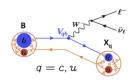
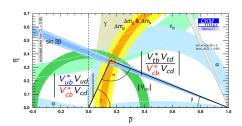
Semileptonic and rare decays at Belle II

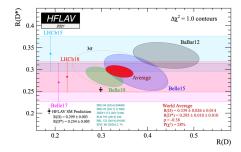
Daniel Dorner on behalf of the Belle II collaboration

Institute of High Energy Physics Austrian Academy of Sciences

XIV International Conference on Beauty, Charm and Hyperon Hadrons, 6th June 2022

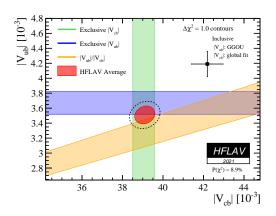




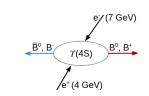

Why semileptonic decays?

- Precision measurements to probe Standard Model (SM):
 - Used to extract CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$
- Probing potential new physics:
 - $\sim 3\sigma$ discrepancy from SM in measurements of ratios

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \nu_{\ell})} \ (\ell = \mu, e)$$



Status of $|V_{cb}|$ and $|V_{ub}|$


- Exclusive: reconstruct specific final states
 - $B \rightarrow D^{(*)}\ell\nu$
 - $B \to \pi \ell \nu$

- Inclusive: reconstruct all $X\ell\nu$ final states
 - $B \to X_c \ell \nu$
 - $B \to X_u \ell \nu$
- $\sim 3\sigma$ discrepancy between inclusive and exclusive $|V_{cb}|$ and $|V_{ub}|$ measurements

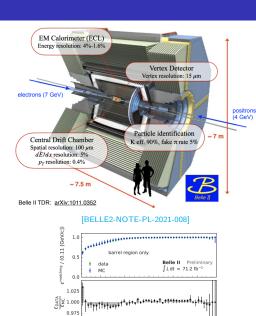
SuperKEKB

- Asymmetric e^-e^+ collider with CM energy of 10.58 GeV ($\Upsilon(4S)$ resonance)
- Point like particles: clean events, initial state well known
- Design luminosity: $6.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ ($\sim 30 \times \text{KEKB}$)
- Luminosity world record: $\sim 4 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Nanobeam scheme (20×smaller beam spot) and higher beam current
- Currently recorded luminosity
 ~ 400fb⁻¹
- Results presented will be up to 189 3fb⁻¹

conservative estimation including expected improvements

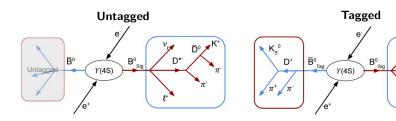
[YY/M/D]

Belle II


e ID efficiency, h → e mis-ID rate

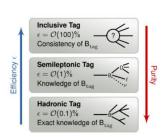
- Hermetic detector: Important to study events with missing energy
- Particle identification: μ-ID superior to Belle, e-ID and K-ID not there yet but improving
- ullet High γ detection efficiency

[BELLE2-NOTE-PL-2022-003]



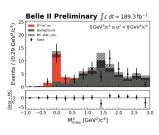
p [GeV/c]

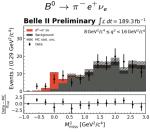
p_{Recoil} [GeV/c]

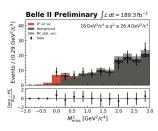

Tag side reconstruction

• Infer signal B flavour and fully resolve event kinematics by fully reconstructing second B meson in the $\Upsilon(4S)$ event e.g.

$$ar{\mathcal{B}}^0_{tag}
ightarrow \mathcal{B}^0_{sig} \
ho_
u = p_{e^+e^-} - p_\ell - p_{B_{tag}} - p_{X_c}$$

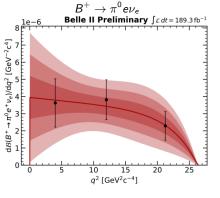

- Reconstruction of $\mathcal{O}(10,000)$ decay chains (hadronic tag)
- Up to 30-50% increased efficiency for same purity compared to Belle

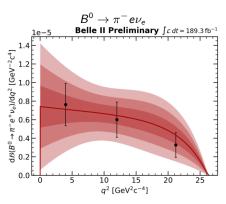



Semileptonic decays

$|V_{ub}|$ from tagged $B o\pi e u$

- Reconstruct $B^0 o \pi^- e^+
 u_e$ and $B^+ o \pi^0 e^+
 u_e$
- ullet Main challenges: sample size, π^0 reconstruction
- ullet Differential branching fraction: $rac{d\mathcal{B}(B o\pi e
 u)}{dq^2} \propto |V_{ub}|^2 f_+^2(q^2)$
- ullet Momentum transfer squared q^2 : $q^2=(p_{e^+e^-}-p_{B_{tag}}-p_\pi)^2$
- Fit M_{miss}^2 in 3 bins of q^2 : $M_{miss}^2 = (p_{e^+e^-} p_{B_{tag}} p_e p_\pi)^2$
- BCL parameters and LQCD constraints [arXiv:1503.07839]





$|V_{ub}|$ from tagged $B o \pi e \nu$

$$\mathcal{B}(B^0 o \pi^- e^+ \nu_e) = (1.43 \pm 0.27_{(stat)} \pm 0.07_{(sys)}) \times 10^{-4}_{(PDG:(1.50 \pm 0.06) \times 10^{-4})}$$

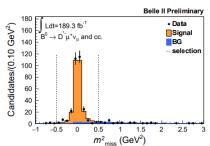
$$\mathcal{B}(B^+\to\pi^0e^+\nu_e) = (8.33\pm1.67_{(\textit{stat})}\pm0.55_{(\textit{sys})})\times10^{-5}_{(\textit{PDG}:(7.80\pm0.27)\times10^{-5})}$$

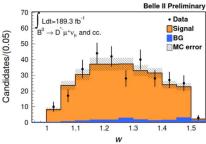
$$|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}$$
 (PDG:(3.67 ± 0.15) × 10⁻³)

$|V_{cb}|$ from tagged $B o D^*\ell u$

Reconstruct decay chain

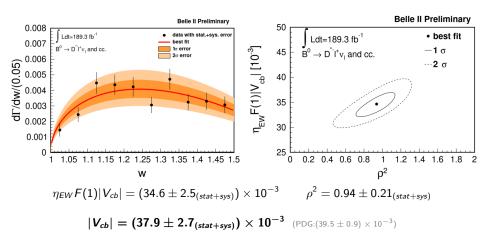
$$B^0 o D^{*-}(oar{D}^0(o K^+\pi^-)\pi_S^-)\ell^+
u_\ell$$


- Main challenge: π_S efficiency
- Differential branching fraction:

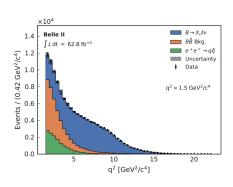

$$rac{d\Gamma(\mathcal{B}(B o D^*\ell
u_\ell))}{dw}\propto \eta_{EW}^2F^2(w)|V_{cb}|^2$$

Hadronic recoil:

$$W = \frac{P_B \cdot P_{D^*}}{m_B m_D} = \frac{m_B^2 + m_{D^*} - q^2}{2m_B m_{D^*}}$$

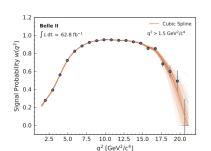

- CLN paramterization [arXiv:hep-ph/9712417]
- Measure $\eta_{EW}F(1)|V_{cb}|$ and ρ^2

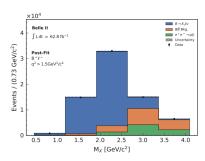
$|V_{cb}|$ from tagged $B o D^*\ell u$

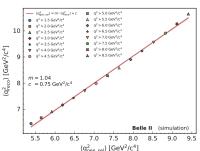

$$\mathcal{B}(B o D^* \ell
u) = (5.27 \pm 0.22_{stat} \pm 0.38_{sys})\%$$
 (PDG:(5.66 \pm 0.22)%)

$|V_{cb}|$ from tagged $B o X_c\ell u$

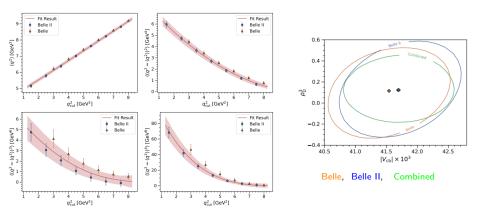
$$\Gamma = \tfrac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \big(1 + \tfrac{c_5(\mu) O_5(\mu)}{m_b^2} + \mathcal{O}(\tfrac{1}{m_b^3}) + \mathcal{O}(\tfrac{1}{m_b^4}) + ... \big)$$


- ullet Established: $|V_{cb}|$ and HQE parameters up to $\mathcal{O}(\frac{1}{m_b^3}) o ext{precision loss [arXiv:1411.6560]}$
- ullet Problem: Increase expansion o increase in matrix elements
- Solution: Avoid proliferation by exploiting reparameterization invariance [arXiv:1812.07472]
- Not true for all observables, but holds for $\langle q^2 \rangle$
- Measurement of $\langle q^{2n} \rangle$ up to n=4
- Main challenges: background modelling at low q^2 , impact of $B \to X_c \ell \nu_\ell$ modelling on calibration

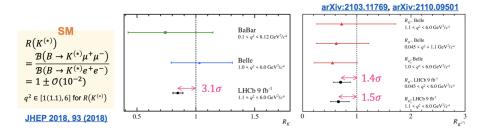



$|V_{cb}|$ from tagged $B o X_c \ell u$

$$\langle q^{2n} \rangle = rac{\sum_{i} w_{i}(q^{2})q_{i,calib}^{2n}}{\sum_{i} w_{i}(q^{2})} \cdot \mathcal{C}_{calib} \cdot \mathcal{C}_{gen}$$


- Determine background normalisation using M_X fit
- Calculate event-wise signal probability $w(q^2)$
- Calibration to correct resolution and detector effects $(q^{2n})_{reco} o (q^{2n})_{calib}$, \mathcal{C}_{calib}
- ullet Correct for selection effects $\mathcal{C}_{\textit{gen}}$

$|V_{cb}|$ from $B \to X_c \ell \nu$


Combined measurement: Belle data and $62.8 {\rm fb}^{-1}$ of Belle II data Fit by F. Bernlochner et al. [arXiv:2205.10274] to the Belle and Belle II q^2 moments using $\mathcal{B}(B \to X_c \ell \nu_\ell) = (10.63 \pm 0.19)\%$

$$|\textit{V}_{\textit{cb}}| = (41.69 \pm 0.63) \times 10^{-3} \; ext{(PDG: } (42.19 \pm 0.78) \times 10^{-3})$$

$b \rightarrow s\ell\ell$ decays

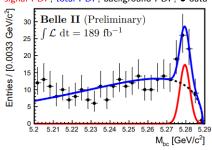
- b o s quark level transition forbidden at tree level in the SM e.g. $B o K^* \ell \ell$
- 3.1σ evidence for LFU violation in R(K) at LHCb
- Belle II has nearly symmetric e/μ reconstruction performance:
 - ullet Provide independent check for $R(\mathcal{K}^{(*)})$ anomalies with >1 ab $^{-1}$
 - Measure $R(X_S)$

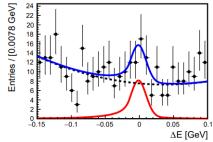
$B \to K^* \ell \ell$ branching fraction

• Reconstruct $B \to K^*(\to K^+\pi^-, K^+\pi^0, K^0_s\pi^+)\ell^+\ell^-$

- 2D likelihood fit to $M_{bc} = \sqrt{s/4 p_B^{*2}}$, $\Delta E = E_B^* \sqrt{s}/2$
- Branching fraction measured over whole q² range
- ullet J/ψ and $\psi(2S)$ resonances excluded
- Signal significance $3.6\sigma 5.9\sigma$

$$\mathcal{B}(B o K^*\mu\mu) = (1.28\pm 0.29^{+0.08}_{-0.07}) imes 10^{-6}_{-0.07}$$


$$\mathcal{B}(B \to K^* ee) = (1.04 \pm 0.48^{+0.09}_{-0.09}) \times 10^{-6}$$
(PDG:(1.19 ± 0.20) × 10⁻⁶)


$$\mathcal{B}(B o K^*\ell\ell) = (1.22 \pm 0.28^{+0.08}_{-0.07}) imes 10^{-6}$$

$$(PDG: (1.06 \pm 0.10) imes 10^{-6})$$

$K^*\ell\ell$ fit projections

signal PDF, total PDF, background PDF, • data

Summary and outlook

- ullet First results of tagged exclusive $|V_{cb}|$ and $|V_{ub}|$ measurements
- ullet First tagged inclusive $|V_{cb}|$ result using $\langle q^2
 angle$
- First Belle II measurements of $B \to K^* \ell \ell$ branching fractions
- ullet All measurements in agreement with current world average within 1σ
- Have already doubled the amount of data from the shown results
- Expect more competitive measurements using a bigger data sample soon

Backup

Tagged $B \to D^* \ell \nu$ systematics

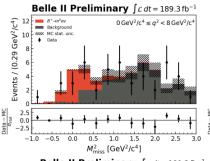
Input variables

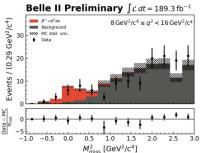
Variables	Values
N^{rec}	545 (data)
N^{bg}	29.4 ± 11.2
ϵ	$(9.55 \pm 0.67) \times 10^{-4}$
$N_{B\overline{B}}$	$(197.17 \pm 5.72) \times 10^6$
f_{+0}	1.058 ± 0.024
$\mathcal{B}\left(D^{*-} o \pi^- \overline{D}^0\right)$	$(67.7 \pm 0.5)\%$
$\mathcal{B}\left(\overline{D}^0 \to K^+\pi^-\right)$	$(3.950 \pm 0.031)\%$

Systematics

Systematic sources	Relative uncertainty (%)
FEI efficiency	3.9
Low momentum π efficiency	4.1
Tracking efficiency	0.9
Lepton particle identification	2.0
Background	1.2
$N_{Bar{B}}$	2.9
f_{+0}	1.2
$\mathcal{B}\left(D^{*-} o \pi^- \overline{D}^0\right)$	0.7
$\mathcal{B}\left(D^{*-} o \pi^- \overline{D}^0\right) \ \mathcal{B}\left(\overline{D}^0 o K^+ \pi^-\right)$	0.8
ECL energy	1.0
Form factor	0.1
MC statistics	1.8
Total	7.3

$$\mathcal{B}\left(B^{0} \to D^{*-}\ell^{+}\nu_{\ell}\right) = \frac{\left(N^{\mathrm{rec}} - N^{\mathrm{bg}}\right) \times \epsilon^{-1}}{4 \times N_{B\overline{B}} \times (1 + f_{+0})^{-1} \times \mathcal{B}\left(D^{*-} \to \pi^{-}\overline{D}^{0}\right) \times \mathcal{B}\left(\overline{D}^{0} \to K^{+}\pi^{-}\right)}$$

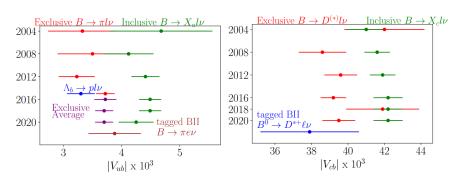

Tagged $B o \pi e \nu$ branching fractions


q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$
		$B^+ \to \pi^0 e^+ \nu_e$	
$0 \text{ GeV}^2 \le q^2 < 8 \text{ GeV}^2$	$(0.329 \pm 0.004)\%$	12.9 ± 4.7	$(2.90 \pm 1.12(\text{stat}) \pm 0.19(\text{syst})) \times 10^{-5}$
$8~{\rm GeV^2} \leq q^2 < 16~{\rm GeV^2}$	$(0.439\pm0.005)\%$	18.1 ± 5.1	$(3.05\pm0.91({\rm stat})\pm0.20({\rm syst}))\times\!10^{-5}$
$16 \text{ GeV}^2 \le q^2 \le 26.4 \text{ GeV}^2$	$(0.451\pm0.006)\%$	14.5 ± 4.9	$(2.38\pm0.85({\rm stat})\pm0.16({\rm syst}))\times\!10^{-5}$
Sum	-	45.5 ± 8.5	$(8.33 \pm 1.67(\text{stat}) \pm 0.55(\text{syst})) \times 10^{-5}$
Fit over full q^2 range	$(0.402\pm0.003)\%$	43.9 ± 8.3	$(8.06\pm1.62({\rm stat})\pm0.53({\rm syst}))\times\!10^{-5}$
World average [10]	-	_	$(7.80 \pm 0.27) \times 10^{-5}$
q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$
q^2 bin	Signal efficiency	Unfolded signal yield $B^0 \to \pi^- e^+ \nu_e$	$\Delta \mathcal{B}$
$q^2 \text{ bin}$ $0 \text{ GeV}^2 \le q^2 < 8 \text{ GeV}^2$	Signal efficiency $(0.189 \pm 0.002)\%$	$B^0 \to \pi^- e^+ \nu_e$	$\Delta \mathcal{B}$ (0.61 ± 0.18(stat) ± 0.03(syst)) ×10 ⁻⁴
		$B^0 \to \pi^- e^+ \nu_e$ 15.5 ± 4.6	
$0 \text{ GeV}^2 \le q^2 < 8 \text{ GeV}^2$	$(0.189 \pm 0.002)\%$ $(0.239 \pm 0.003)\%$	$B^0 \to \pi^- e^+ \nu_e$ 15.5 ± 4.6 15.3 ± 4.8	$(0.61 \pm 0.18(\text{stat}) \pm 0.03(\text{syst})) \times 10^{-4}$
$0 \text{ GeV}^2 \le q^2 < 8 \text{ GeV}^2$ $8 \text{ GeV}^2 \le q^2 < 16 \text{ GeV}^2$	$(0.189 \pm 0.002)\%$ $(0.239 \pm 0.003)\%$	$B^0 \to \pi^- e^+ \nu_e$ 15.5 ± 4.6 15.3 ± 4.8	$(0.61 \pm 0.18(\mathrm{stat}) \pm 0.03(\mathrm{syst})) \times 10^{-4}$ $(0.48 \pm 0.15(\mathrm{stat}) \pm 0.02(\mathrm{syst})) \times 10^{-4}$
$0 \text{ GeV}^2 \le q^2 < 8 \text{ GeV}^2$ $8 \text{ GeV}^2 \le q^2 < 16 \text{ GeV}^2$ $16 \text{ GeV}^2 \le q^2 \le 26.4 \text{ GeV}^2$	$(0.189 \pm 0.002)\%$ $(0.239 \pm 0.003)\%$	$B^{0} \rightarrow \pi^{-}e^{+}\nu_{e}$ 15.5 ± 4.6 15.3 ± 4.8 10.3 ± 4.2 41.1 ± 7.8	$(0.61 \pm 0.18(\mathrm{stat}) \pm 0.03(\mathrm{syst})) \times 10^{-4}$ $(0.48 \pm 0.15(\mathrm{stat}) \pm 0.02(\mathrm{syst})) \times 10^{-4}$ $(0.34 \pm 0.14(\mathrm{stat}) \pm 0.02(\mathrm{syst})) \times 10^{-4}$
$0 \text{ GeV}^2 \le q^2 < 8 \text{ GeV}^2$ $8 \text{ GeV}^2 \le q^2 < 16 \text{ GeV}^2$ $16 \text{ GeV}^2 \le q^2 \le 26.4 \text{ GeV}^2$ Sum	$(0.189 \pm 0.002)\%$ $(0.239 \pm 0.003)\%$ $(0.229 \pm 0.003)\%$	$B^{0} \rightarrow \pi^{-}e^{+}\nu_{e}$ 15.5 ± 4.6 15.3 ± 4.8 10.3 ± 4.2 41.1 ± 7.8	$\begin{array}{c} (0.61\pm0.18(\mathrm{stat})\pm0.03(\mathrm{syst}))\times10^{-4} \\ (0.48\pm0.15(\mathrm{stat})\pm0.02(\mathrm{syst}))\times10^{-4} \\ (0.34\pm0.14(\mathrm{stat})\pm0.02(\mathrm{syst}))\times10^{-4} \\ (1.43\pm0.27(\mathrm{stat})\pm0.07(\mathrm{syst}))\times10^{-4} \end{array}$

Tagged $B \to \pi e \nu$ systematics

Source	% of			% of				
	$\mathcal{B}(B)$	$0 \rightarrow \pi^{-}$	$e^+\nu_e)$	$\mathcal{B}(B)$	$^+ \rightarrow \pi^0$	$e^+ \nu_e)$		
q^2 bin index	1	2	3	1	2	3		
$N_{Bar{B}}$				2.9				
$f_{\pm 0}$				1.2				
FEI calibration		3.2			3.1			
Tracking		0.6			0.3			
π^0 efficiency		_			4.8			
Signal efficiency ϵ	1.3	1.2	1.4	1.3	1.2	1.3		
Electron ID	1.0	0.4	0.4	1.0	0.5	0.5		
Pion ID	0.4	0.4	0.4		-			
Total	4.8	4.7	4.8	6.7	6.7	6.7		

Tagged $B^+ \to \pi e \nu \ M_{miss}^2$ fit and results



Belle II Preliminary $\int \mathcal{L} dt = 189.3 \,\text{fb}^{-1}$ Events / (0.29 GeV²/c⁴) $16 \,\mathrm{GeV^2/c^4} \le a^2 \le 26.4 \,\mathrm{GeV^2/c^4}$ //// MC stat. unc. 30 20 10 0 2.5 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -1.0 $M_{\rm miss}^2$ [GeV²/c⁴]

Decay mode	Fitted $ V_{\rm ub} $
$B^0 \to \pi^- e^+ \nu_e$	$(3.71 \pm 0.55) \times 10^{-3}$
$B^+ \to \pi^0 e^+ \nu_e$	$(4.21 \pm 0.63) \times 10^{-3}$
${\bf Combined\ fit}$	$(3.88 \pm 0.45) \times 10^{-3}$

First exclusive $|V_{cb}|$ and $|V_{ub}|$ results

- ullet First $|V_{cb}|$ and $|V_{ub}|$ measurements statistically very limited
- ullet Expecting untagged measurements with higher precision soon $\epsilon \sim 20-30\%$

q2 moments uncertainties

	$q_{ m th}^2 \left[{ m Gev}^2/c^4 ight]$	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8
	$\langle q^2 \rangle [{\rm Gev}^2/c^4]$	5.16	5.49	5.79	6.09	6.38	6.69	7.01	7.32	7.62	7.93	8.23	8.53	8.82	9.10	9.3
Calibration (MC Statistics)	Calib. Curve (Stat. Unc.)	0.63	0.56	0.49	0.43	0.38	0.33	0.29	0.26	0.25	0.26	0.28	0.30	0.33	0.37	0.4
	Bias Corr. (Stat. Unc.)	0.10	0.09	0.09	80.0	0.08	0.08	0.07	0.07	0.07	0.07	0.06	0.06	0.06	0.06	0.0
Calibration (X _c Model)	$\mathcal{B}(B \to D\ell\nu)$	0.10	0.09	0.08	0.07	0.06	0.05	0.04	0.04	0.03	0.02	0.02	0.01	0.01	0.00	0.0
	$\mathcal{B}(B o D^* \ell \nu)$	0.33	0.29	0.24	0.21	0.17	0.14	0.11	0.09	0.07	0.05	0.04	0.03	0.02	0.01	0.0
	$\mathcal{B}(B \to D^{**}\ell\nu)$	0.71	0.63	0.55	0.48	0.40	0.34	0.28	0.23	0.18	0.13	0.10	0.07	0.05	0.03	0.0
	Non-Res. X _c Dropped	0.31	0.63	0.75	0.76	0.69	0.60	0.48	0.39	0.32	0.25	0.18	0.14	0.11	0.08	0.0
	Non-Res. X_c Repl. w/ D_1' , D_0^*	0.34	0.49	0.51	0.45	0.37	0.29	0.18	0.10	0.04	0.02	0.00	0.03	0.03	0.03	0.0
	$B \rightarrow D\ell\nu$ Form Factor	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	$B \to D^* \ell \nu$ Form Factor	0.08	0.07	0.07	0.07	0.06	0.06	0.06	0.05	0.05	0.05	0.04	0.04	0.04	0.04	0.0
Calibration (Reconstruction)	PID Uncertainty	0.14	0.12	0.11	0.09	0.08	0.07	0.05	0.04	0.03	0.02	0.02	0.01	0.01	0.01	0.0
	N_{γ} Reweighted	0.30	0.27	0.24	0.22	0.20	0.18	0.16	0.14	0.14	0.13	0.13	0.12	0.11	0.10	0.1
	N _{tracks} Reweighted	1.09	1.00	0.92	0.85	0.78	0.72	0.65	0.60	0.55	0.51	0.47	0.44	0.41	0.38	0.3
	$E_{\text{miss}} - p_{\text{miss}}$ Reweighted	0.26	0.22	0.21	0.19	0.18	0.17	0.15	0.15	0.14	0.14	0.13	0.12	0.12	0.11	0.0
	Tracking Efficiency	0.13	0.12	0.11	0.10	0.09	0.09	0.08	0.07	0.06	0.06	0.05	0.05	0.05	0.04	0.0
Background Subtraction	Spline Smooth. Factor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	Bkg. Yield & Shape	1.39	1.15	0.90	0.77	0.63	0.47	0.33	0.23	0.16	0.10	0.06	0.03	0.02	0.05	0.0
Other	Non-Closure Bias	0.18	0.21	0.16	0.11	0.06	0.05	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.01	0.0
	Stat. Uncertainty	0.27	0.24	0.21	0.20	0.18	0.16	0.16	0.15	0.14	0.14	0.13	0.13	0.13	0.13	0.1
	Syst. Uncertainty	2.14	1.99	1.80	1.64	1.44	1.23	1.02	0.88	0.77	0.69	0.62	0.59	0.57	0.56	0.5
	Total Uncertainty	2.16	2.00	1.81	1.65	1.45	1.24	1.03	0.89	0.78	0.70	0.64	0.61	0.59	0.58	0.

$B \to K^* \ell \ell$ systematics

Source	Systematic (%)
signal PDF shape	~ 1.0
muon identification	$^{+1.9}_{-0.8}$
electron identification	$^{+0.9}_{-0.5}$
kaon identification	0.4
pion identification	2.5
K_S^0 identification	2.0
π^{0} identification	3.4
FastBDT	1.3 - 1.7
limited MC statistics	< 0.5
signal cross feed	$\sim 1\%$
tracking	1.2 - 1.5
$\mathcal{B}(\Upsilon(4S) \to B^+B^-)[(\mathcal{B}(\Upsilon(4S) \to B^0\bar{B^0}))$	1.2
number of $B\bar{B}$ pairs	2.9
Total	+6.7 -6.0