ATLAS results on exotic hadronic resonances

Yue Xu

On behalf of ATLAS Collaboration

Tsinghua University

XIV International Conference on Beauty, Charm and Hyperon Hadrons Physics

June 5-11, 2022

Outline

- ATLAS detector
- Study of $J/\psi p$ resonances in the $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays in LHC pp collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS detector (2011-2012) <u>ATLAS-CONF-2019-048</u>
- Summary

ATLAS detector

- ATLAS (A Toroidal LHC ApparatuS) is one of the two general-purpose detectors at the Large Hadron Collider (LHC)
- It investigates a wide range of physics, from the Higgs boson to extra dimensions and particles that could make up dark matter.
- At 44 m long, 25 m high and 25 m wide, the 7000-tonne ATLAS detector is the largest volume particle detector ever constructed.

3

THU

Motivation

- The experimental observation of pentaquark states has been controversial.
- In 2015, LHCb observed $J/\psi p$ resonant structures in the decay $\Lambda_b^0 \rightarrow J/\psi p K^$ interpreted as $c\bar{c}uud$ pentaquark states (P_c) (Phys. Rev. Lett. 115 (2015) 072001, Chin. Phys. C 40 (2016) 011001):
 - $P_c(4380)^+$ with $M = 4380 \pm 205$ MeV, $J^P = 3/2^-$, ~8% fractions
 - $P_c(4450)^+$ with $M = 4449.8 \pm 39$ MeV, $J^P = 5/2^+$, ~4% fractions

Motivation

- In 2019, LHCb reported $P_c(4450)^+$ may represent two narrower states $P_c(4440)^+$ and $P_c(4457)^+$, and there is another narrow resonance $P_c(4312)^+$ (Phys. Rev. Lett. 122 (2019) 222001).
- The confirmation from other experiments are needed.

Signal and Backgrounds

- $\Lambda_b^0 \to J/\psi p K^-$ process: contributions from **pentaquark states (signal)** and light Λ^* states are considered.
- $B^0 \rightarrow J/\psi K^+ \pi^-$ process:
 - Contributions from light K^* states are included.
 - The potential contribution from $B^0 \rightarrow Z_c(4200)^-K^+ \rightarrow J/\psi\pi^-K^+$ (Phys. Rev. D 90 (2014) 112009) is considered as systematics.
- $B_s^0 \rightarrow J/\psi K^+ K^-$ process: contributions from ϕ , f_2 states are included.
- Intermediate states and non-resonant decays are both considered for $B^0 \rightarrow J/\psi \pi^- \pi^+$ and $B_s^0 \rightarrow J/\psi \pi^- \pi^+$ processes.

Phys. Rev. Lett. 115 (2015) 072001

Event selection and reconstruction

- J/ψ selection: $p_T(\mu^{\pm}) > 4$ GeV, $|\eta(\mu^{\pm})| < 2.3, 2807 < m_{\mu^+\mu^-} < 3387$ MeV
- Due to the absence of particle identification, Λ_b^0 decays are reconstructed together with decays $B^0 \to J/\psi K^+ \pi^-$, $B^0 \to J/\psi \pi^+ \pi^-$, $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$
- B-hadron ($H_b = \Lambda_b$, B^0 or B_s) selection:
 - $\chi^2(H_b)/N_{dof} < 2, L_{xy}(H_b) > 0.7 \text{ mm}$
 - $p_T(H_b) / \sum p_T(\text{track}) > 0.2, \, p_T(p) > 2.5 \text{ GeV}, \, p_T(K^-) > 1.8 \text{ GeV}$
 - $p_T(H_b) > 12$ GeV, $|\eta(H_b)| < 2.1$
 - Requirements on $\cos \theta_{P_c, \Lambda_b, \Lambda^*}$
- $M(K\pi) > 1.55$ GeV: select candidates with M(pK) > 2.0 GeV.

Requirements on angles

- B-hadron ($H_b = \Lambda_b$, B^0 or B_s) selection:
 - $\cos \theta_{P_c} < 0.5$: θ_{P_c} is the angle between J/ψ momentum in the P_c rest frame and P_c momentum in the Λ_b rest frame
 - $\cos \theta_{\Lambda_b} < 0.8$: θ_{Λ_b} is the angle between Λ_b momentum and P_c momentum in laboratory frame
 - $|\cos \theta_{\Lambda^*}| < 0.85$: θ_{Λ^*} is the angle between kaon momentum in the $\Lambda^* \to pK$ rest frame and Λ^* momentum in the Λ_b rest frame

8

THU

Kinematic regions

- Λ_b signal region (SR), B^0 and B_s^0 control regions (CR) are defined to extract pentaquark parameters (e.g. mass, width) in the fit.
- Contributions of Λ_h^0 decays in CRs are small.
- B^0 decays are the dominant background in all regions.

	Mass window				
Λ_b SR	$5.59 < m(J/\psi, h_1 = p, h_2 = K) < 5.65 \text{ GeV}$				
B ⁰ CR	$5.25 < m(J/\psi, h_1 = K(\pi), h_2 = \pi(K)) < 5.31 \text{GeV}$				
B_s^0 CR	$5.337 < m(J/\psi, h_1 = K, h_2 = K) < 5.397 \text{GeV}$				

Fit model

- The fit procedure is iterative with four steps in each iteration. Parameters obtained in previous step are used in the current step.
 - Step 1: fit $m(J/\psi hh)$, $m(J/\psi h)$, m(hh) spectra to obtain parameters of B_0 and B_s backgrounds.
 - Step 2: fit $m(J/\psi, h_1 = p, h_2 = K)$ spectrum to retrieve total number of Λ_b decays, number of combined B^0 and B_s^0 decays.
 - Step 3: fit $m(J/\psi h)$, m(hh) spectra in SR to get decay constants of Λ_b decays.
 - Step 4: fit $m(J/\psi, h_1 = p)$ spectrum in SR to obtain pentaquark masses, widths, amplitudes and relative phase between pentaquark amplitudes ($\Delta \phi$)

Fit results

- $m(J/\psi pK^{-})$ spectrum for all selected Λ_b candidates.
- Processes displayed with their correct hadron mass assignment are called 'direct signals', while processes shown with the wrong mass assignment are 'reflected signals'

•
$$N(\Lambda_b^0 \to J/\psi p K^-) = 2270 \pm 300$$

•
$$N(B^0 \to J/\psi K^+ \pi^-) = 10770$$

•
$$N(B_s^0 \to J/\psi K^+ K^-) = 2290$$

•
$$N(B^0 \to J/\psi \pi^+ \pi^-) = 1070$$

•
$$N(B_s^0 \to J/\psi \pi^+ \pi^-) = 1390$$

• In SR,
$$N(\Lambda_b^0 \rightarrow J/\psi p K^-) \sim 1200$$

11

Fit results

Two pentaquarks

- Two hypotheses are tested:
- Two pentaquarks:
 - $\chi^2 / N_{dof} = 37.1/39$
 - The pentaquark masses and widths are consistent with the LHCb results.
- Four pentaquarks:

• $\chi^2 / N_{dof} = 37.1/42$

• use pentaquark properties from LHCb.

Two pentaquarks

Parameter	Value	LHCb value		
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	Phys. Rev. Lett. 115 (2015) 072001		
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	_		
$N(P_{c1} + P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	—		
$\Delta \phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst})$ rad	-		
$m(P_{c1})$	$4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$	$4380 \pm 8 \pm 29$ MeV		
$\Gamma(P_{c1})$	$140_{-50}^{+77} (\text{stat})_{-33}^{+41} (\text{syst}) \text{ MeV}$	$205 \pm 18 \pm 86$ MeV		
$m(P_{c2})$	4449^{+20}_{-29} (stat) $^{+18}_{-10}$ (syst) MeV	$4449.8 \pm 1.7 \pm 2.5$ MeV		
$\Gamma(P_{c2})$	51^{+59}_{-48} (stat) $^{+14}_{-46}$ (syst) MeV	$39 \pm 5 \pm 19$ MeV		

Model without pentaquarks

- The fit procedure is repeated using $\Lambda_b^0 \to J/\psi p K^-$ decay without pentaquarks.
- The extended $\Lambda_b^0 \to J/\psi p K^-$ decay model with two lowest orbital momenta between the decay products of $\Lambda^*(1800)$, $\Lambda^*(1810)$ and $\Lambda^*(1890)$ give the best result.
- The fit quality is worse than the models with pentaquarks.

Systematics

• Systematic uncertainties for extracted yields and relative phase

Source	$N(P_{c1})$	$N(P_{c2})$	$N(P_{c1} + P_{c2})$	$\Delta \phi$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays	+1.8 c/_0 -0.6	+6.60% -9.2	+1.6% -0.8	$^{+0.3}_{-0.0}$ %
Pentaquark modelling	+21 %	$^{+1}_{-22}$ %	+8.7 % -4.4	+1.6 % -0.0
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	+14 %	$^{+5}_{-44}$ %	+9.2% -9.1	+3.6 % -1.6
Combinatorial background	$+0.7 \ 0.0 \ -4.0 \ -$	+18 % -5 %	+4.2 % -4.8	$+3.2 \text{m}_{0}$
<i>B</i> meson decays modelling	+13 % -25	+28 % -35	+1.6% -9.3	$^{+0.5}_{-2.1}$ %
Total systematic uncertainty	+28 m/o -25	$+35 _{-61}$	+14 % -15	$+5.1 \text{ m}_{0}$

• Systematic uncertainties for pentaquark masses and natural widths

Source	$m(P_{c1})$	$\Gamma(P_{c1})$	$m(P_{c2})$	$\Gamma(P_{c2})$
Number of $\Lambda_b^0 \to J/\psi p K^-$ decays	+0.06 % -0.03	+3.5 % -2.5	+0.07% -0.04%	+7 % -13 %
Pentaquark modelling	+0.6 % -0.0	+18 % -0%	$^{+0.2}_{-0.0}$ %	$^{+0}_{-33}$ %
Non-pentaquark $\Lambda_b^0 \to J/\psi p K^-$ modelling	$^{+0.23}_{-0.05}$ %	+9.2 % $-1.2 $ %	$^{+0.24}_{-0.02}$ %	$^{+2}_{-62}\%$
Combinatorial background	+0.03 $-0.15 $ -0.15	+0 % -11 %	+0.01% -0.17%	+22 %
B meson decays modelling	$^{+0.24}_{-0.00}$ %	+21 % -21 %	+0.27 $-0.14 $ -0.14	+17 % -57
Total systematic uncertainty	$+0.7 \ m_{0}$	+30 % -24	$^{+0.4}_{-0.2}$ %	+28 % -91

Summary

- Analysis of $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays is performed with $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV pp collision data collected by ATLAS detector.
- Obtained pentaquark masses and widths with hypothesis of two pentaquarks are consistent with LHCb results.
- Data prefer model with two or more pentaquarks, but model without pentaquark is not excluded.
- More studies are on-going with Run 2 data.

Stay tuned!

Thanks