Constraints on Higgs boson properties using WW*(→evµv)jj final state with the ATLAS detector

Magdalena Sławińska

IFJ PAN

Outline

- SM predictions for the Higgs boson production and branching ratios
- Highlights from the Higgs discovery by ATLAS
- Run 1 measurements in the HWW final state
 - cross-section of ggf and VBF production channels
 - spin and CP properties of the Higgs
- Run 2 studies
 - cross-section of ggf and VBF production channels (run1 and run 2)
 - constraints on anomalous Higgs boson couplings

Disclaimer: I will not present an exhaustive overview of numerous experimental results, but rather focus on selected measurements in the $WW^*(\rightarrow ev\mu v)jj$ final state. I will present ATLAS results only.

The SM predictions for the Higgs boson

Due to the small Higgs boson width, the production and decay can be decoupled.

The SM predictions for the Higgs boson

Due to the small Higgs boson width, the production and decay can be decoupled.

Higgs boson discovery 2012

- based upon integrated luminosities of approximately 4.8 fb⁻¹ collected at √s = 7 TeV in 2011 and 5.8 fb⁻¹ at √s = 8 TeV in 2012,
- using Higgs decays into H->ZZ*-> 4 ℓ , H-> $\gamma\gamma$ and H->WW->e $\rightarrow \mu v e v$
- Confidence intervals in the (μ , m_H) plane for the 3 channels independently

Kinematics of the H \rightarrow WW* \rightarrow evµv decay

- small invariant mass of dilepton system, m_{\parallel} .
- small angle between two energetic leptons in the plane perpendicular to the beam, in comparison with leptons originating from nonresonant WW production processes.
- The m_T distribution has a kinematic upper bound at the Higgs boson mass in contrast to non-resonant WW and top quark production

$$m_{\rm T} = \sqrt{(E_{\ell\ell} + E_{\rm T}^{miss})^2 - |p_{\rm T,\ell\ell} + E_{\rm T}^{miss}|^2}$$

Physics Letters B 726 (2013) 88–119 Physics Letters B 726 (2013) 120–144

Couplings to bosons and fermions, spin and parity in Run 1

Cross section (pb)		Branching ratio		
at $\sqrt{s} = 8$ (7) TeV		(relative uncertainty)		
ggF VBF WH ZH tīH Total	19.52 (15.32) 1.58 (1.22) 0.70 (0.57) 0.39 (0.31) 0.13 (0.09) 22.32 (17.51)	$\begin{array}{l} H \to WW^* \to \ell \nu \ell \nu \\ H \to \gamma \gamma \\ H \to ZZ^* \to 4\ell \end{array}$	$\begin{array}{l} 0.010 \ (\pm 5\%) \\ 2.28 \times 10^{-3} \ (\pm 5\%) \\ 1.25 \times 10^{-4} \ (\pm 5\%) \end{array}$	

Spin/CP properties established using testing of statistical hypotheses:

Table 1

٠

Summary of results for the 0⁺ versus 0⁻ test in the $H \rightarrow ZZ^*$ channel. The expected p_0 -values for rejecting the 0⁺ and 0⁻ hypotheses (assuming the alternative hypothesis) are shown in the second and third columns. The fourth and fifth columns show the observed p_0 -values, while the CL_s value for excluding the 0⁻ hypothesis is given in the last column.

Channel	0^{-} assumed Exp. $p_0(J^p = 0^+)$	0^+ assumed Exp. $p_0(J^P = 0^-)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^p = 0^-)$	$\operatorname{CL}_{\mathrm{S}}(J^{P} = 0^{-})$
$H \rightarrow ZZ^*$	$1.5 \cdot 10^{-3}$	$3.7 \cdot 10^{-3}$	0.31	0.015	0.022

Table 2

Summary of results for the $J^P = 0^+$ versus 1^+ test in the $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ channels, as well as their combination. The expected p_0 -values for rejecting the $J^P = 0^+$ and 1^+ hypotheses (assuming the alternative hypothesis) are shown in the second and third columns. The fourth and fifth columns show the observed p_0 -values, while the CL_s values for excluding the 1^+ hypothesis are given in the last column.

Channel	1^+ assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^+)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^p = 1^+)$	$\operatorname{CL}_{\mathrm{s}}(J^{p}=1^{+})$
$H \rightarrow ZZ^*$	$4.6 \cdot 10^{-3}$	$1.6 \cdot 10^{-3}$	0.55	$1.0 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$
$H \rightarrow WW^*$	0.11	0.08	0.70	0.02	0.08
Combination	$2.7 \cdot 10^{-3}$	$4.7 \cdot 10^{-4}$	0.62	$1.2 \cdot 10^{-4}$	$3.0 \cdot 10^{-4}$

Table 3

Summary of results for the $J^p = 0^+$ versus 1^- test in the $H \rightarrow ZZ^*$ and $H \rightarrow WW^*$ channels, as well as their combination. The expected p_0 -values for rejecting the $J^p = 0^+$ and 1^- hypotheses (assuming the alternative hypothesis) are shown in the second and third columns. The fourth and fifth columns show the observed p_0 -values, while the CL_s values for excluding the 1^- hypothesis are given in the last column.

Channel	1^{-} assumed Exp. $p_0(J^P = 0^+)$	0^+ assumed Exp. $p_0(J^P = 1^-)$	Obs. $p_0(J^P = 0^+)$	Obs. $p_0(J^P = 1^-)$	$\operatorname{CL}_{\mathrm{s}}(J^P = 1^-)$
$H \rightarrow ZZ^*$	$0.9 \cdot 10^{-3}$	$3.8 \cdot 10^{-3}$	0.15	0.051	0.060
$H \rightarrow WW$ Combination	$1.4 \cdot 10^{-3}$	$3.6 \cdot 10^{-4}$	0.33	$1.8 \cdot 10^{-3}$	$2.7 \cdot 10^{-3}$

 The data are compatible with the Standard Model J^P = 0⁺ quantum numbers for the Higgs boson, whereas all alternative hypotheses studied: J^P = 0⁻, 1⁺, 1⁻, 2⁺, are excluded at confidence levels above 97.8%.

coupling modifications scale factors

Cross-sections measurements in the HWW final state

QCD versus electroweak Higgs production

In the leading order no color flow between the forward jets

- VBF features energetic in a forward region in the detector but in opposite directions
 - large rapidity separation $\Delta \eta_{
 m ii}$
 - large m_{jj}
- little hadronic activity in the rapidity region between them – central jet veto (CJV)

 leptons have intermediate rapidities – outside lepton veto (OLV)

lepton

Measurements of gluon–gluon fusion and vector-boson fusion Higgs boson production cross-sections

Events are classified into one of three categories based on the number of jets with $p_T > 30 \text{ GeV}$

Top, Z/y (and WW) backgrounds estimated from control regions, smaller backgrounds from simulation.

Control regions definitions in the ggf+0/1j and VBF measurements

CR	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \ge 2 \text{ VBF}$
WW	$55 < m_{\ell\ell} < 110 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 2.6$ $N_{b-\text{jet},(p_T>)}$	$m_{\ell\ell} > 80 \text{ GeV}$ $ m_{\tau\tau} - m_Z > 25 \text{ GeV}$ $max(m_T^\ell) > 50 \text{ GeV}$	
tī/Wt	$N_{b\text{-jet},(20 \text{ GeV} < p_T < 30 \text{ GeV})} > 0$ $\Delta \phi(\ell \ell, E_T^{\text{miss}}) > \pi/2$ $p_T^{\ell \ell} > 30 \text{ GeV}$ $\Delta \phi_{\ell \ell} < 2.8$	$N_{b-\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 1$ $N_{b-\text{jet},(20 \text{ GeV} < p_{\text{T}} < 30 \text{ GeV})} = 0$ $\max(m_{\text{T}}^{\ell}) > 50 \text{ GeV}$ $m_{\tau\tau} < m_{Z} - m_{$	$N_{b ext{-jet},(p_T>20 \text{ GeV})} = 1$ central jet veto - 25 GeV outside lepton veto
Z/γ^*	no $p_{ m T}^{ m miss}$ r $\Delta \phi_{\ell\ell} > 2.8$	$N_{b-jet, (p_T > 20 \text{ GeV})} = 0$ $m_{\ell\ell} < 80 \text{ GeV}$ requirement $\max(m_T^{\ell}) > 50 \text{ GeV}$ $m_{\tau\tau} > m_Z - 25 \text{ GeV}$	central jet veto outside lepton veto $ m_{\tau\tau} - m_Z \le 25$ GeV

m_T distribution in ggf+0 and ggf+1j

 \rightarrow in the control regions for WW, top quark and Z/y*+jets

 \downarrow combined in the Njet \leq 1 signal region

(f)

Signal discriminants in VBF

Post-fit BDT score distribution with the signal and the background modelled contributions in the VBF signal region.

Post-fit event yields in all signal categories

Process	$N_{\rm jet} = 0 \rm ggF$	$N_{\rm jet} = 1 {\rm ggF}$	$N_{\rm jet} \ge 2 \ \rm VBF$	
			Inclusive	BDT: [0.86, 1.0]
$H_{\rm ggF}$	639 ± 110	285 ± 51	42 ± 16	6±3
H _{VBF}	7 ± 1	31 ± 2	28 ± 16	16 ± 6
WW	3016 ± 203	1053 ± 206	400 ± 60	11 ± 2
VV	333 ± 38	208 ± 32	70 ± 12	3 ± 1
tī/Wt	588 ± 130	1397 ± 179	$1270\pm\!80$	14 ± 2
Mis-Id	447 ± 77	234 ± 49	90 ± 30	6 ± 2
Z/γ^*	27 ± 11	76 ± 24	280 ± 40	4 ± 1
Total	5067 ± 80	3296 ± 61	2170 ± 50	60 ± 10
Observed	5089	3264	2164	60

+ Data

H_{VBF}

tī/Wt

W Uncertaint

Mis-Id -- H_{VBF}×30

H_{aaF}

WW W

5 6

Δy

Cross-section measurements

 The measured cross-section times branching fraction values are:

 $\sigma_{\mathrm{ggF}} \cdot \mathcal{B}_{H \rightarrow WW^*}$

= $11.4^{+1.2}_{-1.1}$ (stat.) $^{+1.2}_{-1.1}$ (theo syst.) $^{+1.4}_{-1.3}$ (exp syst.) pb = $11.4^{+2.2}_{-2.1}$ pb

 $\sigma_{\mathrm{VBF}} \cdot \mathcal{B}_{H \to WW^*}$

= $0.50^{+0.24}_{-0.22}$ (stat.) ± 0.10 (theo syst.) $^{+0.12}_{-0.13}$ (exp syst.) pb = $0.50^{+0.29}_{-0.28}$ pb.

- The values predicted in the SM:
 - 10.4 ± 0.6 pb for ggF and
 - 0.81 ± 0.02 pb for VBF.
- The observed (expected) ggF and VBF signals have significances of 6.0 (5.3) and 1.8 (2.6) standard deviations, respectively.

Main sources of systematical uncertainties

Source	$\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*}$ [%]	$\Delta \sigma_{\text{VBF}} \cdot \mathcal{B}_{H \rightarrow WW^*}$ [%]
Data statistics	10	46
CR statistics	7	9
MC statistics	6	21
Theoretical uncertainties	10	19
ggF signal	5	13
VBF signal	<1	4
WW	6	12
Top-quark	5	5
Experimental uncertainties	8	9
b-tagging	4	6
Modelling of pile-up	5	2
Jet	2	2
Lepton	3	<1
Misidentified leptons	6	9
Luminosity	3	3
TOTAL	18	57

Constraining Higgs boson properties

arXiv:2109.13808 [hep-ex]

Physics briefing: https://atlas-public.web.cern.ch/updates/briefing/refining-picturehiggs-boson

In a nutshel

VBF category

- Search for BSM physics in Higgs boson individual couplings to longitudinally and transversely polarised W and Z bosons
- Fits to $a_L = g_{HVLVL}/g_{HVV}$ and $a_T = g_{HVTVT}/g_{HVV}$ and Pseudo Observables κ_{VV} and ϵ_{VV} .

(following Phys.Rev. D90 (5) (2014) 054023 • In the Higgs rest frame only HV_1V_1 and HV_TV_T are present. (2014),arXiv:1404.5951)

Methodology

- Signal signature: two (forward) jets, two different flavor opposite sign leptons, no b-quarks
- Main backgrounds:
 - double and single top,
 - Z+2jets,
 - WW
 - other dibosons
- **Signal optimisation:** several signal categories, separately for each analysis, using BDTs

• Signal modifications sensitive to the distribution of signed $\Delta \varphi_{jj}$ between jets in the plane perpendicular to the beam axis

 $\Delta \varphi_{jj} = \varphi_{j1} - \varphi_{j2}$ if $\eta_{j1} > \eta_{j2}$, and $\varphi_{jj} = \varphi_{j2} - \varphi_{j1}$ otherwise

Signal and control regions

	ggF + 2 jets	VBF		
	Two isolated, different-flavour leptons ($\ell = e, \mu$) with opposite charge			
Dreselection	$p_{\rm T}^{\rm lead} > 22 \text{ GeV}, p_{\rm T}^{\rm sublead} > 15 \text{ GeV}$			
rieselection	$m_{\ell\ell} > 10 \text{ GeV}$			
	$N_{\rm jet} \ge$	$N_{ m jet} \geq 2$		
	$N_{b\text{-jet},p_{\mathrm{T}}>20}$	$N_{b-\text{jet},p_{\text{T}}>20 \text{ GeV}} = 0$		
	$m_{\tau\tau}$ < 66 GeV			
Background rejection	$\Delta R_{jj} > 1.0$			
Dackground rejection	$p_{\mathrm{T},\ell\ell} > 20 \mathrm{~GeV}$	central jet veto		
	$m_{\ell\ell} < 90 { m GeV}$	outside lepton veto		
	$m_{\rm T} < 150 { m ~GeV}$			
BDT input variables	$m_{\ell\ell}, m_{\mathrm{T}}, p_{\mathrm{T},\ell\ell}, \Delta\phi_{\ell\ell}$	$m_{jj}, \Delta y_{jj}, m_{\ell\ell}, m_{\mathrm{T}}, \Delta \phi_{\ell\ell}$		
	$\min \Delta R(\ell_1, j_i), \min \Delta R(\ell_2, j_i)$	$\sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell,j}, p_{\mathrm{T}}^{\mathrm{tot}}$		

Control region	ggF + 2 jets	VBF	
Top CR	$N_{b\text{-jet},(p_{\mathrm{T}}>30 \mathrm{~GeV})} = 1$	$N_{b\text{-jet},(p_{\mathrm{T}}>20 \mathrm{GeV})} = 1$	
7	$ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$		
$L \rightarrow ll CK$	$p_{\mathrm{T},\ell\ell}$ requirement is omitted	$m_{\ell\ell} < 80 \text{ GeV}$	
	$m_{\ell\ell} > 90 \text{ GeV}$		
	$m_{\rm T}$ requirement is omitted		

In ggf+2j study the selection requirement placed on p_T^{\parallel} reduces contributions from the Z + jets background, while the requirements on m_{\parallel} and m_T decrease the top-quark background.

The VBF signal and control regions are the same as in the cross-section measurement.

Methodology

• To measure properties of the Higgs production vertex the shape of the distribution of $\Delta \Phi_{jj}$ is used. Additionally, in selected fits, $\sigma \cdot Br(H \rightarrow WW^*)$ information is employed.

The $\Delta \Phi_{ii}$ distribution in the ggf and VBF signal regions, for selected signals

- Parameter morphing is used to extrapolate from a small set of BSM coupling benchmarks to a large variety of coupling scenarios.
- The final results are obtained by applying a maximum likelihood (ML) procedure individually to each coupling
 parameter hypothesis, where the background prediction is only affected by changes to nuisance parameters in the
 minimization.

Morphing in a nutshell

Yet another morphing strategy - 'Moment morphing'

- Improved strategy for interpolation moment morphing
- Key deficiency of vertical interpolation is that it doesn't account well for shifting distributions

 $T_{out}(x|\alpha) = \alpha^* T_{low}(x) + (1 - \alpha)^* T_{high}(x)$

- Alternative strategy is "moment morphing"
- Basic idea is the same, but adjust mean, r.m.s of T_{low}(x),T_{high}(x) through transformation x→x' function of α so that mean, r.m.s. of components T(x') match for any α

 For a Gaussian probability model with linearly changing mean and width, moment morphing of two Gaussian templates is the exact solution

• But also works well on 'difficult' distributions, although interpolation strategy still largely empirical (i.e does not reflect underlying physics principle)

- Calculation of moments of templates is expensive, but just needs to be done once, otherwise very fast (just linear algebra)
- Multi-dimensional interpolation strategies exist

Moment morphing used for signal interpolation for Run-1 ATLAS CP analysis

Wouter Verkerke, NIKHEF

The contribution of each sample T_{in} is weighted by w_i assuming that T ~ $|M|^{2}$.

using narrow width approximation (Higgs)

$$\mathcal{M}(\vec{g})\Big|^2 = \underbrace{\left(\sum_{x \in p, s} g_x O(g_x)\right)^2}_{\text{production}} \cdot \underbrace{\left(\sum_{x \in d, s} g_x O(g_x)\right)^2}_{\text{decay}},$$

expanding the operators to a 4th degree polynomial in the coupling parameters

lynomial in

$$\left|\mathcal{M}(\vec{g})\right|^{2} = \sum_{i=1}^{N} X_{i} \cdot P_{i}\left(\vec{g}\right),$$

$$T_{\text{out}}(\vec{g}) = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} A_{ij}P_{j}\left(\vec{g}\right)\right) T_{\text{in},i}.$$

$$= \vec{P}\left(\vec{g}\right) \cdot A\vec{T},$$

g are couplings in the production, decay, or both

the output distribution should be equal to the input distribution at the respective input parameters $A \cdot \left(P_j \left(\vec{g}_i \right) \right)_{ij} = 1$ $\Leftrightarrow \qquad A \cdot G = 1$

G depends only on the g's chosen for the input samples,

ggf measurement

The ML fits use as an input the distribution of the signed $\varDelta \varphi_{\rm jj}$, divided into 12 categories:

- 3 BDT score intervals: [0.1, 0.4, 0.7, 1.0]
- 4 |Δη_{jj}| intervals: [0.0, 1.0, 2.0, 3.0, ∞],

Four different fits are performed:

- The signal strength parameter $\mu_{ggF+2jets}$ defined as the ratio of the measured signal yield to that predicted by the SM.
- In order to constrain BSM effects in the effective Higgs–gluon coupling, tan(α) is scanned:
 - The normalisation of the signal process is unconstrained (a shape only fit)
 - The signal normalisation is constrained to the model predictions (a shape and rate fit)
- A simultaneous fit of the couplingstrength scale factors κgg cos(α) and κgg sin(α) is performed. This study exploits both shape and rate information.

Results

- The mixing angle for CP-even and CP-odd contributions to the effective Higgs– gluon interaction is determined to be tan(α) = 0.0 ± 0.4(stat.) ± 0.3(syst.) using both shape and rate information, shape only fits not yet sensitive.
- 68% and 95% CL two-dimensional likelihood contours of the CP-even and CP-odd coupling parameters
- Measured the signal strength

 $\mu_{ggF+2j} = 0.5 \pm 0.4(stat.)_{-0.6}^{+0.7}$ (syst.)

VBF measurement

Are the Higgs HVV couplings really scalar?

At infinitely large momenta the transverse parts of V bosons correspond to the "proper" gauge bosons, whereas the longitudinal parts arise from the "eaten" Goldstone bosons.

VBF $H \rightarrow$ WW as a part of WW scattering

WW scattering

• The Higgs mechanism introduces masses of gauge bosons and their longitudinal polarisations

$$e^{\mu}_{\pm}=rac{1}{\sqrt{2}}(0,1,\pm i,0), \quad e^{\mu}_{L}=rac{\sqrt{s}}{2M_{W}}(eta,0,0,1)$$

• As a consequence $W_L W_L$ scattering amplitude diverges with center of mass energy

- Test the SM EW symmetry breaking.
- In the SM there is no distinction between coupling strengths of HV_LV_L and HV_TV_T interactions.
- At infinitely large momenta the transverse parts of V bosons correspond to the "proper" gauge bosons, whereas the longitudinal parts arise from the eaten Goldstone bosons.
- HVV couplings are sensitive to new physics in EWSB: extended Higs sectors, Higgs as a composite pseudo-Goldstone boson (SILH, MCHM), ...

Kinematical effects of coupling modifications

- Total rates (σ_{VBF} x Br(h->WW)) more sensitive to a_L as VBF is dominated by longitudinal W scattering at high energies
- The most discriminating distribution is

Mapping to Pseudo-Observables

Signal paraletrised using (a_L, a_T) couplings scale factors is not Lorentz invariant.

Approximate(*) mapping to Pseudo Observables:

$$\begin{aligned} a_L &= \kappa_{VV} + \Delta_L(q_1, q_2) \epsilon_{VV}, \quad a_T &= \kappa_{VV} + \Delta_T(q_1, q_2) \epsilon_{VV}. \\ \kappa_{VV} &= a_L - \Delta_L(q_1, q_2) \epsilon_{VV}, \quad \varepsilon_{VV} &= \frac{a_T - a_L}{\Delta_T(q_1, q_2) - \Delta_L(q_1, q_2)} \end{aligned}$$
$$\Delta_L &= \frac{m_H^2}{2m_W^2} \frac{4q_1^2 q_2^2}{m_H^2(m_H^2 - q_1^2 - q_2^2)}, \quad \Delta_T &= \frac{m_H^2}{2m_W^2} \frac{m_H^2 - q_1^2 - q_2^2}{m_H^2} \end{aligned}$$

where

From MG5 simulation the mean values of formfactors for incoming bosons (generator level cuts) are:

$$\Delta_{L}(q_{1}, q_{2}) = 0 \text{ and } \Delta_{T}(q_{1}, q_{2}) = 2 \frac{m_{h}^{2}}{2m_{V}^{2}}$$

 $\kappa_{VV} = a_{L}, \quad \varepsilon_{VV} = 0.5 (a_{T} - a_{L}),$

In the SM: on-shell coupling κ_{VV} = 1, off-shell coupling ε_{VV} = 0

(*) assuming custodial symmetry, no new physics in the boson-fermion couplings Wff and Zff, and a CP-even Higgs boson with CP-conserving HVV interactions.

VBF measurement

- Object definitions, signal selection and background estimation the same as in the ggf+VBF analysis.
- Input distribution consists of 4 BDT bins, each containing 10 $arDelta arphi_{
 m ii}$ bins
- Simultaneous fit of:
 - $\varDelta \varphi_{
 m ii}$ in 4 BDT bins in the SR
 - One bin (normalisation) fit in CRs
- Results from fits in (a_L, a_T) and $(\kappa_{VV}, \epsilon_{VV})$ parametrisations, where the other parameter is fixed or profiled

Results

Туре	Expected	Observed	
$a_{\rm T}$ shape-only fit ($a_{\rm L} = 1$)	$1.0 \pm 0.5(\text{stat.})^{+0.3}_{-0.4}(\text{syst.})$	$1.3^{+0.8}_{-0.4}$ (stat.) $^{+0.3}_{-0.2}$ (syst.)	
$a_{\rm L}$ shape + rate fit ($a_{\rm T} = 1$) $a_{\rm T}$ shape + rate fit ($a_{\rm L} = 1$)	$1.00^{+0.08}_{-0.10}(\text{stat.})^{+0.07}_{-0.13}(\text{syst.})$ $1.00^{+0.36}_{-0.49}(\text{stat.})^{+0.19}_{-0.27}(\text{syst.})$	$0.90^{+0.09}_{-0.13}(\text{stat.})^{+0.08}_{-0.18}(\text{syst.})$ $1.19^{+0.27}_{-0.32}(\text{stat.})^{+0.12}_{-0.14}(\text{syst.})$	
$a_{\rm L}$ shape + rate fit ($a_{\rm T}$ profiled) $a_{\rm T}$ shape + rate fit ($a_{\rm L}$ profiled)	$1.00^{+0.08}_{-0.10}(\text{stat.})^{+0.08}_{-0.13}(\text{syst.})$ $1.0^{+0.4}_{-0.5}(\text{stat.})^{+0.2}_{-0.4}(\text{syst.})$	$0.91^{+0.10}_{-0.18}(\text{stat.})^{+0.09}_{-0.17}(\text{syst.})$ $1.2 \pm 0.4(\text{stat.})^{+0.2}_{-0.3}(\text{syst.})$	

Results

Conclusions and outlook

- With more data increased sensitivity to Higgs boson processes, new processes are being explored.
- Improving measurements of Higgs boson cross-sections and branching ratios, as well as constraints on its couplings.
- New developments in experimental techniques and statistical analysis
- On-going discussions with theorists on comunicating experimental results in the best way to test theoretical predictions
 - constraints on sets of effective field theory operators are underway
 - increasing role of differential measurements (the framework of simplified template crosssections)
- Combinations of various final states as well as Higgs and electroweak processes are vital in maximising research potential of the LHC experiments.

Backup slides

Morphing likelihood ratios

The minimisation condition of a likelihood fit has a form

$$\widehat{\vec{g}}(T_d) = \arg\min_{\vec{g}} -2\ln P\left(T_d \mid \mu = \sum_{i=1}^N \left(\sum_{j=1}^N A_{ij} P_j(\vec{g})\right) T_{\text{in},i}\right).$$

so that only the polynomials $P_j(g)$ need to be recalculated during the minimisation process, while the non-trivial quantities stay fixed.

Calculation of moments of input templates expensive, but done only once in the calculation.

The error propagation of statistical uncertainties to the output T_{out} occurs only via linear combinations.

- Morphing only requires that any differential cross section can be expressed as polynomial in BSM couplings
- Method can be used on any generator that allows one to vary input couplings
- Works on truth and reco-level distributions
- Independent of physics process
- Works on distributions and cross sections
- Implemented in the *RooLagrangianMorphing* class in RooFit.

Morphing model prediction is a weighted sum of templates.

- Need to take care that relevant regions of parameters do not end up being modeled by low-statistics samples with large scale factors.
- Choice of input samples is important (in practice done by trial and error)

Coupling modifiers and dim-6 EFT operators

34

$$egin{aligned} \mathcal{L}_{SM} &= & (\mathbf{D}_{\mu}\phi)^{\dagger}\mathbf{D}^{\mu}\phi \ \mathcal{L}_{\phi W} &= & -rac{g^{2}F_{\phi W}}{4}\left(\phi^{\dagger}\phi - rac{v^{2}}{2}
ight)\mathrm{tr}\left[\mathbf{W}_{\mu
u}\mathbf{W}^{\mu
u}
ight]\,, \ \mathcal{L}_{\phi} &= & F_{HD}\left(\phi^{\dagger}\phi - rac{v^{2}}{2}
ight)\left((\mathbf{D}_{\mu}\phi)^{\dagger}\mathbf{D}^{\mu}\phi
ight)\,. \end{aligned}$$

$$\left(\begin{array}{c} a_T = 1 + \frac{v^2 F_\phi}{2} + F_{\phi W} q_1 \cdot q_2 \,, \\ \\ a_L = 1 + \frac{v^2 F_\phi}{2} + F_{\phi W} \frac{q_1^2 q_2^2}{q_1 \cdot q_2} \,. \end{array} \right) \label{eq:a_T}$$

Mapping between (a_L and a_T) and EFT operators momentum dependent. EFT kinematics can be reproduced fitting a_L and a_T (see 1404.5951)

Independent variations in $(a_L and a_T)$ not possible in the dimension-6 set of EFT operators

Methodology

To measure properties of the Higgs production vertex the shape of the distribution of the azimuthal angle between two tagging jets $\Delta \Phi_{jj}$ is used. Additionally, in selected fits, $\sigma \cdot Br(H \rightarrow WW^*)$ information is employed.

Parameter morphing is used to extrapolate from a small set of BSM coupling benchmarks to a large variety of coupling scenarios.

The final results are obtained by applying a maximum likelihood procedure individually to each coupling parameter hypothesis, where the background prediction is only affected by changes to nuisance parameters in the minimization.

The weighted $\Delta \Phi_{ii}$ distribution in the ggf and VBF signal regions, with signal and background yields fixed from the fits.

Main sources of uncertainties in the VBF Higgs properties analysis

Source	$\Delta \kappa_{VV}$	Source	$\Delta \varepsilon_{VV}$
Total data statistical uncertainty	0.11	Total data statistical uncertainty	0.14
SR data statistical uncertainty	0.10	SR data statistical uncertainty	0.14
CR data statistical uncertainty	0.019	CR data statistical uncertainty	0.011
MC statistical uncertainty	0.035	MC statistical uncertainty	0.036
Total systematic uncertainty	0.12	Total systematic uncertainty	0.056
Theoretical uncertainty	0.10	Theoretical uncertainty	0.050
Top-quark bkg.	0.072	Top-quark bkg.	0.039
WW bkg.	0.062	WW bkg.	0.036
ggF bkg.	0.033	ggF bkg.	0.013
Z/γ^* bkg.	0.017	Z/γ^* bkg.	0.012
VBF signal	0.019	VBF signal	0.010
Experimental uncertainty	0.050	Experimental uncertainty	0.024
Jet	0.026	Modelling of pile-up	0.022
<i>b</i> -tagging	0.014	Jet	0.018
Luminosity	0.011	Misidentified leptons	0.010
Misidentified leptons	0.007	<i>b</i> -tagging	0.010
Total	0.17	Total	0.16