Rgularized hydrodynamic expansion from quantum fields

Outline

- Introduction: hydrodynamic in extreme conditions
- Method of moments for the Boltzmann equation
- Resummed moments expansion for the Wigner distribution
- Numerical results

Leonardo Tinti Kraków, 26.11.2021

arXiv:1808.06436 arXiv:2003.09268

Standard picture of heavy ion collisions

Hydrodynamics

Hydrodynamics is the low-energy, long wave-length limit of a theory

Hydrodynamics require small gradients/deviations from equilibrium

Relativistic hydrodynamics

$$\begin{pmatrix} \boldsymbol{v} \to \boldsymbol{u} = \begin{pmatrix} \boldsymbol{\gamma} \\ \boldsymbol{\gamma} \boldsymbol{v}/c \end{pmatrix} \\ \rho \to \mathcal{E} \end{cases}$$

relativistic degrees of freedom

projector:

$$A^{\mu\nu} = u^{\mu}u^{\nu} - g^{\mu\nu}$$

$$T^{\mu\nu} = \mathcal{E}u^{\mu}u^{\nu} - \mathcal{P}\Delta^{\mu\nu} + \cdots$$
$$\partial_{\mu}T^{\mu\nu} = 0$$

which implies

local four-momentum conservation

$$\begin{cases} 0 = u_{\nu} \partial_{\mu} T^{\mu\nu} \xrightarrow{c \to \infty} \partial_{t} \rho + \nabla_{\mathbf{x}} \cdot (\rho \, \boldsymbol{\nu}) \\ 0 = \Delta_{i\nu} \partial_{\mu} T^{\mu\nu} \xrightarrow{c \to \infty} (\rho \boldsymbol{a} + \nabla_{\mathbf{x}} \mathbf{P}) \Big|_{i} + \cdots \end{cases}$$

Relativistic hydrodynamics

$$\begin{array}{c} \partial_{\mu}\hat{T}^{\mu\nu} = 0 \\ T^{\mu\nu} = tr(\hat{\rho} \ \hat{T}^{\mu\nu}) \end{array} \right\} \rightarrow \partial_{\mu}T^{\mu\nu} = 0 \qquad \begin{array}{c} \mathsf{Hydro} \\ T^{\mu\nu} = 0 \\ +\delta T^{\mu\nu} \end{array}$$

From quantum field theory, but at least ten degrees of freedom and only four equations

Gradient expansion

- Requires small gradients
- Unstable (even in the non-relativistic limit)
- Not converging

A Buchel, M P Heller, J Noronha, <u>arXiv:1603.05344</u> G Denicol, J Noronha, <u>arXiv:1608.07869</u>

$$\delta T^{\mu\nu} = 2\eta\sigma^{\mu\nu} + \cdots$$

transport coefficients times gradients

If the gradient expansion diverges, can hydrodynamics mak sense?

M Strickland, J Noronha, G Denicol arXiv:1709.06644

M P. Heller, A Kurkela, M Spalinski, V Svensson arXiv:1609.04803

Attractor behavior! ...but A Behtash, C N Cruz-Camacho, M Martinez arXiv:1711.01745

From the kinetic theory ("almost alternative")

Relativistic Boltzmann equation

$$p \cdot \partial f = -\mathcal{C}[f] \Rightarrow \int_{p} p^{\nu} p \cdot \partial f = -\int_{p} p^{\nu} \mathcal{C} = 0$$

$$\partial_{\mu} T^{\mu\nu}$$

$$u \cdot \partial f = \dot{f} = -\frac{p \cdot \nabla f}{(p \cdot u)} - \frac{\mathcal{C}[f]}{(p \cdot u)} \qquad \text{extra needed equations}$$

$$\dot{T}^{\mu\nu} = \int_{p} p^{\mu} p^{\nu} \dot{f}$$

$$\int_{p} = \int d^{4} p \, 2\Theta(p_{0}) \delta(p^{2} - m^{2})$$
G Denicol, J.Phys. G41 (2014) no.12, 124004

From the kinetic theory

$$p\cdot\partial f=-\mathcal{C}[f]$$
 convenient basis $\mathcal{F}_r^{\mu_1\cdots\mu_s}=\int_{\mathbf{p}}(p\cdot u)^r\,p^{\mu_1}\cdots p^{\mu_s}f$

$$\dot{\mathcal{F}}_{r}^{\mu_{1}\cdots\mu_{s}} + C_{r-1}^{\mu_{1}\cdots\mu_{s}} = r \dot{u}_{\alpha} \,\mathcal{F}_{r-1}^{\alpha\mu_{1}\cdots\mu_{s}} - \nabla_{\alpha} \mathcal{F}_{r-1}^{\alpha\mu_{1}\cdots\mu_{s}} + (r-1) \,\nabla_{\alpha} u_{\beta} \,\mathcal{F}_{r-2}^{\alpha\beta\mu_{1}\cdots\mu_{s}}$$

special case:
$$T^{\mu\nu}$$
 (r=0,s=2) $\dot{T}^{\mu\nu} + C^{\mu\nu}_{-1} = -\nabla_{\alpha}\mathcal{F}^{\alpha\mu\nu}_{-1} - \nabla_{\alpha}u_{\beta}\mathcal{F}^{\alpha\beta\mu\nu}_{-2}$

in particular
$$u_{\nu}\dot{T}^{\mu\nu} + C_{0}^{\nu} = -u_{\nu} \left(\nabla_{\alpha} \mathcal{F}_{-1}^{\alpha\mu\nu} + \nabla_{\alpha} u_{\beta} \mathcal{F}_{-2}^{\alpha\beta\mu\nu} \right) \Rightarrow \partial_{\mu} T^{\mu\nu} = 0$$

From the kinetic theory

$$\mathcal{O}^{\langle \mu_1 \rangle \cdots \langle \mu_l \rangle} = \Delta_{\alpha_1}^{\mu_1} \cdots \Delta_{\alpha_l}^{\mu_l} \mathcal{O}^{\alpha_1 \cdots \alpha_l} \quad \text{even more convenient basis} \qquad f_r^{\mu_1 \cdots \mu_l} = \int_p (p \cdot u)^r \ p^{\langle \mu_1 \rangle \cdots \langle \mu_l \rangle} f$$
$$\frac{\partial_\mu u_\nu = u_\mu \dot{u}_\nu + \sigma_{\mu\nu} + \omega_{\mu\nu} + \frac{1}{3} \theta \Delta_{\mu\nu}, \qquad T^{\mu\nu} = \mathcal{E} u^\mu u^\nu + \mathcal{P}^{\mu\nu} = \mathcal{E} u^\mu u^\nu - (\mathcal{P} + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}}{\left\{ \begin{array}{l} u_\nu \partial_\mu T^{\mu\nu} = 0 \\ \partial_\mu T^{\mu(\nu)} = 0 \end{array} \right\}} \begin{cases} \dot{\mathcal{E}} = -\theta (\mathcal{E} + \mathcal{P} + \Pi) + \pi^{\mu\nu} \sigma_{\mu\nu} \\ (\mathcal{E} + \mathcal{P} + \Pi) \ \dot{u}^\nu = \nabla^\nu (\mathcal{P} + \Pi) - \nabla_\mu \pi^{\mu(\nu)} + \pi^{\nu\alpha} \dot{u}_\alpha \end{cases}$$

$$\begin{split} \dot{\mathcal{P}}^{\langle\mu\rangle\langle\nu\rangle} + C_{-1}^{\langle\mu\rangle\langle\nu\rangle} &= 2(\mathcal{P} + \Pi)\sigma^{\mu\nu} + \frac{5}{3}\theta(\mathcal{P} + \Pi)\Delta^{\mu\nu} - \frac{5}{3}\theta\pi^{\mu\nu} - 2\pi_{\alpha}^{(\mu}\sigma^{\nu)\alpha} + 2\pi_{\alpha}^{(\mu}\omega^{\nu)\alpha} \\ &- \nabla_{\alpha}\mathfrak{f}_{-1}^{\alpha\langle\mu\rangle\langle\nu\rangle} - \left(\sigma_{\alpha\beta} + \frac{1}{3}\theta\Delta_{\alpha\beta}\right)\mathfrak{f}_{-2}^{\alpha\beta\mu\nu} \end{split}$$

LT, G Vujnovich, J Noronha, U Heinz **arXiv:1808.06436** LT, G Vujnovich **(WIP)**

Generalization?

multiple particle species

$$\begin{split} \Theta(p_0)\delta\big(p^2-m^2\big)f &\to \sum_i \Theta(p_0)\delta\big(p^2-m_i^2\big)f_i \\ C[f] &\to \sum_i C_i[f_1,\cdots,f_n] \end{split}$$

long range interactions (not-immediate)

$$p \cdot \partial f \to p \cdot \partial f + F \cdot \partial_{(p)} f$$

Mild divergencies at higher orders, due to the coupling to external fields

LT, G Vujnovich, J Noronha, U Heinz arXiv:1808.06436

Wigner distribution (quantum)

$$\Theta(p_0)\delta(p^2-m^2)f\to W$$

$$p \cdot \partial f \to k \cdot \partial W$$

<u>L</u> T, arXiv:2003.09268

Needs regularization from the start

The link between uantum fields and relativistic kinetic theory

 Relativistic Kinetic Theory. Principles and Applications - De Groot, S.R. et al. Amsterdam, Netherlands: North-holland (1980)

Problem extending to the Wigner distribution

$$\delta(p^2 - m^2)f \to W$$
$$p \cdot \partial f \to k \cdot \partial W$$

different physical situations very similar to kinetic theory but...

...ill defined from the start

$$\dot{T}^{\mu\nu} + C^{\mu\nu}_{-1} = -\nabla_{\alpha} \mathcal{F}^{\alpha\mu\nu}_{-1} - \nabla_{\alpha} u_{\beta} \mathcal{F}^{\alpha\beta\mu\nu}_{-2}$$

$$\int \frac{d^4k}{(2\pi)^4} \, \frac{k^{\alpha}k^{\mu}k^{\nu}}{(k\cdot u)} \, W = \int \frac{d^4k}{(2\pi)^4} \, \frac{k^{\langle\alpha\rangle}k^{\langle\mu\rangle}k^{\langle\nu\rangle}}{(k\cdot u)} \, W + 3u^{(\alpha}T^{\mu\nu)} - 2\mathcal{E}u^{\alpha}u^{\mu}u^{\nu}$$

...similar situation for the rank four tensor...

Resummed moments

Approach introduced for the Boltzmann-vlasov equation helps

$$\phi_n^{\mu_1\cdots\mu_s}(x,\zeta) = \int \frac{d^4k}{(2\pi)^4} \ (k\cdot u)^n \ e^{-\zeta(k\cdot u)^2} k^{\langle\mu_1\rangle}\cdots k^{\langle\mu_s\rangle} W(x,k)$$

 $a \mu_1 \cdots \mu_s \mu_1 \cdots \mu_s$

$$\begin{split} \delta_{\zeta} \varphi_{n} &= -\varphi_{n+2} \\ \int_{\zeta}^{\infty} dv \, \phi_{n+2}^{\mu_{1}\cdots\mu_{s}} = \phi_{n}^{\mu_{1}\cdots\mu_{s}} \\ \phi_{n}^{\mu_{1}\cdots\mu_{s}}(x,0) = \Delta_{\alpha_{1}}^{\mu_{1}}\cdots\Delta_{\alpha_{s}}^{\mu_{s}} \mathcal{F}_{n}^{\alpha_{1}\cdots\alpha_{s}} = f_{n}^{\alpha_{1}\cdots\alpha_{s}} \\ All (well-defined) previous moments recovered from the resumed ones, including T^{\mu\nu} \\ 2 \text{ generations of dynamical moments needed} \\ \phi_{2}^{\langle\mu_{1}\rangle\cdots\langle\mu_{1}\rangle} + \tilde{C}_{1}^{\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} = -\theta\phi_{2}^{\mu_{1}\cdots\mu_{s}} - s\nabla_{\alpha}u^{(\mu_{1}}\phi_{2}^{\mu_{2}\cdots\mu_{s})\alpha} - \nabla_{\alpha}\phi_{1}^{\alpha\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} + \dot{u}_{\alpha}[2\phi_{1}^{\alpha\mu_{1}\cdots\mu_{s}} + 2\zeta\partial_{\zeta}\phi_{1}^{\alpha\mu_{1}\cdots\mu_{s}}] \\ -s\dot{u}^{\langle\mu_{1}}\partial_{\zeta}\phi_{1}^{\mu_{2}\cdots\mu_{s}\rangle} + \nabla_{\alpha}u_{\beta}\left[\int_{\zeta}^{\infty} dv \, \phi_{2}^{\alpha\mu_{1}\cdots\mu_{s}} - 2\zeta\phi_{2}^{\alpha\mu_{1}\cdots\mu_{s}}\right] \\ \phi_{1}^{\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} = -\theta\phi_{1}^{\mu_{1}\cdots\mu_{s}} - s\nabla_{\alpha}u^{(\mu_{1}}\phi_{1}^{\mu_{2}\cdots\mu_{s})\alpha} - \nabla_{\alpha}\int_{\zeta}^{\infty} dv\phi_{1}^{\alpha\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} + \dot{u}_{\alpha}\left[\int_{\zeta}^{\infty} dv \, \phi_{2}^{\alpha\mu_{1}\cdots\mu_{s}} - 2\zeta\phi_{2}^{\alpha\mu_{1}\cdots\mu_{s}}\right] \\ +s\dot{u}^{\langle\mu_{1}}\phi_{2}^{\mu_{2}\cdots\mu_{s}\rangle} - 2\zeta\nabla_{\alpha}u_{\beta}\phi_{1}^{\alpha\beta\mu_{1}\cdots\mu_{s}} \end{split}$$

Exactly solvable case

Bjorken symmetry

$$\begin{aligned} \tau &= \sqrt{t^2 - z^2}, & v = k^0 t - z \, k^z, & u = (\cosh \eta, 0, 0, \sinh \eta) \\ \eta &= \frac{1}{2} \ln \left(\frac{t + z}{t - z} \right), & w = z k^0 - t \, k^z, & z = (\sinh \eta, 0, 0, \cosh \eta) \end{aligned}$$

RTA

(as a

$$k \cdot \partial W = -\frac{k \cdot u}{\tau_R} \left(W - W_{eq} \right) = -\frac{k \cdot u}{\tau_R} \left(W - \frac{2\delta(k^2)}{(2\pi)^3} e^{-\frac{1}{T(\tau)}\sqrt{k_T^2 + \frac{w^2}{\tau^2}}} \right) \Rightarrow \partial_\tau W + 2\frac{v^2 - w^2}{\tau} \partial v^2 W = \frac{1}{\tau_R} \delta W$$

in addition $W(\tau, v^2, k_T, w^2)$

Hydrodynamic expansion

$$L_{n} = \phi_{2}^{\mu_{1}\cdots\mu_{2n}} z_{\mu_{1}}\cdots z_{\mu_{2n}}, \qquad T_{n} = \phi_{2}^{\mu_{1}\cdots\mu_{2n}\alpha\beta} z_{\mu_{1}}\cdots z_{\mu_{2n}} x_{\alpha}x_{\beta}$$
$$\dot{L}_{n} + \frac{1}{\tau_{R}} (L_{n} - L_{n}^{eq.}) = -\frac{2n+1}{\tau} L_{n} + \frac{1}{\tau} \hat{L}L_{n+1}$$
$$\dot{T}_{n} + \frac{1}{\tau_{R}} (T_{n} - T_{n}^{eq.}) = -\frac{2n+1}{\tau} T_{n} + \frac{1}{\tau} \hat{L}T_{n+1}$$

$$\begin{aligned} \mathcal{E} &= L_0(\tau, \zeta = 0) \\ \mathbf{P}_L &= \int_{\zeta}^{\infty} d\zeta' \, L_1(\tau, \zeta') \\ \mathbf{P}_T &= \int_{\zeta}^{\infty} d\zeta' \, T_0(\tau, \zeta') \end{aligned}$$

Hydrodynamics

$$\begin{split} \dot{\mathcal{E}} &= -\frac{\mathcal{E} + \mathcal{P}_L}{\tau} \\ \dot{\mathcal{P}}_L + \frac{1}{\tau_R} \left(\mathcal{P}_L - \frac{1}{3}\mathcal{E} \right) = -\frac{3}{\tau} \mathcal{P}_L + \frac{1}{\tau} \mathcal{R}_L^{(1)} \\ \dot{\mathcal{P}}_T + \frac{1}{\tau_R} \left(\mathcal{P}_T - \frac{1}{3}\mathcal{E} \right) = -\frac{1}{\tau} \mathcal{P}_L + \frac{1}{\tau} \mathcal{R}_T^{(1)} \end{split}$$

$$\hat{\mathcal{L}}\left[f\right] = 2\zeta f(\zeta) - \int_{\zeta}^{\infty} d\zeta' f(\zeta')$$

one can integrate the equations in ζ

... the same for the sources and their equations...

Hydrodynamic expansion

Hydrodynamics

$$\begin{split} \dot{\mathcal{E}} &= -\frac{\mathcal{E} + \mathcal{P}_L}{\tau} \\ \dot{\mathcal{P}}_L &+ \frac{1}{\tau_R} \left(\mathcal{P}_L - \frac{1}{3}\mathcal{E} \right) = -\frac{3}{\tau} \mathcal{P}_L + \frac{1}{\tau} \mathcal{R}_L^{(1)} \\ \dot{\mathcal{P}}_T &+ \frac{1}{\tau_R} \left(\mathcal{P}_T - \frac{1}{3}\mathcal{E} \right) = -\frac{1}{\tau} \mathcal{P}_L + \frac{1}{\tau} \mathcal{R}_T^{(1)} \end{split}$$

 $\hat{\mathcal{L}}[f] = 2\zeta f(\zeta) - \int_{\zeta}^{\infty} d\zeta' f(\zeta')$

systematically improvable set of scalar equations...

$$\begin{aligned} \mathcal{R}_T^{(n)} &= \int_0^\infty d\zeta \left(\hat{\mathcal{L}}\right)^n T_n , \qquad \mathcal{R}_L^{(n)} = \int_0^\infty d\zeta \left(\hat{\mathcal{L}}\right)^n L_{n+1} \\ \dot{\mathcal{R}}_T^{(n)} &+ \frac{1}{\tau_R} \delta \mathcal{R}_T^{(n)} = -\frac{2n+1}{\tau} \mathcal{R}_T^{(n)} + \frac{1}{\tau} \mathcal{R}_T^{(n+1)} \\ \dot{\mathcal{R}}_L^{(n)} &+ \frac{1}{\tau_R} \delta \mathcal{R}_T^{(n)} = -\frac{2n+3}{\tau} \mathcal{R}_L^{(n)} + \frac{1}{\tau} \mathcal{R}_L^{(n+1)} \end{aligned}$$

...to test against the exact solutions

Exact solutions for the wigner distribution

- Constant shear-viscosity over entropy ratio: $\tau_R = 5\bar{\eta}/T$
- $\bar{\eta} = 3/(4\pi)$
- $\tau_0 = 1/4$ fm/c, $T_0 = 0.6$ GeV, two possible initial conditions:

$$W_0^{iso} = \frac{2}{(2\pi)^3 \sqrt{2\pi\sigma}} e^{-\frac{v^2}{2\tau_0^2 \sigma}} e^{-\frac{1}{T_0} \sqrt{\sigma = k_T^2 + \frac{w^2}{\tau_0^2}}} \longrightarrow \mathcal{P}_0 = \mathcal{P}_{eq.} = \frac{1}{3} \mathcal{E}$$

$$W_0^a = \frac{2}{(2\pi)^3 \sqrt{2\pi\sigma}} e^{-\frac{v^2}{2\tau_0^2 \sigma}} e^{-\frac{1}{T_0} \sqrt{\sigma = k_T^2 + \frac{w^2}{\tau_0^2}}} [1 - 3P_2\left(\frac{w}{\tau_0 \sqrt{\sigma}}\right)] \longrightarrow \mathcal{P}_T^0 = \frac{8}{5} \mathcal{P}_{eq.}$$

$$\mathcal{P}_L^0 = -\frac{1}{5} \mathcal{P}_{eq.}$$

Hydrodynamics

What can we say for the isotropic case

$$\delta P_{L} = \int_{\tau_{0}}^{\tau} ds \ \delta \dot{P}_{L} \Rightarrow \frac{\delta P_{L}}{P_{L}} = \frac{\int \delta \dot{P}_{L}}{P_{L}} \Rightarrow \text{Maximum if } 0 = \partial_{\tau} \left(\frac{\delta P_{L}}{P_{L}} \right) = \frac{\delta \dot{P}_{L}}{P_{L}} - \frac{\delta P_{L}}{P_{L}} \dot{P}_{L} \Rightarrow \frac{\delta P_{L}}{P_{L}} = \frac{\delta \dot{P}_{L}}{\dot{P}_{L}}$$
$$\frac{\delta \mathcal{E}}{\mathcal{E}} = \frac{\delta \dot{\mathcal{E}}}{\dot{\mathcal{E}}} = \frac{\delta \mathcal{E} + \delta P_{L}}{\mathcal{E} + P_{L}} \Rightarrow \frac{\delta \mathcal{E}}{\mathcal{E}} \simeq \frac{\delta P_{L}}{P_{L}}$$
$$\dots \text{but for the trace anomaly} \quad \mathcal{E} - 2P_{T} - P_{L} = -3\Pi \qquad \frac{\delta \dot{\Pi}}{\dot{\Pi}} = -1$$

Comparisons with the exact solutions

$$(\mathcal{E} - 2\mathcal{P}_T - \mathcal{P}_L)/\mathcal{E} = -\frac{3\Pi}{\mathcal{E}} = -\frac{\Pi}{\mathcal{P}}$$

Comparisons with the exact solutions

Comparisons for the anisotropic initial conditions

similar conclusions

Comparisons for the anisotropic initial conditions

reasonable approximation for the pressure anisotropy from the start

similar conclusions

Conclusions and outlook

- The metod of moments can't be immediately generalized to the Wigner distribution
- An expansion around the resummed moments is well defined
- Estimates of the errors for hydrodynamics, *Fast convergence?*

Back up slides

$$\int [g(x) + h(x)] dx \neq \int g(x) dx + \int h(x) dx$$
$$\int \lim_{\varepsilon \to 0} f(\varepsilon, x) dx \neq \lim_{\varepsilon \to 0} \int f(\varepsilon, x) dx$$

$$\frac{1}{\beta} = \int_0^\infty \left[-\partial_\beta \left(\frac{e^{-\beta x}}{x} \right) \right] dx \neq -\partial_\beta \left(\int_0^\infty \frac{e^{-\beta x}}{x} dx \equiv \infty \right)$$
$$\frac{1}{x} = \int_0^\infty e^{-\alpha x} d\alpha$$

$$\frac{1}{(\alpha+\beta)^2} = \int_0^\infty dx \left[-\partial_\beta \left(e^{-(\alpha+\beta)x} \right) \right] = -\partial_\beta \left(\int_0^\infty dx \, e^{-(\alpha+\beta)x} = \frac{1}{\alpha+\beta} \right),$$
$$\int_0^\infty d\alpha \left[\frac{1}{(\alpha+\beta)^2} = \partial_\alpha \left(-\frac{1}{\alpha+\beta} \right) \right] = \frac{1}{\beta}$$

Suppression for small ξ

$$\xi T_0 = \frac{1+t}{1-t} \Rightarrow t = \frac{\xi T_0 - 1}{\xi T_0 + 1}$$

from the EOM: $\tau_R \partial_\tau M_l^{\pm} = -\frac{\tau_R}{\tau} [(l+1)M_l^{\pm} - 2(\xi T_0)^2(l+4)(l+1)M_{l+2}^{\pm} + \cdots$

$$\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$$
$$\begin{cases} f_{r}^{\mu_{1}\cdots\mu_{s}} = \mathcal{F}_{r}^{\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} \\ \phi_{r}^{\mu_{1}\cdots\mu_{s}} = \Phi_{r}^{\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} \end{cases}$$

$$\begin{split} \dot{f}_{r}^{\langle \mu_{1}\rangle\cdots\langle \mu_{s}\rangle} + (\mathcal{F}_{\text{coll.}})_{r}^{\langle \mu_{1}\rangle\cdots\langle \mu_{s}\rangle} &= -q\,s\,\varepsilon^{\rho\sigma\alpha(\mu_{1}}f_{r-1}^{\mu_{2}\cdots\mu_{s})\beta}g_{\alpha\beta}u_{\rho}B_{\sigma} - q(r-1)\,E_{\alpha}\,f_{r-2}^{\alpha\mu_{1}\cdots\mu_{s}} - q\,s\,E^{(\mu_{1}}f_{r}^{\mu_{2}\cdots\mu_{s})} \\ &+ m\dot{m}\,(r-1)\,f_{r-2}^{\mu_{1}\cdots\mu_{s}} + s\,m\nabla^{(\mu_{1}}m\,f_{r-1}^{\mu_{2}\cdots\mu_{s})} \\ &+ r\,\dot{u}_{\alpha}f_{r-1}^{\alpha\mu_{1}\cdots\mu_{s}} - s\dot{u}^{(\mu_{1}}f_{r+1}^{\mu_{2}\cdots\mu_{s})} \\ &- \nabla_{\alpha}f_{r-1}^{\alpha\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} - \theta\,f_{r}^{\mu_{1}\cdots\mu_{s}} - s\,\nabla_{\alpha}u^{(\mu_{1}}f_{r}^{\mu_{2}\cdots\mu_{s})\alpha} \\ &+ (r-1)\nabla_{\alpha}u_{\beta}\,f_{r-2}^{\alpha\beta\mu_{1}\cdots\mu_{s}}, \end{split}$$

$$\begin{split} \dot{\phi}_{1}^{\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} + (\Phi_{\text{coll.}})_{1}^{\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} &= -q \left[s \, E^{(\mu_{1}}\phi_{1}^{\mu_{2}\cdots\mu_{s})} - 2\xi^{2} \left(E_{\alpha} \, \phi_{1}^{\alpha\mu_{1}\cdots\mu_{s}} + m\dot{m} \, \phi_{1}^{\mu_{1}\cdots\mu_{s}} \right) \right] \\ &+ s \frac{1}{\sqrt{\pi}} \int_{\xi^{2}}^{\infty} \frac{dv}{\sqrt{v-\xi^{2}}} \left[m \nabla^{(\mu_{1}} m \, \phi_{1}^{\mu_{2}\cdots\mu_{s})} - q \, \varepsilon^{\rho\sigma\alpha(\mu_{1}}\phi_{1}^{\mu_{2}\cdots\mu_{s})\beta} g_{\alpha\beta} u_{\rho} B_{\sigma} \right] \\ &+ \frac{1}{\sqrt{\pi}} \int_{\xi^{2}}^{\infty} \frac{dv}{\sqrt{v-\xi^{2}}} \left[\dot{u}_{\alpha} \phi_{1}^{\alpha\mu_{1}\cdots\mu_{s}} + s \, \dot{u}^{(\mu_{1}}\partial_{v}\phi_{1}^{\mu_{2}\cdots\mu_{s})} + 2\xi^{2} \, \dot{u}_{\alpha} \, \partial_{v} \phi_{1}^{\alpha\mu_{1}\cdots\mu_{s}} - \nabla_{\alpha} \phi_{1}^{\alpha\langle\mu_{1}\rangle\cdots\langle\mu_{s}\rangle} \right] \\ &- \theta \, \phi_{1}^{\mu_{1}\cdots\mu_{s}} - s \, \nabla_{\alpha} u^{(\mu_{1}}\phi_{1}^{\mu_{2}\cdots\mu_{s})\alpha} - 2\xi^{2} \nabla_{\alpha} u_{\beta} \, \phi_{1}^{\alpha\beta\mu_{1}\cdots\mu_{s}}. \end{split}$$

Particles interacting with external fields

Boltzmann-Vlasov equation $p \cdot \partial f + m \partial_{\alpha} m \, \partial^{\alpha}_{(p)} f + q F_{\alpha\beta} p^{\beta} \partial^{\alpha}_{(p)} f = -\mathcal{C}[f]$

Immediate (but problematic) generalization

$$\dot{\mathcal{F}}_{r}^{\mu_{1}\cdots\mu_{s}} + C_{r-1}^{\mu_{1}\cdots\mu_{s}} = r \dot{u}_{\alpha} \,\mathcal{F}_{r-1}^{\alpha\mu_{1}\cdots\mu_{s}} - \nabla_{\alpha} \mathcal{F}_{r-1}^{\alpha\mu_{1}\cdots\mu_{s}} + (r-1) \,\nabla_{\alpha} u_{\beta} \,\mathcal{F}_{r-2}^{\alpha\beta\mu_{1}\cdots\mu_{s}} + m\dot{m} \left(r-1\right) \mathcal{F}_{r-2}^{\mu_{1}\cdots\mu_{s}} + s \, m\partial^{(\mu_{1}}m \,\mathcal{F}_{r-1}^{\mu_{2}\cdots\mu_{s})} - q(r-1) \,E_{\alpha} \,\mathcal{F}_{r-2}^{\alpha\mu_{1}\cdots\mu_{s}} - q \,s \,g_{\alpha\beta} F^{\alpha(\mu_{1}} \mathcal{F}_{r-1}^{\mu_{2}\cdots\mu_{s})\beta}$$

 $F_{\mu\nu} = E_{\mu}u_{\nu} - E_{\nu}u_{\mu} + \varepsilon_{\mu\nu\rho\sigma}u^{\rho}B^{\sigma}$

Moments with large negative r needed, infrared catastrophe!

Unphysical moments as a source

 $\mathcal{F}_r^{\mu_1\cdots\mu_s} = \int_{\mathbf{p}} (p \cdot u)^r \, p^{\mu_1} \cdots p^{\mu_s} f \quad r < -2 - s, \text{ diverging integral in the massless case}$

Numerical problems for small non-vanishing masses

$$\frac{\mathcal{F}_r^{\mu_1\cdots\mu_s}}{T^{r+s+2}} \propto \left(\frac{m}{T}\right)^{r+s+2}$$

Any non-trivial coupling to an electromagnetic field introduces numerical problems at higher orders

Moments with large negative r needed, infrared catastrophe!

Resummed moments

 $\Phi^{\mu_1\cdots\mu_s} = \int_{\mathbf{p}} (p \cdot u) p^{\mu_1} \cdots p^{\mu_s} e^{-\xi^2 (p \cdot u)^2} f$ $\mathcal{F}_n^{\mu_1\cdots\mu_l} = \frac{2}{\sqrt{\pi}} \int_0^\infty d\xi \; \Phi^{\mu_1\cdots\mu_l\nu_1\cdots\nu_n} \; u_{\nu_1}\cdots u_{\nu_n}$

• Well defined equations

All reducible moments recovered

$$\begin{split} \dot{\Phi}^{\mu_{1}\cdots\mu_{s}} + \delta\Phi^{\mu_{1}\cdots\mu_{s}}_{\text{coll.}} &= \frac{2}{\sqrt{\pi}} \int_{\xi}^{\infty} d\zeta \frac{\zeta}{\sqrt{\zeta^{2} - \xi^{2}}} \left\{ \dot{u}_{\alpha} \, \Phi^{\alpha\mu_{1}\cdots\mu_{s}} - \nabla_{\alpha} \Phi^{\alpha\mu_{1}\cdots\mu_{s}} \right. \\ &+ s \left[m \partial^{(\mu_{1}} m \, \Phi^{\mu_{2}\cdots\mu_{s})} - q \, g_{\alpha\beta} F^{\alpha(\mu_{1}} \Phi^{\mu_{2}\cdots\mu_{s})\beta} \right] \right\} \\ &- 2\xi^{2} \left[\partial_{\alpha} u_{\beta} \, \Phi^{\alpha\beta\mu_{1}\cdots\mu_{s}} + m\dot{m} \, \Phi^{\mu_{1}\cdots\mu_{s}} - q E_{\alpha} \, \Phi^{\alpha\mu_{1}\cdots\mu_{s}} \right] \end{split}$$

Contribution from the collisional kernel

$$\Phi_{\text{coll.}}^{\mu_1 \cdots \mu_s} = \int_{\mathbf{p}} p^{\mu_1} \cdots p^{\mu_s} e^{-\xi^2 (p \cdot u)^2} \mathcal{C}[f]$$
33

Exact solutions of the Boltzmann-Vlasov equation

• Maxwell equations, particles as the source:

$$\partial_{\mu}F^{\mu\nu} = J^{\nu} \qquad \epsilon^{\mu\nu\rho\sigma} \,\partial_{\nu}F_{\rho\sigma} = 0$$

 Longitudinally boost invariant expansion, and homogeneous in the transverse plane (<u>no</u> parity invariance), RTA Because of symmetry

$$\partial \tau f(\tau, p_T, p_\eta) = -q E_\eta \frac{\partial f}{\partial p_\eta} - \frac{1}{\tau_R} (f - f_{eq.}) \qquad \qquad \partial_\tau E_\eta(\tau) = \frac{1}{\tau} E_\eta - J_\eta \partial \tau \bar{f}(\tau, p_T, p_\eta) = +q E_\eta \frac{\partial \bar{f}}{\partial p_\eta} - \frac{1}{\tau_R} (\bar{f} - f_{eq.}) \qquad \qquad u \cdot J = 0$$

$$f_{eq.} = k \ e^{-\frac{1}{T}(p \cdot u)}$$
 $E_{\eta} = -\tau E_L$ $k = \frac{N_{dof}}{(2\pi)^3}$ $J_{\eta} = -\tau J_L$

- Massless particles, $4\pi \ \bar{\eta} = 1$
- Local equilibrium initial conditions, $\tau_0 = 1$ fm/c, $T_0 = 0.3$ GeV, $E_L^0/T_0 = 0.2$ fm⁻¹.

Set of independent moments

* Linearly independent moments:
$$\Phi_l^{\pm} = \Phi^{\mu_1 \dots \mu_l} Z_{\mu_1} \cdots Z_{\mu_l} \pm \overline{\Phi}^{\mu_1 \dots \mu_l} Z_{\mu_1} \cdots Z_{\mu_l}$$

 $[z^{\mu} = (\sinh \eta, 0, 0, \cosh \eta), \quad u^{\mu} = (\cosh \eta, 0, 0, \sinh \eta)]$

Normalized (dimensionless) moments:

$$M_l^{\pm} = \frac{\Phi_l^{\pm}}{(8\pi k)(l+2)l!T_0^{l+3}}$$

In particular

$$\begin{aligned} (48 \,\pi \,k)T^4 &= \mathcal{E} = \frac{2}{\sqrt{\pi}} \int_0^\infty d\,\xi \, \left(-\frac{\partial}{\partial\xi^2} \Phi_0^+ \right) = 32\sqrt{\pi} \, k \, T_0^3 \int_0^\infty d\,\xi \, \left(-\frac{\partial}{\partial\xi^2} M_0^+ \right) \\ \mathcal{P}_L &= \frac{2}{\sqrt{\pi}} \int_0^\infty d\,\xi \, \Phi_2^+ = 128\sqrt{\pi} \, k \, T_0^5 \int_0^\infty d\,\xi \, M_2^+ \\ J_L &= -q \, \frac{2}{\sqrt{\pi}} \int_0^\infty d\,\xi \, \Phi_1^- = -q \, (48\sqrt{\pi} \, k \, T_0^4) \int_0^\infty d\,\xi \, M_1^- \end{aligned}$$

Equations to test numerically

From the resummed moments and Maxwell equations

$$\tau_R \partial_\tau M_l^{\pm} + \left(M_l^{\pm} - M_l^{\pm} \Big|_{eq.} \right) = -\frac{\tau_R}{\tau} \Big[(l+1) M_l^{\pm} - 2(\xi T_0)^2 (l+4) (l+1) M_{l+2}^{\pm} \\ + \frac{q E_\eta}{T_0} \Big(\frac{l+1}{l+2} M_{l-1}^{\mp} - 2(\xi T_0)^2 \frac{(l+3)(l+1)}{l+2} M_{l+1}^{\mp} \Big) \Big]$$

$$\frac{\partial_{\tau}T}{T} = -\frac{1}{4\tau} \left[1 + \frac{4T_0^5}{3\sqrt{\pi}T^4} \int_0^\infty d\xi \ M_2^+ - q \ E_\eta \frac{T_0^4}{\sqrt{\pi}T^4} \int_0^\infty d\xi \ M_1^- \right]$$

$$\partial_{\tau} E_{\eta} = \frac{1}{\tau} E_{\eta} - \tau q (48\sqrt{\pi} k T_0^4) \int_0^\infty d\xi M_1^-$$

Comparisons:electric current

Higher orders ill-defined in the traditional expasion

Comparisons: electric field

Higher orders ill-defined in the traditional expasion