Measurements of charm hadron lifetimes at Belle II

Marko Starič

Belle II collaboration

Jožef Stefan Institute, Ljubljana

BEACH 2022

M. Starič (IJS)

Measurements of charm hadron lifetimes

Krakow, June 5-11, 2022

- Searches for BSM physics often rely on accurate theory descriptions of strong interactions at low energy
 - typically achieved using effective models like Heavy Quark Expansion
- Charm hadrons in particular provide excellent tests
 - charm quark mass is much less than that of beauty quark
 - higher order corrections and spectator effects more significant
- Lifetime measurements are an essential test of non-perturbative QCD

🚰 Charmed hadron lifetimes: experimental status

- D^0 and D^+ dominated by
 - FOCUS: photon beam experiment
 - SELEX: hyperon beam experiment
 - CLEO: the only e^+e^- measurements
- Charmed baryons dominated by LHCb
 - \rightarrow all relative measurements with respect to D^+
 - $\tau_{\Lambda_c^+} = 203.5 \pm 1.0(stat) \pm 1.3(syst) \pm 1.4(\tau_{D^+}) \text{ fs}$

PRD 100 (2019) 032001

• Belle II can make absolute measurements

M. Starič (IJS)

Measurements of charm hadron lifetimes

Krakow, June 5-11, 2022

🚰 Charmed baryon lifetime hierarchy

• Hierarchy was long believed to be:

$$au(\Omega_c^0) < au(\Xi_c^0) < au(\Lambda_c^+) < au(\Xi_c^+)$$

- In 2018 and 2021 LHCb measured Ω_c^0 lifetime to be nearly four times larger than previously measured
- This changed the hierarchy to be:

$$au(\Xi_c^0) < au(\Lambda_c^+) < au(\Omega_c^0) < au(\Xi_c^+)$$

• Belle II can measure these lifetimes and hopefully confirm (or disprove) LHCb findings

M. Starič (IJS)

Measurements of charm hadron lifetimes

Krakow, June 5-11, 2022

Belle II experiment: 2nd generation "Super B Factory"

SuperKEKB accelerator

- upgraded KEKB
- target luminosity: 30 \times KEKB

Belle II detector

- general purpose spectrometer
- vertexing, tracking, neutral's detection, PID

Measurements of charm hadron lifetimes

🚰 SuperKEKB accelerator

- Asymmetric e^+e^- collider running at or near $\Upsilon(4S)$
 - $c\overline{c}$ production cross-section similar to $B\overline{B}$ (1 nb vs. 1.2 nb)
 - selection of charmed hadrons from prompt production by a simple kinematic cut: $p^{CMS}>2.5~{\rm GeV/c}$
- High instantaneous luminosity via the nano-beam optics
 - $\bullet~20\times$ smaller beam spot compared to KEKB
 - small beam size better constrains event kinematics
 - improves flight time resolution

🚰 Belle II vertex detector

- Vertex detector
 - 2 DEPFET layers + 4 layers of DSSD
 - \rightarrow second DEPFET layer be completely installed in 2023
 - smaller inner radius, larger outer radius compared to Belle
 - \rightarrow two-times better vertex resolution
 - \rightarrow improved efficiency for slow pions and K_S
 - \rightarrow more robust tracking against beam background
- Precise alignment crucial for precision lifetime measurements

🚰 Proper decay time reconstruction

$$t=\frac{m_D}{p}\vec{d}\cdot\vec{p}$$

Proper decay time calculated from distance between production and decay vertices projected to the momentum vector of reconstructed charmed hadron D^0 proper decay time distribution - comparison with Belle and BaBar

 \rightarrow much improved time resolution at Belle II (thanks to 2× better vtx resol., 20× smaller BS)

Measurements of charm hadron lifetimes

• Lifetime measured from unbinned ML fit to the (t, σ_t) distribution

- simultaneous fit to signal and invariant mass sidebands
- background fraction constrained from fit to invariant mass distribution
- Probability density function (PDF)

$$f(t,\sigma_t) = p \int e^{-t'/\tau} R(t-t'-b;s\sigma_t) dt' S(\sigma_t) + (1-p) B(t,\sigma_t)$$

- p is signal fraction
- $R(t, \sigma_t)$ resolution function, single or double Gaussian
 - b bias parameter (free in the fit)
 - s scaling parameter (free in the fit)
- $S(\sigma_t)$ PDF of σ_t , histogram template derived from data
- $B(t, \sigma_t)$ background PDF, shape determined by fitting sidebands
 - zero-lifetime and two exponentials, all convoluted with a Gaussian resolution function with free mean and width corresponding to $s\sigma_t$

$\stackrel{{\scriptstyle }}{{\scriptstyle \frown}} D^0$ and D^+ lifetime measurements

Neutral D meson

- Reconstructed in $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$
- Binned least square fit
 - Signal yield: 171k
 - Background: 0.2%

Charged D meson

- Reconstructed in $D^{*+} \rightarrow D^+ \pi^0$, $D^+ \rightarrow K^- \pi^+ \pi^+$
- Binned least square fit
 - Signal yield: 59k
 - Background: 9%

vertical lines indicate signal and sideband regions

1.85

Mass [GeV/c²]

1.9

1.95

1.8

10²

< □ → < □ → < □ →
 Krakow, June 5-11, 2022

$\bigcirc D^0$ and D^+ lifetime measurements

Lifetime fit

- Neutral D meson
 - Resolution function: double Gaussian
 - Background neglected
 - \rightarrow systematics assigned
- Charged D meson
 - Resolution function: Gaussian
 - Background: zero-lifetime + two non-zero lifetime components

Systematics

Source	$\tau(D^0)$ [fs]	$\tau(D^+)$ [fs]
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10

$\bigcirc D^0$ and D^+ lifetime measurements

Results

$$\begin{aligned} \tau(D^0) &= 410.5 \pm 1.1_{\rm stat} \pm 0.8_{\rm syst} \text{ fs} \\ \tau(D^+) &= 1030.4 \pm 4.7_{\rm stat} \pm 3.1_{\rm syst} \text{ fs} \end{aligned}$$

- World's best measurements
- Consistent with previous measurements

$\stackrel{\scriptstyle{\frown}}{\frown}$ Λ_c^+ lifetime measurement

- Relatively clean sample of $\Lambda_c^+ \to p K^- \pi^+$
 - Signal yield: 116k
 - Background: 7.5%
- Potential bias due to $\Xi_c^{0/+}\to \Lambda_c^+\pi^{-/0}$
 - not accounted in previous Λ_c lifetime measurements (negligible)
 - additional systematics assigned

Resolution function: Gaussian Background: zero-lifetime + two non-zero lifetime components

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

M. Starič (IJS)

Krakow, June 5-11, 2022

Preliminary result

$$au(\Lambda_c^+) = 203.20 \pm 0.89_{
m stat} \pm 0.77_{
m syst} ~{
m fs}$$

- World's best measurement
- consistent with previous measurements

Source	Uncertainty [fs]
Ξ_c contamination	0.34
Resolution model	0.46
Backgrounds	0.20
Detector alignment	0.46
Momentum scale	0.09
Total	0.77

 \rightarrow to be submitted to PRL

M. Starič (IJS)

Krakow, June 5-11, 2022 14 / 16

- Major upgrade done at KEK for the next generation B-factory
 - Many detector components and electronics replaced, software and analysis tools also improved
 - Rich physics program, complementary to existing experiments
- First high-precision results are here:
 - World's best D meson lifetimes
 - World's best Λ_c lifetime
- Nearly 1% of target integrated luminosity collected so far much more to come

$\frac{2}{2}$ Backup: Ξ_c contamination

- Potentially problematic backg. from $\Xi_c^0 \to \Lambda_c^+ \pi^-$ and $\Xi_c^+ \to \Lambda_c^+ \pi^0$
 - not accounted in previous Λ_c lifetime measurements

decay	BR	au
$\Xi_c^0 ightarrow \Lambda_c^+ \pi^-$	0.55 ± 0.20 % (LHCb)	$153\pm 6~{ m fs}$
$\Xi_c^+ o \Lambda_c^+ \pi^0$	1.11 % (theory pred.)	456 \pm 5 fs

• Reduce background with veto and correct for remaining

- require $M(\Xi_c) M(\Lambda_c)$ within 2σ of nominal mass difference
- use conservative upper estimate for production yields determined from fit to impact parameter of Λ_c^+
- mix signal events with generic MC to test potential remaining bias
- take half the shift as correction and half as systematic uncertainty

Source	Uncertainty [fs]		
Ξ_c contamination	0.34		
Resolution model	0.46		
Backgrounds	0.20		
Detector alignment	0.46		
Momentum scale	0.09		
Total	0.77		
		`▶ ∢ 🗗	β

Measurements of charm hadron lifetimes