$4160 \pm 4^{+5}_{-3}$	$83 \pm 21^{+21}_{-14}$
X(4274)	5.8σ	1^{++}	$4273 \pm 8^{+17}_{-4}$	$56 \pm 11^{+8}_{-11}$
X(4500)	6.1σ	0^{++}	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$
X(4700)	5.6σ	0^{++}	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$

No single model can acommodate ther JolantaBrodzicka@Białasówka

- All won't fit c<u>c</u> spectrum
- $D_s^*D_s^*$ molecules or tetraquarks? 10 MeV120