

ATLAS measurements of CP violation and rare decay processes with beauty mesons

BEACH 2022 - 7 Jun 2022 Adam Barton on behalf of the ATLAS Collaboration

Introduction

- ATLAS detects huge amount of B hadrons 139 fb⁻¹ of pp collisions at √s = 13 TeV collected in 2015-2018 (Run 1: 25 fb⁻¹ at 7 and 8 TeV).
- Producing 2.5M bb pairs/second, B_s , B_c , Λ_B , etc. available.
- Triggering is a challenge as luminosity increases, most of B-physics data selected by low-pT dimuon triggers.
- **Resolution** in $m(\mu\mu)$: ~50 MeV at J/ ψ mass, ~150 MeV at Y(nS) masses, ~10 μ m impact parameter resolution.
- **Time resolution** ~60 fs after installation of IBL in Run 2 (30% improvement w.r.t. Run 1).

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Introduction

• The decay is expected to be sensitive to new physics via contributions to CP-violation.

- Neutral B⁰_s meson can oscillate into its antiparticle B⁰_s (and vice versa). The oscillation frequency is characterized by the mass difference Δm_s of the heavy (B_H) and light (B_L) mass eigenstates.
- CP violation in interference of mixing and decay: the common final state is reached via two different decay chains:

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Measurement

- CP-violating phase is defined as the weak phase difference between the $B_s \overline{B}_s$ mixing amplitude and the b \rightarrow ccs decay amplitude.
- In the Standard Model (SM) it can be related to the CKM matrix.

$\phi_{\pmb{s}} = -0.03696^{+0.00072}_{-0.00082} ~\rm{rad}$

- Any sizable deviation from this value would be a sign of beyond SM physics.
- Decay is pseudoscalar to vector-vector final state → admixture of CP-odd (L = 1) and CP-even (L = 0;
 2) states. Distinguishable through time-dependent angular analysis.
- Non-resonant S-wave decay $B \rightarrow J/\psi K^+K^-$ and $B \rightarrow J/\psi f_0$ both contribute to the final state:
 - They are included in the differential decay rate.

4

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Measurement

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\pm\mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm \mathrm{e}^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_{S}(0) A_{\parallel}(0) \left[\frac{1}{2} (e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t}) \sin(\delta_{\parallel} - \delta_{S}) \sin\phi_{s} \pm e^{-\Gamma_{s}t} (\cos(\delta_{\parallel} - \delta_{S}) \cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{S}) \cos\phi_{s} \sin(\Delta m_{s}t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}) \sin \delta_S \sin \phi_s \pm \mathrm{e}^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

CPV in $B^{0}_{s} \rightarrow J/\psi\phi$: OS Tagging

- Knowledge of the initial flavour can improve the precision of the CP-violation measurement.
- **Muon/electron tagging**: semi-leptonic decay of B (b $\rightarrow\mu$ /e transition); momentum weighed charge of lepton and tracks in the cone $\Delta R < 0.5$ around the leading lepton, (constant $\kappa = 1.1$).

$$Q_{\ell} = \frac{\sum_{i}^{N_{\text{tracks}}} q_{i} p_{\text{T}i}^{\kappa}}{\sum_{i}^{N_{\text{tracks}}} p_{\text{T}i}^{\kappa}}$$

- **b-jet-charge tagging**: used if the additional muon/electron is absent; momentumweighted track-charge in jet.
- Self-tagging $B \rightarrow J/\psi K^{\pm}$ channel used for calibration and performance estimation.

			Ĵ.	ATLAS	l f ç	1 _E		
Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]	.9 Vs=13 TeV, 80.5 fb ⁻¹	Tight muons	0.9	ATLAS √s=13 TeV, 80.5 fb ⁻¹	Tight muons
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009	$.7 = \Phi$ Data $.7 = B^+ \rightarrow J/\psi K^+$	1.4 Z	0.8	♦ Data ■ B ⁺ →J/wK ⁺	0.14
Electron	$\textbf{1.57} \pm \textbf{0.01}$	$\textbf{41.8} \pm \textbf{0.2}$	$\textbf{0.274} \pm \textbf{0.004}$.6⊑ ⊠ B ⁻ →J/ψK ⁻	-1.2	0.6	B ⁻ →J/ψK ⁻	0.12
Low- <i>p</i> _T muon	$\textbf{3.12} \pm \textbf{0.01}$	$\textbf{29.9} \pm \textbf{0.2}$	0.278 ± 0.006	.4	0.8	0.5 0.4		-0.1
Jet	12.04 \pm 0.02	$\textbf{16.6} \pm \textbf{0.1}$	$\textbf{0.334} \pm \textbf{0.006}$.3	0.6	0.3		0.06
Total	$\textbf{21.23} \pm \textbf{0.03}$	$\textbf{28.7} \pm \textbf{0.1}$	1.75 ± 0.01	.2	0.4	0.2		- 0.04
				0 0	<u> </u>	0.1	-0.5 0	0.5
					$-Q_{\mu}$	•	0.0	-Q ₁₁

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Fit

- Unbinned maximum likelihood (UML) fit performed to extract parameters of interest.
- Decay observables: mass, time, angles, per-candidate tagging and mass/time resolutions (pT(B) dependent).

$$\mathsf{n}\,\mathcal{L} = \sum_{i=1}^{N} \Big\{ w_i \cdot \mathsf{ln}\, \big(f_{\mathsf{sig}} \cdot \mathcal{F}_{\mathsf{sig}} + f_{\mathsf{sig}} \cdot f_{\mathcal{B}^0_d} \cdot \mathcal{F}_{\mathcal{B}^0_d} + f_{\mathsf{sig}} \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b} + (1 - f_{\mathsf{sig}}(1 + f_{\mathcal{B}^0_d} + f_{\Lambda_b})) \cdot \mathcal{F}_{\mathsf{bck}} \big) \Big\}.$$

- Fixed parameters: $\Delta m_s = PDG$, no direct CP-violation assumed.
- Time inefficiency, modelled in MC: Trigger and reco effects.

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Fit

Eur. Phys. J. C 81 (2021) 342

Lancaster University

Ratio plots include both stat. and syst. uncertainties

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Fit

Ratio plots include both stat. and syst. uncertainties

Eur. Phys. J. C 81 (2021) 342

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Result

• Likelihood fit determined two solutions for the strong phases, but no effect on the

- Weak phase φ_s as well as decay width difference $\Delta\Gamma_s$ compatible with SM.
- Dominant systematics on ϕ_s measurement from tagging.
- Statistical (BLUE) combination with Run 1 result.

$$\{\delta_{\parallel}, \delta_{\perp}, \delta_{\mathcal{S}}\} \rightarrow \{2(\pi - \delta_{\parallel}), \delta_{\perp} + (\pi - \delta_{\parallel}), \delta_{\perp} - \delta_{\mathcal{S}} + (\pi - \delta_{\parallel})\}.$$

CPV in $B^{0}_{s} \rightarrow J/\psi \phi$: Comparison

- ATLAS: Still 60 fb⁻¹ of 2018 data to be added.
- <u>HFLAV average for PDG</u> 2021: $\phi_s = -0.050 \pm 0.019$ rad.

Study of the rare decays of B_s^o and B^o mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector

$B^{0}_{s} \rightarrow \mu\mu$: Introduction

t.c.u

 $W^-, {oldsymbol{ ilde{\chi}}}^{oldsymbol{0}}$

- Flavour-changing neutral-current processes highly suppressed in the SM.
- NP can significantly contribute, modifying the branching ratio.
- 36.2 fb⁻¹ dataset of 2015-2016 data taking, but effectively 26.3 fb⁻¹ for B⁰_s→μμ (due to prescale).

JHEP 04 (2019) 098

- Lxy > 0 and m ϵ (4.0, 8.5) GeV requested at HLT.
- $\mathcal{B}(B^{0}_{s} \rightarrow \mu + \mu -)$ measurement relative to $\mathcal{B}(B^{\pm} \rightarrow J/\psi K^{\pm})$; $f_{u,d,s}$ are hadronisation probabilities of a b-quark: $\overline{b} - \overline{b} - \overline{b}$
- $B^{0}_{s} \rightarrow J/\psi \phi$ is used as a control channel.
- Blinded signal di-muon invariant mass region (5166, 5526) MeV.
- BDT based background suppression, trained on sidebands data.
- Yields obtained from fit to mass spectra.
- Relative reconstruction efficiencies estimated from corrected MC

JHEP 04 (2019) 098

$B^{0}_{s} \rightarrow \mu\mu$: Background

- Partially reconstructed b-hadron decays:
 - Same Vertex: $B^0 \rightarrow \mu\mu X$ decays.
 - Same Side: $b \rightarrow c\mu X \rightarrow s(d)\mu X'$.
 - Semileptonic decay with misidentied hadron.
- Peaking backgrounds:
 - − $B^{0} \rightarrow h^{+}h^{-}$, both hadrons misidentied as muons.
 - Used tight muon criteria. Only 2.7 ± 1.3 events!
 - Simulated and fixed in the mass fit.
- Continuum background:
 - Combinatorics of muon and uncorrelated hadron decays.
 - Reduced by Boosted Decision Tree (BDT) classifier. Linear shape constrained in the mass fit across BDT bins.

$B^{0}_{s} \rightarrow \mu\mu$: BDT and signal extraction

- Signal region divided into four Boosted Decision Tree bins with constant signal efficiency.
- 15 BDT variables (kinematics, isolation, B-vertex separation from PV).
- Validated on $B^{\pm} \rightarrow J/\psi K^{\pm}$ and $B_s^0 \rightarrow J/\psi \phi$ channels.

15

- Simultaneous UML fit to di-muon mass distributions in the four BDT bins to extract yield.
- Signal model from MC, two double Gaussians, centred on B^os masses.
- Unconstrained yields: $N_s = 80 \pm 22$ and $N_d = -12 \pm 20$. (Expected $N_s=90$, $N_d=10$).
- Contour obtained using Neyman construction.

$B^{0}_{s} \rightarrow \mu\mu$: LHC Combination

- ATLAS, CMS and LHCb results.
- Combination from binned 2D profile likelihood.
- Independent systematics, except for the ratio of fragmentation fractions

Prospects of CPV Measurements

ATLAS and CMS Collaborations, Report on the Physics at the HL-LHC and Perspectives for the HE-LHC, arXiv:1902.10229

ATLAS HL-LHC prospects for semi-rare decay $B \rightarrow \mu^+ \mu^- K^*$

ATLAS HL-LHC measurement precision in the P4 and P5 parameters is estimated using Toy-MC simulations and consequent fit to the decay angular distributions.

3 trigger scenarios for thresholds: muon $p_{\ensuremath{\mathsf{T}}}$

Scenarios modelled: Conservative (10-10) GeV (x5 Run1); Intermediate (6-10) GeV (x8 Run1); High-yield (6-6) GeV (x9 Run1).

Summary

- ATLAS has competitive results in B-physics.
- Working on the updates to the mentioned analysis to full Run-2 statistics.
- BLS group is well prepared for run 3 data.
- More public results on ATLAS B-physics TWiki page:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

Backup

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\pm\mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm \mathrm{e}^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_{\mathcal{S}}(0) A_{\parallel}(0) \left[\frac{1}{2} (e^{-\Gamma_{\mathrm{L}}^{(s)}t} - e^{-\Gamma_{\mathrm{H}}^{(s)}t}) \sin(\delta_{\parallel} - \delta_{\mathcal{S}}) \sin\phi_{s} \pm e^{-\Gamma_{s}t} (\cos(\delta_{\parallel} - \delta_{\mathcal{S}}) \cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{\mathcal{S}}) \cos\phi_{s} \sin(\Delta m_{s}t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}) \sin \delta_S \sin \phi_s \pm \mathrm{e}^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$