pp and $p\bar{p}$ elastic scattering from ISR to Cosmic Ray energies

Anderson Kohara

Faculty of Physics, AGH-University of Science and Technology NCN GRANT 2020/37/K/ST2/02665

Bialasówka seminar

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY December 3, 2021

Outline

- Introduction
- Forward Scattering
- Dispersion relations
- Stochastic Vaccum Model (SVM) Framework
- Energy Dependence
- Amplitudes in Geometric Space
- p-Air Collisions
- Other models
- Conclusions
- Perspectives

Hadronic Collider Experiments

Large Hadron Collider-CERN,

Intersecting Storage Rings-CERN,1971–1984Proton-Antiproton Collider(SPS)-CERN,1981–1991Tevatron-Fermilab,1987–2011Relativistic Heavy Ion Collider-BNL,2000–...

 10^{10} 10^{11} 10^{1} 10^{2} 10^{3} 104 105 10^{6} 107 10⁸ 109 1010 10^{11} 10^{1} 10^{2} 10⁵ 10^{6} 10^{7} 10⁸ 10^{9} 10^{3} 10^{4} $p_{\rm lab}$ (GeV/c) plab (GeV/c) 10010050 50 Cross section (mb) Cross section (mb) inelasti $\overline{p}p$ pp \sqrt{s} (GeV) \sqrt{s} (GeV) pp threshold <u>pp</u> threshold 10 100 1000 10^{4} 10^{5} 10^{6} 101001000 10^{4} 10^{-5} 10^{6}

2009-...

1

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Relativistic Elastic Scattering

Mandelstam variables

$$s = (p_1 + p_2)^2$$
$$t = (p_1 - p_3)^2$$
$$u = (p_1 - p_4)^2$$

Coulomb phase

L.D. Solov'ev, *JETP* **22**, 205 (1966) 26; H. Bethe, *Ann. Phys.* (*N.Y.*) **3**, 190 (1958) 27; G.B. West, D.R. Yennie, *Phys. Rev.* **172**(5), 1413 (1968); V. Kundr⊡at and M. Lokaj⊡cek, *Phys. Lett. B* **611** (2005) 102 ; R. Cahn, *Z. Phys. C* **15** (1982) 253.

Assumptions

Analytic nuclear amplitude A(s, t, u)

Singularities have a physical meaning

Mandelstam plane

Crossing symmetric amplitudes $A_{pp}(s, t, u) = A_{p\bar{p}}(u, t, s)$

Unitarity of S matrix $ss^{\dagger} = 1$

TheoremsOptical theorem $\sigma_T = \frac{1}{2|p|\sqrt{s}} \operatorname{Im} A(s,t)$ Froissart theorem/bound $\sigma_T(s) \le C \log^2 \left(\frac{s}{s_0}\right)$ Pomeranchuck theorem $\frac{\sigma_T^{pp}(s)}{\sigma_T^{p\overline{p}}(s)} \to 1$ $s \to \infty$

Regge Theory $A(s,t) = \sum_{l=0}^{\infty} (2l+1)f_l(s)P_l(z_t) \qquad z_t = 1 + \frac{2s}{t-4m^2}$

Partial wave expantion

$$A^{\pm}(s,t) = \sum_{i} \beta_{i}^{\pm}(t) \Gamma\left(-\alpha_{i}^{\pm}(t)\right) \left(1 \pm \mathrm{e}^{-i\pi\alpha_{i}^{\pm}(t)}\right) s^{\alpha_{i}^{\pm}(t)}$$

Large energies

$$A^{\pm}(s,t) = \sum_{i} \beta_{i}^{\pm}(t) \Gamma\left(-\alpha_{i}^{\pm}(t)\right) \left(1 \pm \mathrm{e}^{-i\pi\alpha_{i}^{\pm}(t)}\right) s^{\alpha_{i}^{\pm}(t)}$$

Reggeons - baryon and meson trajectories

S. Donnachie, H. G. Dosch, P. Landshoff and O. Nachtmann, Pomeron Physics and QCD, Cambridge Univ. Press 2002.

4

From ISR energies (20 GeV) and beyond (Pomeron trajectory)

 $\alpha_{\mathbb{D}}(t) = 1 + \epsilon_0 + \alpha' t$ $\epsilon_0 = 0.08086$ $\epsilon_0 = 0.096$ old new

from phenomenology

Experimental data – differential cross section

Nuclear and Coulomb
amplitude
$$T(s,t) = T^{N}(s,t) + T^{C}(t)e^{\alpha\Phi}$$

$$T^{N}(s,t) \approx T^{N}_{R}(s,0)e^{B_{R}t/2} + iT^{N}_{I}(s,0)e^{B_{I}t/2}$$

$$T^{C}(t) = \mp \frac{2\alpha}{|t|}F^{2}_{\text{proton}}(t)e^{i\alpha\Phi(s,t)}$$

$$F_{\text{proton}} = (0.71/(0.71+|t|))^{2}$$

Nuclear and Coulomb
amplitude

$$T(s,t) = T^{N}(s,t) + T^{C}(t)e^{\alpha\Phi}$$

$$T^{N}(s,t) \approx T_{R}^{N}(s,0)e^{B_{R}t/2} + iT_{I}^{N}(s,0)e^{B_{I}t/2}$$

$$T^{C}(t) = \mp \frac{2\alpha}{|t|}F_{\text{proton}}^{2}(t)e^{i\alpha\Phi(s,t)}$$

$$F_{\text{proton}} = (0.71/(0.71+|t|))^{2}$$
Optical theorem $\sigma = 4\pi(\hbar c)^{2}T_{I}^{N}(s,0)$
Ratio of real and imaginary amplitudes $\rho = \frac{T_{R}^{N}(s,0)}{T_{I}^{N}(s,0)}$
Usual slope definition $\frac{d\sigma}{dt} = \left|\frac{d\sigma}{dt}\right|_{t=0}e^{Bt}$

Nuclear and Coulomb
amplitude
$$T(s,t) = T^{N}(s,t) + T^{C}(t)e^{\alpha\Phi}$$

$$T^{N}(s,t) \approx T_{R}^{N}(s,0)e^{B_{R}t/2} + iT_{I}^{N}(s,0)e^{B_{I}t/2}$$

$$T^{C}(t) = \mp \frac{2\alpha}{|t|}F_{\text{proton}}^{2}(t)e^{i\alpha\Phi(s,t)}$$

$$F_{\text{proton}} = (0.71/(0.71 + |t|))^{2}$$
Forward quantities
$$Optical \text{ theorem } \sigma = 4\pi(\hbar c)^{2}T_{I}^{N}(s,0)$$
Ratio of real and imaginary amplitudes
$$\rho = \frac{T_{R}^{N}(s,0)}{T_{I}^{N}(s,0)}$$
Usual slope definition
$$\frac{d\sigma}{dt} = \left|\frac{d\sigma}{dt}\right|_{t=0}e^{Bt}$$
Differential cross section
$$\frac{d\sigma}{dt} = \pi(\hbar c)^{2}\left\{\left[\frac{\rho\sigma}{4\pi(\hbar c)^{2}}e^{B_{R}t/2} + F^{C}(t)\cos(\alpha\Phi)\right]^{2} + \left[\frac{\sigma}{4\pi(\hbar c)^{2}}e^{B_{I}t/2} + F^{C}(t)\sin(\alpha\Phi)\right]^{2}\right\}$$
West-Yennie phase
$$\Phi(s,t) = \mp \left[\ln\left(-\frac{t}{s}\right) + \int_{-4\rho^{2}}^{0}\frac{dt'}{|t'-t|}\left[1 - \frac{T^{N}(s,t')}{T^{N}(s,t)}\right]\right]$$
Because $B_{R} \neq B_{I}$ we have a different phase
$$\Phi(s,t) = \mp \left[\ln\left(-\frac{t}{2}\right) + \ln\left[\frac{B}{2}(4p^{2}+t)\right] - \ln\left[-\frac{Bt}{2}\right] + 2\gamma \quad \text{and} \quad c \equiv \rho e^{B_{R}-B_{I}}t/2$$

Nuclear and Coulomb

$$T(s,t) = T^{N}(s,t) + T^{C}(t)e^{\alpha\Phi}$$

$$T^{N}(s,t) \approx T_{R}^{N}(s,0)e^{B_{R}t/2} + iT_{I}^{N}(s,0)e^{B_{I}t/2}$$

$$T^{C}(t) = \mp \frac{2\alpha}{|t|}F_{\text{proton}}^{2}(t)e^{i\alpha\Phi(s,t)}$$

$$F_{\text{proton}} = (0.71/(0.71 + |t|))^{2}$$
Optical theorem $\sigma = 4\pi(\hbar c)^{2}T_{I}^{N}(s,0)$
Ratio of real and imaginary amplitudes $\rho = \frac{T_{R}^{N}(s,0)}{T_{I}^{N}(s,0)}$
Usual slope definition $\frac{d\sigma}{dt} = \frac{d\sigma}{dt} + e^{Bt}$ The measured slope is $B = \frac{\rho^{2}B_{R} + B_{I}}{1 + \rho^{2}}$
Differential cross section
$$\frac{d\sigma}{dt} = \pi(\hbar c)^{2} \left\{ \left[\frac{\rho\sigma}{4\pi(\hbar c)^{2}} e^{B_{R}t/2} + F^{C}(t)\cos(\alpha\Phi) \right]^{2} + \left[\frac{\sigma}{4\pi(\hbar c)^{2}} e^{B_{I}t/2} + F^{C}(t)\sin(\alpha\Phi) \right]^{2} \right\}$$
West-Yennie phase $\Phi(s,t) = \mp \left[\ln\left(-\frac{t}{s}\right) + \int_{-4\rho^{2}}^{0} \frac{dt'}{|t'-t|} \left[1 - \frac{T^{N}(s,t)}{T^{N}(s,t)} \right] \right]$
Because $B_{R} \neq B_{I}$ we have a different phase $\Phi(s,t) = \mp \left[\ln\left(-\frac{t}{s}\right) + \frac{1}{c^{2}+1} [c^{2}I(B_{R}) + I(B_{I})] \right]$
where $I(B) = E_{I} \left[\frac{B}{2} (4p^{2} + t) \right] - E_{I} \left[- \frac{Bt}{2} \right] + \ln \left[\frac{B}{2} (4p^{2} + t) \right] - \ln \left[- \frac{Bt}{2} \right] + 2\gamma$ and $c \equiv \rho e^{B_{R} - B_{I}} t/2$

Forward scattering differential cross sections at several energies for pp and $p\bar{p}$

Dispersion relations

Particle Data Group total cross section representation even and odd amplitudes

$$\sigma^{p^{\mp}p}(s) = P + H \log^2\left(\frac{s}{s_0}\right) + R_1\left(\frac{s}{s_0}\right)^{-\eta_1} \pm R_2\left(\frac{s}{s_0}\right)^{-\eta_2} \qquad F_+(s,u) = \left[F_{p\bar{p}\to p\bar{p}}(s,u) + F_{pp\to pp}(s,u)\right]/2 \\ F_-(s,u) = \left[F_{p\bar{p}\to p\bar{p}}(s,u) - F_{pp\to pp}(s,u)\right]/2$$

Dispersion relations for amplitudes

Re
$$F_{+}(s,u) = K + \frac{2}{\pi}s^{2}\mathbf{P}\int_{2m^{2}}^{\infty} \frac{\operatorname{Im} F_{+}(s')}{s'(s'^{2} - s^{2})} ds'$$
 Re $F_{-}(s,u) = \frac{2}{\pi}s\mathbf{P}\int_{2m^{2}}^{\infty} \frac{\operatorname{Im} F_{-}(s')}{s'^{2} - s^{2}} ds'$

with a common principal value integral $I(n,\lambda,x) = \mathbf{P} \int_{1}^{+\infty} \frac{x'^{\lambda} \log^{n}(x')}{[x'^{2} - x^{2}]} dx'$ with $x = E/m \approx s/2m^{2}$

Instead of PV we use exact derivative dispersion relations (DDR)

R.F. Ávila and M.J. Menon, Nucl. Phys. A744 (2004) 249; Braz. J. Phys. 37, 358 (2007)
E. Ferreira and J. Sesma J. Math. Phys. 49, 033504 (2008); J. Math. Phys. 54, 033507 (2013)

We show a new representation of exact DDR

conditions: x > 1, *n* zero or positive integer and $\Re(\lambda) \le 1$

$$I(n,\lambda,x) = -\frac{\pi}{2x^2} \frac{\partial^n}{\partial \lambda^n} [x^{1+\lambda} \cot\left(\frac{\pi}{2}(1+\lambda)\right)] + \frac{(-1)^n}{x^2} 2^{-(n+1)} n! \ \Phi(\frac{1}{x^2}, n+1, \frac{1+\lambda}{2})$$

Hurwitz Lerch transcendents

E. Ferreira, A. K. Kohara and J. Sesma, Phys. Rev. C 97 (2018) 1, 014003

$$\frac{1}{2^N} \frac{1}{x} \Phi(\frac{1}{x^2}, N, \frac{1+\lambda}{2}) = \frac{x^{-1}}{(1+\lambda)^N} + \frac{x^{-3}}{(3+\lambda)^N} + \frac{x^{-5}}{(5+\lambda)^N} + \dots$$

Interesting properties of the transcendents

$$\begin{split} \frac{\partial}{\partial\lambda} \Phi(z,N,\frac{1+\lambda}{2}) &= -\frac{N}{2} \ \Phi(z,N+1,\frac{1+\lambda}{2}) & \frac{\partial I(0,\lambda,x)}{\partial \log(x)} + (1-\lambda)I(0,\lambda,x) = -\frac{1}{x^2-1} \\ \frac{\partial I(n,\lambda,x)}{\partial\lambda} &= I(n+1,\lambda,x) & \frac{\partial I(n,\lambda,x)}{\partial \log(x)} + (1-\lambda)I(n,\lambda,x) = nI(n-1,\lambda,x) \end{split}$$

E. Ferreira, A. K. Kohara and J. Sesma; Frac. Calc. and App. Analysis, 23, 2 (2020)

Exact DDR for real amplitudes

$$\sigma \rho \binom{\text{PP}}{\text{pp}} = \frac{K}{s} + H\pi \log\left(\frac{s}{s_0}\right) + \frac{4m^2}{s\pi} \left(P + H\left[\log^2\left(\frac{s_0}{2m^2}\right) + 2\log\left(\frac{s_0}{2m^2}\right) + 2\right]\right) + R_1\left[-\left(\frac{s}{s_0}\right)^{-\eta_1} \tan\left(\frac{\pi\eta_1}{2}\right) + \left(\frac{s_0}{2m^2}\right)^{\eta_1} \frac{2m^2}{s} \left(\frac{2/\pi}{1-\eta_1}\right)\right]$$

$$R_2\left(\frac{s}{s_0}\right)^{-\eta_2} \cot\left(\frac{\pi\eta_2}{2}\right) + R_2\left(\frac{s_0}{2m^2}\right)^{\eta_2} \left(\frac{2m^2}{s}\right)^2 \left(\frac{2/\pi}{2-\eta_2}\right)$$

PDG uses approximated DR forms of

$$\sigma \rho^{a^{\mp}b} = \left[\pi H \log\left(\frac{s}{s_M^{ab}}\right) - R_1^{ab} \left(\frac{s}{s_M^{ab}}\right)^{-\eta_1} \tan\left(\frac{\eta_1 \pi}{2}\right) \pm R_2^{ab} \left(\frac{s}{s_M^{ab}}\right)^{-\eta_2} \cot\left(\frac{\eta_2 \pi}{2}\right) \right]$$

K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)

Exact form and PDG approximation

Imaginary slope

Extension of forward imaginary amplitude of $\exp[-B_I t/2]$ PDG

$B_I(s)$ parametrized as $B_I {pp \choose p\bar{p}}(x) = b_0 + b_1 \log(x) + b_2 \log^2(x) + b_3 x^{-\eta_3} \pm b_4 x^{-\eta_4}$

Parametrization of very low energy data for pp and ppbar

Dispersion Relation for slopes

E. Ferreira, Int. J. Mod. Phys. E 16, 2893 (2007)

11

Linear t correction in forward scattering

$$T_{I}^{N}(t) = \frac{1}{4\sqrt{\pi}(\hbar c)^{2}}\sigma(1-\mu_{I}t)e^{B_{I}t/2}$$
$$T_{R}^{N}(t) = \frac{1}{4\sqrt{\pi}(\hbar c)^{2}}\sigma(\rho-\mu_{R}t)e^{B_{R}t/2}$$

real and imaginary nuclear amplitudes

A. K. K., E. Ferreira, T. Kodama and M. Rangel, Eur. Phys. J. C 77, (2017) 12, 877

\sqrt{s}	dataset	$\Delta t $ range	Ν	Ref.	σ	B_I	ρ
(GeV)		$({ m GeV}^2)$	points		(mb)	(GeV^{-2})	
7	Totem T7	0.005149-0.3709	87	1	98.6 ± 2.2	19.9 ± 0.3	$0.14 \; (fix)^{a}$
7	Atlas A7	0.0062-0.3636	40	2	95.35 ± 0.38	19.73 ± 0.14	0.14 (fix) ^b
8	Totem T8	0.000741 - 0.19478	60	3	103.0 ± 2.3	19.56 ± 0.13	(0.12 ± 0.03) ^c
8	Atlas A8	0.0105-0.3635	39	4	96.07 ± 0.18	19.74 ± 0.05	0.1362 (fix)^{d}

Experimental LHC/TOTEM data points at 7 and 8 TeV

 $t_R = \rho/\mu_R$

Zero of the real amplitude goes to the origin faster than the zero of imaginary part for large energies

A. Martin, Lett. Nuovo- Cim. 7, 811 (1973)

A. K. Kohara., E. Ferreira, and M. Rangel, Phys. Lett. B 789 (2019) 1-6

The first zero in the second plot is the interplay between real and Coulomb amplitude!!!

Simple model for zeros, crossing and 'scaling'

Considering an scaled amplitude Non-crossing symmetric

$$T^N(E,t) \sim iCE \log^2(E) f(\tau)$$
 $\tau = t \log^2 E$

A. Martin, Lett. Nuovo Cimento 7 (1973) 811

$$F^{N}(E,t) \sim \mathrm{i}CE\left(\log E - \mathrm{i}\frac{\pi}{2}\right)^{2} f(\tau')$$
 $\tau' = t\left(\log E - \mathrm{i}\frac{\pi}{2}\right)^{2}$

Inspired in the above we define

$$\begin{split} F^N_{\mp}(s,t) &= F^N_{\mp}(s)f(\tau') = \left[F^R_{\mp}(s) + \mathrm{i}F^I_{\mp}(s)\right]f(\tau')\\ f(\tau') &= \mathrm{e}^{\tau'} = \mathrm{e}^{\Omega'_R(s,t) + \mathrm{i}\Omega'_I(s,t)} \end{split}$$

$$F_{\mp}^{R}(s) = s[\beta(P_{1} + 2H\log s) - R_{1}s^{-\eta_{1}}\sin(\eta_{1}\beta) \mp R_{2}s^{-\eta_{2}}\cos(\eta_{2}\beta)]$$

$$F_{\pm}^{I}(s) = s[P + P_{1}\log s + H(\log^{2} s - \beta^{2}) + R_{1}s^{-\eta_{1}}\cos(\eta_{1}\beta) \pm R_{2}s^{-\eta_{2}}\sin(\eta_{2}\beta)]$$

$$\Omega_{\rm R}(s,t) = [b_0 + b_1 \log s + b_2(\log^2 s - \beta^2) + b_3 s^{-\eta_3} \cos(\eta_3 \beta)]t$$

$$\Omega_{\rm I}(s,t) = -[b_1 \beta + 2b_2 \beta \log s - b_3 s^{-\eta_3} \sin(\eta_3 \beta)]t$$

A. K. Kohara, J. Phys. G: Nucl. Part. Phys. 46 (2019) 125001

Parameters							
\sqrt{s} (GeV)	H (mb)	η_3	σ (mb)	ρ	$B (GeV^{-2})$	σ _{elas.} (mb)	χ^2/ndf
pp							
23.882	0.311 ± 0.002	0.16 (fix)	39.57	0.034	11.77	7.27	90.7/62
30.6	0.292 ± 0.001	0.1522 ± 0.001	39.79	0.049	12.23	7.03	94.1/68
44.7	0.291 ± 0.0004	0.144 (fix)	41.51	0.077	13.12	7.08	87.3/67
52.8	0.2894 ± 0.0003	0.1383 ± 0.0003	42.41	0.088	13.26	7.30	245/88
62.5	0.2812 ± 0.0005	0.1304 ± 0.0004	42.76	0.092	13.15	7.49	111.1/62
200*	0.2887 (fix)	0.106 (fix)	52.05	0.133	14.61	9.94	_
900*	0.2887 (fix)	0.085 (fix)	68.38	0.145	16.43	15.15	_
2760^{*}	0.2887 (fix)	0.076 (fix)	84.04	0.143	18.23	20.51	_
7000	0.2895 ± 0.0003	0.0735 ± 0.0002	99.51	0.138	20.39	25.57	74.4/59
7000	0.2764 ± 0.0002	0.0707 ± 0.0001	95.43	0.136	19.90	24.11	42.9/33
8000	0.2903 ± 0.0001	0.0694 ± 0.0001	102.12	0.137	19.65	27.99	72.5/58
8000	0.2735 ± 0.0001	0.0698 ± 0.0001	96.74	0.135	20.11	24.51	28.8/25
13 000	0.2913 ± 0.0001	0.0673 ± 0.0001	111.43	0.134	20.99	31.11	149.4/126
14000^*	0.2887 (fix)	0.067 (fix)	112.65	0.132	21.13	31.15	<u> </u>
57 000*	0.2887 (fix)	0.063 (fix)	141.59	0.123	24.19	42.93	
pp							
30.4	0.2994 ± 0.003	0.15 (fix)	41.32	0.076	12.05	7.73	22.4/25
52.6	0.2971 ± 0.001	0.138 (fix)	43.44	0.102	13.24	7.69	29.9/27
62.3	0.2938 ± 0.003	0.132 ± 0.004	44.13	0.107	13.32	7.89	19.9/15
540	0.2930 ± 0.0004	0.0901 ± 0.0003	62.95	0.145	15.65	13.52	164.9/97
1800	0.2706 ± 0.001	0.0771 ± 0.0004	73.71	0.141	17.19	16.78	43.8/53

QCD inspired model in the framework of Stochastic Vacuum model

Wilson loop is defined $W[C] \equiv \operatorname{tr} Pe^{-ig \oint_{C(x,x)} dz^{\mu} A_{\mu}(z)} = \operatorname{tr} V[C(x,x)]$

loop-loop scattering amplitudes $J(\vec{b}, \vec{R}_1, \vec{R}_2) = Z_{\psi}^{-2} \langle \operatorname{tr} [V[C_+] - 1] \operatorname{tr} [V[C_-] - 1] \rangle$

$$|\text{ISON loop expectation value} \qquad \qquad \text{H. G. Dosch, Phys. Lett. B 190, 177 (1987)} \\ \langle W[C] \rangle \approx \exp\left[-\frac{g^2}{2^2 2!} \int_S dS^{\mu_1 \nu_1}(z_1) dS^{\mu_2 \nu_2}(z_2) \langle \operatorname{tr} F_{\mu_1 \nu_1}[z_1, C(w, z_1)] F_{\mu_2 \nu_2}[z_2, C(w, z_2)] \rangle\right]$$

Expanding the Wilson loop

$$J(\vec{b}, \vec{R}_1, \vec{R}_2) = -(-ig)^4 (\frac{1}{2}!)^2 \operatorname{tr} [\tau_{C_1} \tau_{C_2}] \operatorname{tr} [\tau_{D_1} \tau_{D_2}] \int_{S_1} \prod_{i=1}^2 dS^{\mu\nu}(x_i) \int_{S_2} \prod_{j=1}^2 dS^{\alpha\beta}(y_j) \\ \times \frac{1}{N_C^2} \langle F_{\mu_1\nu_1}^{C_1}(x_1, w) F_{\mu_2\nu_2}^{C_2}(x_2, w) F_{\alpha_1\beta_1}^{D_1}(y_1, w) F_{\alpha_2\beta_2}^{D_2}(y_2, w) \rangle + \text{ (higher order)}$$

SVM factorization

W

$$\langle F^{C_1}F^{C_2}F^{D_1}F^{D_2}\rangle = \langle F^{C_1}F^{C_2}\rangle\langle F^{D_1}F^{D_2}\rangle + \langle F^{C_1}F^{D_1}\rangle\langle F^{C_2}F^{D_2}\rangle + \langle F^{C_1}F^{D_2}\rangle\langle F^{C_2}F^{D_1}\rangle$$

Dimensionless hadron-hadron amplitudes

$$J_{H_1H_2}(\vec{b}, S_1, S_2) = \int d^2 \vec{R}_1 \int d^2 \vec{R}_2 \ J(\vec{b}, \vec{R}_1, \vec{R}_2) \ |\psi_1(\vec{R}_1)|^2 \ |\psi_2(\vec{R}_2)|^2$$

H.G. Dosch, E. Ferreira and A. Kramer, *Phys. Lett. B* **289**, 153 (1992); *Phys. Lett. B* **318**, 197 (1993) ;*Phys. Rev. D* **50**, (1994)

_ . . .

Hadrons wave functions

$$\psi_H(R) = \sqrt{(2/\pi)} \frac{1}{S_H} e^{-R^2/S_H^2}$$

(a is the vacuum correlation lenght)

$$J(b/a) = \exp\left(-\frac{3\pi}{8}\frac{b}{a}\right) \left[\frac{A_1(S_H/a)}{b/a} + \frac{A_2(S_H/a)}{(b/a)^2} + \dots\right]$$

F. Pereira and E. Ferreira, Phys. Rev. D 55, 130 (1997)

Small and intermediate values of b/a need Gaussian form of J(b/a)

Suggested form
$$J(b/a) = J(0) \left[e^{-b^2/a_1} + a_2 A_{\gamma}(b) \right]$$
 with $A_{\gamma}(b) = \frac{e^{-\rho_4}\sqrt{\gamma^2 + b^2}}{\sqrt{\gamma^2 + b^2}} (1 - e^{\rho_4\gamma - \rho_4}\sqrt{\gamma^2 + b^2})$

Fourier transform gives analytical closed form

$$T(s,t) = is[\langle g^2 F F \rangle a^4]^2 a^2 \pi \left\{ J(0) \left[a_1 e^{-a^2 |t| a_1/4} + 2a_2 A_{\gamma}(t) \right] \right\} \text{ with } A_{\gamma}(t) = \frac{e^{-\gamma \sqrt{\rho^2 + a^2 |t|}}}{\sqrt{\rho^2 + a^2 |t|}} - e^{\gamma \rho} \frac{e^{-\gamma \sqrt{4\rho^2 + a^2 |t|}}}{\sqrt{4\rho^2 + a^2 |t|}} \int_0^\infty J_0(\beta v) \frac{e^{-\lambda \sqrt{1 + v^2}}}{\sqrt{1 + v^2}} v \, dv = \frac{e^{-\sqrt{\lambda^2 + \beta^2}}}{\sqrt{\lambda^2 + \beta^2}} \text{ analytical integral}$$

KFK *t* – space amplitude

$$T_I(s,t) = \alpha_I e^{-\beta_I |t|} + \lambda_I \Psi_I(\gamma_I,t) \qquad \Psi_I(\gamma_I,t) = 2 e^{\gamma_I} \left[\frac{e^{-\gamma_I \sqrt{1+a_0|t|}}}{\sqrt{1+a_0|t|}} - e^{\gamma_I} \frac{e^{-\gamma_I \sqrt{4+a_0|t|}}}{\sqrt{4+a_0|t|}} \right]$$

Real amplitude with the same form and different parameters

Energy dependence of KFK amplitudes

Elastic differential cross section $\frac{d\sigma}{dt} = (\hbar c)^2 |T_R(s,t) + iT_I(s,t)|^2$

Real and imaginary amplitudes $T_K^N(s,t) = \alpha_K(s)e^{-\beta_K(s)|t|} + \lambda_K(s)\Psi_K(\gamma_K(s),t) + \delta_{K,R}R_{ggg}(t)$

$$\Psi_K(\gamma_K(s), t) = 2 e^{\gamma_K} \left[\frac{e^{-\gamma_K} \sqrt{1 + a_0|t|}}{\sqrt{1 + a_0|t|}} - e^{\gamma_K} \frac{e^{-\gamma_K} \sqrt{4 + a_0|t|}}{\sqrt{4 + a_0|t|}} \right]$$

with 8 parameters to be determined at each energy.

tri-gluon exchange

$$R_{ggg}(t) \equiv \pm 0.45 \ t^{-4} (1 - e^{-0.005|t|^4}) (1 - e^{-0.1|t|^2})$$

KFK forward quantities

A. Donnachie, P. Landshoff, Zeit. Phys. C 2, 55 (1979); Phys. Lett. B 387, 637(1996).

$$\sigma(s) = 4\sqrt{\pi} (\hbar c)^2 (\alpha_I(s) + \lambda_I(s))$$
 Optical theorem

M = N

$$\rho(s) = \frac{T_R^N(s, t=0)}{T_I^N(s, t=0)} = \frac{\alpha_R(s) + \lambda_R(s)}{\alpha_I(s) + \lambda_I(s)}$$

Real/Imaginary

$$B_{K}(s) = \frac{2}{T_{K}^{N}(s,t)} \frac{dT_{K}^{N}(s,t)}{dt} \Big|_{t=0} \qquad \text{Real and Imaginary slopes}$$
$$= \frac{1}{\alpha_{K}(s) + \lambda_{K}(s)} \Big[\alpha_{K}(s)\beta_{K}(s) + \frac{1}{8}\lambda_{K}(s)a_{0}\Big(6\gamma_{K}(s) + 7\Big) \Big]$$

Ι	52	3.7785 ± 0.0078	3.6443 ± 0.0093	0.745	0.01013	16.67	72.76 ± 0.13	0.7661
II	38	3.5686 ± 0.0186	3.8645 ± 0.0093	0.727	0.01114	18.92	77.63 ± 0.44	1.4961
III	78	3.7441 ± 0.0080	3.6784 ± 0.0096	0.741	0.01029	17.02	73.54 ± 0.20	2.6591

pp at 52 GeV (ISR-CERN) and pp at 7 TeV (TOTEM-CERN)

A. Kendi, E. Ferreira and T. Kodama, Phys. Rev. D 87, 054024 (2013)

Real and imaginary amplitudes

Energy dependence of parameters

forward and integrated quantities

simple logarithmic forms!

Predictions for LHC enegies (zeros, dips, bumps and ratios)

A. Kendi Kohara, E. Ferreira and T. Kodama, $Eur.\ Phys.\ J.\ C$, ${\bf 74},\ 3175\ (2014)$

Dispersion relations applied to KFK amplitudes at high energies

Double product from DDR

Double product from KFK

$$\sigma \rho = (\hbar c)^2 4\pi^{3/2} \left[\frac{\bar{\alpha}_{I1} + \bar{\lambda}_{I1}}{2} + \bar{\lambda}_{I2} \log x \right]$$
$$\sigma \rho = 4\sqrt{\pi} (\hbar c)^2 \left[\bar{\alpha}_{R0} + \bar{\lambda}_{R0} + \left(\bar{\alpha}_{R1} + \bar{\lambda}_{R1} \right) \log x \right]$$

Collecting terms we obtain the correspondence

DDR	KFK
-1.741716	-1.676787
0.404716	0.392804

We compare the collected terms obtained for triple product

DDR	KFK
-18.897808	-15.715451
6.726881	4.286346
-0.262464	-0.292835
0.017041	0.016234

Connection with soft Pomeron

Total cross section in Pomeron framework $\sigma_{Pom} = A + B \ (s/s_0)^{0.096}$

KFK total cross section $\sigma = C_0 + C_1 \ln \sqrt{\frac{s}{s_0}} + C_2 \ln^2 \sqrt{\frac{s}{s_0}}$

After a little algebra
$$\sigma = C_0 - \frac{1}{2}\frac{C_1}{C_2} + \frac{1}{2}\frac{C_1^2}{C_2}\left(1 + x + \frac{1}{2}x^2\right)$$
 with $x = \frac{C_2}{C_1}\ln\frac{s}{s_0}$

As far as
$$x \ll 1$$
 (KFK case $\sqrt{s} < 10^4 \, {
m TeV}$) $e^x \sim 1 + x + x^2/2$

and we write

$$\sigma \simeq C_0 - \frac{1}{2} \frac{C_1^2}{C_2} + \frac{1}{2} \frac{C_1^2}{C_2} \left(\frac{s}{s_0}\right)^{C_2/C_1}$$

 α $i\alpha$

with $C_0 = 69.3286, C_1 = 12.6800, C_2 = 1.2273$

$$\sigma(s) \simeq 3.8259 + 65.5026 \ (s/s_0)^{0.09679}$$

same intercept of soft Pomeron

b-space (geometric space)

Fourier transform of KFK amplitude $i\sqrt{\pi} (1 - e^{i\chi(s,\vec{b})}) \equiv \widetilde{T}(s,\vec{b}) = \widetilde{T}_R(s,\vec{b}) + i\widetilde{T}_I(s,\vec{b})$ Eikonal formalism $\longrightarrow \chi(s,\vec{b}) = \chi_R(s,\vec{b}) + i\chi_I(s,\vec{b})$

with
$$\widetilde{T}_{K}(s,\vec{b}) = \frac{\alpha_{K}}{2\beta_{K}}e^{-b^{2}/4\beta_{K}} + \lambda_{K}\widetilde{\psi}_{K}(s,b)$$
 and $\widetilde{\psi}_{K}(s,b) = \frac{2e^{\gamma_{K}} - \sqrt{\gamma_{K}^{2} + b^{2}/a_{0}}}{a_{0}\sqrt{\gamma_{K}^{2} + b^{2}/a_{0}}} \left[1 - e^{\gamma_{K}} - \sqrt{\gamma_{K}^{2} + b^{2}/a_{0}}\right]$

The unitarity conditions imposes

$$\frac{\widetilde{T}_R^2}{\pi} \le e^{-2\chi_I(s,\vec{b})} \le 1 \quad \text{or} \quad 0 \le \chi_I \le -\frac{1}{2}\log(\widetilde{T}_R^2/\pi)$$

Physical cross sections are written

$$\sigma_{\rm el}(s) = \frac{(\hbar c)^2}{\pi} \int d^2 \vec{b} \ |\tilde{T}(s,\vec{b})|^2 \equiv \int d^2 \vec{b} \ \frac{d\tilde{\sigma}_{\rm el}(s,\vec{b})}{d^2 \vec{b}} \qquad \qquad \frac{d\tilde{\sigma}_{\rm el}(s,\vec{b})}{d^2 \vec{b}} \ = \ 1 - 2\cos\chi_R e^{-\chi_I} + e^{-2\chi_I}$$

$$\sigma(s) = \frac{2}{\sqrt{\pi}} (\hbar c)^2 \int d^2 \vec{b} \ \widetilde{T}_I(s, \vec{b}) \ \equiv \int d^2 \vec{b} \ \frac{d\widetilde{\sigma}_{\text{tot}}(s, \vec{b})}{d^2 \vec{b}} \ \frac{d\widetilde{\sigma}(s, \vec{b})}{d^2 \vec{b}} \ = \ 2 \left(1 - \cos \chi_R e^{-\chi_I} \right)$$

$$\sigma_{\rm inel} = (\hbar c)^2 \int d^2 \vec{b} \left(\frac{2}{\sqrt{\pi}} \widetilde{T}_I(s, \vec{b}) - \frac{1}{\pi} |\widetilde{T}(s, \vec{b})|^2 \right) \equiv \int d^2 \vec{b} \, \frac{d\widetilde{\sigma}_{\rm inel}(s, \vec{b})}{d^2 \vec{b}} \qquad \frac{d\widetilde{\sigma}_{\rm inel}(s, \vec{b})}{d^2 \vec{b}} = 1 - e^{-2\chi_I} \left(\frac{1}{\sqrt{\pi}} \left(\frac{1}{\sqrt{\pi}} \widetilde{T}_I(s, \vec{b}) - \frac{1}{\pi} |\widetilde{T}(s, \vec{b})|^2 \right) \right) = 1 - e^{-2\chi_I} \left(\frac{1}{\sqrt{\pi}} \left(\frac{1}{\sqrt{\pi}}$$

Monotonic results for elastic differential 'cross sections'

Something is going on at 13 TeV

W. Broniowski, L. Jenkovszky, E. R. Arriola, I. Szanyi, *Phys. Rev. D* **98**, 074012 (2018); E. R. Arriola, W. Broniowski, *Few Body Syst.* **57** (2016) 7, 485-490; *Phys. Rev. D* **95** (2017) 7, 074030

E. Ferreira, A. K. Kohara and T. Kodama; Eur. Phys. J. C 81 (2021) 4, 290

...and this good behavior continues until asymptotic energies

Analytical scaled form of KFK amplitude at high energies

Small *t* approximation
$$\Psi_I(\gamma_I(s), t) = 2 e^{\gamma_I(s)} \left[\frac{e^{-\gamma_I(s)\sqrt{1+a_0|t|}}}{\sqrt{1+a_0|t|}} - e^{\gamma_I(s)} \frac{e^{-\gamma_I(s)\sqrt{4+a_0|t|}}}{\sqrt{4+a_0|t|}} \right]$$

 $\simeq 2 e^{\gamma_I(s)} \left[\frac{e^{-\gamma_I(s)(1+\frac{a_0}{2}|t|)}}{(1+\frac{a_0}{2}|t|)} - e^{\gamma_I(s)} \frac{e^{-\gamma_I(s)\cdot 2\cdot (1+\frac{a_0}{8}|t|)}}{2(1+\frac{a_0}{8}|t|)} \right]$

Expanding $(1+a_0|t|/2) \simeq \exp(a_0|t|/2)$ and $(1+a_0|t|/8) \simeq \exp(a_0|t|/8)$

$$\Psi_I(\gamma_I(s), t) \simeq 2 e^{-[\gamma_I(s)+1] \frac{a_0}{2}|t|} - e^{-[2\gamma_I(s)+1] \frac{a_0}{8}|t|}$$

The imaginary amplitude becomes

$$\widetilde{T}_{I}(s,\vec{b}) \simeq \frac{\alpha_{I}}{2\beta_{I}} e^{-b^{2}/4\beta_{I}} + \frac{2\lambda_{I}}{a_{0}} \Big[\frac{e^{-b^{2}/[2(\gamma_{I}+1)a_{0}]}}{\gamma_{I}+1} - 2\frac{e^{-2b^{2}/[(2\gamma_{I}+1)a_{0}]}}{2\gamma_{I}+1} \Big]$$

We truncate the parameters $\alpha_I(s)$, $\beta_I(s)$, $\lambda_I(s)$ and $\gamma_I(s)$ to the largest log s power

$$\widetilde{T}_{I}(s,\vec{b}) \approx \frac{\alpha_{I1}}{2\beta_{I1}} e^{-b^{2}/(4\beta_{I1}\log(\sqrt{s}))} + \frac{2}{a_{0}} \frac{\lambda_{I2}}{\gamma_{I2}} \left[e^{-b^{2}/[2\gamma_{I2}\log^{2}(\sqrt{s})a_{0}]} - e^{-b^{2}/[\gamma_{I2}\log^{2}(\sqrt{s})a_{0}]} \right]$$

scaling variable definition $y \equiv \frac{b}{\sqrt{2\gamma_{I2}a_0}\log\sqrt{s}}$

$$\widetilde{T}_{I}(s,y) \approx \frac{\alpha_{I1}}{2\beta_{I1}} e^{-\frac{a_{0}\gamma_{I2}}{2\beta_{I1}}\log\sqrt{s} y^{2}} + \frac{2}{a_{0}}\frac{\lambda_{I2}}{\gamma_{I2}} \left[e^{-y^{2}} - e^{-2y^{2}}\right]$$

p-air scattering

p-air scattering

p-air cross sections measurements in EAS (extended air showers)

proton from cosmic ray

atom of atmosphere

...considering the nucleus composed by uncorrelated nucleons distributed according to a *s* and *p* harmonic distribution density

Glauber framework

R.J. Glauber, *Phys. Rev.* **100** (1955) 242–248 ; R.J. Glauber and G. Matthiae, *Nucl. Phys. B* **21** (1970) 135–157

forward amplitudes for pp elastic scattering

$$\widehat{T}_{pp}(s,\vec{b}) = \widehat{T}_R(s,\vec{b}) + i\widehat{T}_I(s,\vec{b})$$
$$= \frac{\sigma_{pp}^{\text{tot}}}{4\pi(\hbar c)^2} \left[\frac{\rho}{B_R} e^{-\frac{b^2}{2B_R}} + i\frac{1}{B_I} e^{-\frac{b^2}{2B_I}}\right]$$

In terms of eikonal functions

S-matrix in b space

$$-i \widehat{T}_{\rm pp}(s, \vec{b}) = 1 - e^{i\chi_{\rm pp}(s, \vec{b})} \equiv \Gamma_{\rm pp}(s, \vec{b})$$

Optical theorem

$$\sigma^{\rm tot}_{\rm pp}(s) \;=\; 2 \; (\hbar c)^2 \; \Re \; \int d^2 \vec{b} \; \Gamma_{\rm pp}(s,\vec{b}) \label{eq:static}$$

Analogous optical theorem for p-air

$$\sigma_{\rm pA}^{\rm tot}(s) = 2 \ (\hbar c)^2 \ \Re \ \int d^2 \vec{b} \ \Gamma_{\rm pA}(s, \vec{b})$$

Glauber method introduces the p-A amplitude for A independent nucleons

$$\Gamma_{\rm pA}(s, \vec{b}, \vec{s}_1, ..., \vec{s}_A) = 1 - \prod_{j=1}^A \left[1 - \Gamma_{\rm pp}(s, |\vec{b} - \vec{s_j}|) \right]$$

$$\begin{aligned} \sigma_{p-air}^{prod} &= \sigma_{p-air}^{tot} - \left(\sigma_{p-air}^{el} + \sigma_{p-air}^{q-el}\right) \\ T_{p-air}^{fi}(s,q^2) &= \frac{1}{2\pi} \int d^2 \vec{b} \; e^{i c \vec{q} \cdot \vec{b}} \; \int \psi_f^*(\vec{r_1}, ..., \vec{r_A}) \; \Gamma_{p-air}(s, \vec{b}, \vec{s_1}, ..., \vec{s_A}) \; \psi_i(\vec{r_1}, ..., \vec{r_A}) \prod_{j=1}^A d^3 \vec{r_j} \\ \text{with} & \psi_i^*(\vec{r_1}, ..., \vec{r_A}) \psi_i(\vec{r_1}, ..., \vec{r_A}) \; = \prod_{j=1}^A \rho_j(\vec{r_j}) \\ \sigma_{pA}^{el} + \sigma_{pA}^{q-el} &= (\hbar c)^2 \int d^2 \vec{b} \; \int \left| 1 - \prod_{j=1}^A \left[1 - \Gamma_{pp}(s, |\vec{b} - \vec{s_j}|) \right] \right|^2 \prod_{k=1}^A \rho_k(\vec{r_k}) d^3 \vec{r_k} \end{aligned}$$

Diffractive intermediate states according (Good Walker framework with a parameter λ = 0.5)

M. L. Good and W. D. Walker, Phys. Rev. 120 (1960) 1857

40

$$\Gamma_{\rm pA}(s,\vec{b},\vec{s}_1,...,\vec{s}_A) = 1 - \frac{1}{2} \prod_{j=1}^A \left[1 - (1+\lambda)\Gamma_{\rm pp}(\vec{b}-\vec{s}_j) \right] - \frac{1}{2} \prod_{j=1}^A \left[1 - (1-\lambda)\Gamma_{\rm pp}(\vec{b}-\vec{s}_j) \right]$$

Parametrization of production cross section.

 $\sigma_{\rm p-air}^{\rm prod}(s) = 383.474 + 33.158 \log \sqrt{s} + 1.3363 \log^2 \sqrt{s}$

A. K. Kohara, E. Ferreira and T. Kodama, J. Phys. G 41, 115003 (2014)

Influence of different slopes

p-air in b- space

p-air elastic scattering amplitude $-i\widehat{T}_{pA}(\vec{b}) = 1 - e^{i\chi_{pA}} \simeq 1 - \left\langle \prod_{j=1}^{A} e^{i\chi_{pN_j}} \right\rangle = 1 - \left\langle \prod_{j=1}^{A} \left(1 + i\widehat{T}_{pN}(\vec{b}) \right) \right\rangle$

p-air distributions:

$$\frac{1}{2} \frac{d^2 \sigma_{pA}^{\text{tot}}}{d^2 \vec{b}}(s, \vec{b}) = \left\langle 1 - \prod_{i=1}^A \left(1 - \frac{1}{2} \frac{d^2 \sigma_{pp}^{\text{tot}}}{d^2 \vec{b}_i}(s, \vec{b} - \vec{b}_i) \right) \right\rangle$$
$$\frac{d^2 \sigma_{pA}^{\text{el}}}{d^2 \vec{b}}(s, \vec{b}) = \left\langle \left[1 - \prod_{i=1}^A (1 - \frac{d^2 \sigma_{pp}^{\text{tot}}}{d^2 \vec{b}_i}(s, \vec{b} - \vec{b}_i)) \right]^2 \right\rangle$$

predictions

Comparison between p-air and pp

Ratio converges to asymptotic limits

43

A. K. Kohara, E. Ferreira and T. Kodama, J. Phys. G 41, 115003 (2014)

Comparison of models

Eikonalized models:

Bourrely Soffer and Wu (BSW)
C. Bourrely, J. Soffer, T.T. Wu, Phys. Rev. D 19, 3249 (1979);
Nucl. Phys. B 247, 15 (1984); Eur. Phys. J. C 28, 97 (2003)
$$\mathcal{M}(s,t) = \frac{is}{2\pi} \int d^2 \vec{b} \, e^{-i\vec{q}\cdot\vec{b}} \left(1 - e^{-\Omega(s,\vec{b})}\right)$$
High Energy General Structure (HEGS)
O.V. Selyugin, Eur. Phys. J. C 72, 2073 (2012) $F_H(s,t) = \frac{is}{2\pi} \int d^2 \vec{b} \, e^{-i\vec{q}\cdot\vec{b}} \left(1 - e^{\chi(s,\vec{b})}\right)$ Dynamical Gluon Mass (DGM) $A(s,q) = \frac{i}{2\pi} \int d^2 \vec{b} \, e^{-i\vec{q}\cdot\vec{b}} (1 - e^{i\chi_{DGM}(s,\vec{b})})$

E. G. S. Luna, A. F. Martini, M. J. Menon, A. Mihara, and A. A. Natale Phys. Rev. D 72, 034019 (2005); D.A.Fagundes, E.G.S. Luna, M.J. Menon and A.A. Natale , Nucl. Phys. A 886, 48 (2012)

Correspondence with KFK amplitudes

$$1 - e^{-\Omega(s,\vec{b})} = 1 - e^{\chi(s,\vec{b})} = 1 - e^{i\chi_{DGM}(s,\vec{b})} = -\frac{i}{\sqrt{\pi}} \left[\tilde{T}_R(s,\vec{b}) + i\,\tilde{T}_I(s,\vec{b}) \right]$$

Normalizations

$$\frac{1}{(\hbar c)^2} \frac{d\sigma}{dt} = |T(s,t)|^2 = \frac{\pi}{s^2} |\mathcal{M}(s,t)|^2 = \frac{\pi}{s^2} |F_H(s,t)|^2 = \pi |A(s,t)|^2$$

and

$$\frac{\sigma_{\text{tot}}(s)}{(\hbar c)^2} = 4\sqrt{\pi} T_I(s,0) = \frac{4\pi}{s} \mathcal{M}_I(s,0) = \frac{4\pi}{s} (F_H)_I(s,0) = 4\pi A_I(s,0)$$

Amplitudes, differential cross sections, zeros, slopes and predictions ⁴⁵

E. Ferreira, T. Kodama, A. K. Kohara, D. Szilard, Acta Phys. Polon. Supp. 8 (2015) 1017

Some Questions

Is it possible to explain the dip structure without odderon?

Should be the scattering amplitudes unique?

Is it possible to constrain the effective proton shape as the energy increases?

Is there a region at large *t* where the differential cross section is energy independent?

Can QCD give us any hint of elastic scattering description?

Summary

- Disentanglement of real and imaginary scattering amplitudes
- Use of exact forms of derivative dispersion relations (PDG and KFK)
- Need to consider different slopes in forward scattering
- Predictions all the energies
- Non black disk behavior for asymptotic energies
- Scaling form for asymptotic energies
- Cosmic ray predictions
- Similarities between models shows the need of more attention

In honor of those who recently passed away and made important contributions to the field

Prof. André Martin (1929 – 2020)


```
Prof. Munir Islam (? – 2021)
```

Prof. Milos Vaclav Lokajicek (1923-2019)

Prof. Jorge Dias de Deus (1941 – 2021)

Prof. Jacques Soffer (1940 – 2019)

Thank you!

Back up slides

Theoretical Framework

Amplitudes based on Stochastic Vacuum Model (SVM) framework where gluon condensate and the correlation lenght play an important role.

Wilson loop expectation value

$$\langle W[C] \rangle \approx \exp\left[-\frac{g^2}{2^2 2!} \int_S dS^{\mu_1 \nu_1}(z_1) dS^{\mu_2 \nu_2}(z_2) \langle \operatorname{tr} F_{\mu_1 \nu_1}[z_1, C(w, z_1)] F_{\mu_2 \nu_2}[z_2, C(w, z_2)] \rangle\right]$$

Gluon correlators expectation value

$$\langle g^2 F^a_{\mu\nu}[z_1, C(w, z_1)] F^b_{\alpha\beta}[z_2, C'(w, z_2)] \rangle = \frac{\delta^{a,b}}{12(N_c^2 - 1)} \langle g^2 FF \rangle \Big[\kappa (g_{\mu\alpha}g_{\nu\beta} - g_{\mu\beta}g_{\nu\alpha}) D(z^2) \\ + (1 - \kappa) \frac{1}{2} \Big[\frac{\partial}{\partial z_{\mu}} (z_{\alpha}g_{\nu\beta} - z_{\beta}g_{\nu\alpha}) + \frac{\partial}{\partial z_{\nu}} (z_{\beta}g_{\nu\alpha} - z_{\alpha}g_{\nu\beta}) D_1(z^2) \Big] \Big]$$
wher $z = z_1 - z_2, \ \langle g^2 FF \rangle = \langle g^2 F^a_{\mu\nu}(0) F^a_{\alpha\beta}(0) \rangle \longrightarrow$ gluon condensate $D(z^2)$ and $D_1(z^2)$ are non-Abelian and Abelian contributions respectively

These functions must fall off with increasing z/a, where a is the correlation lenght defined as $\int_{-\infty}^{\infty}$

$$\int_0^\infty dz \ D(z^2) = a$$