MUonE experiment at SPS

Marcin Kucharczyk

IFJ PAN, Kraków

XIV International Conference on Beauty, Charm and Hyperon Hadrons (BEACH 2022) 5-11 June 2022, Kraków

Outline

- a_{μ} : Standard Model vs experiment
- How to measure hadronic contribution to a_{μ}
- Proposal of the MUonE experiment
- MUonE detector
- Test-beams & plans
- Subsystems status

Anomalous magnetic moment of the muon

$$ec{\mu} = g\left(rac{e}{2m}
ight)ec{S}$$
 g - gyromagnetic ratio

Landé *g*-factor is predicted from the Dirac equation to be qual to 2 in reality: $g > 2 \rightarrow$ anomalous magnetic moment

$$a_{\mu} = \frac{g-2}{2}$$

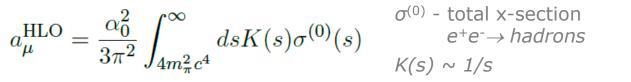
- one of the most precisely measured quantities
- most precisely determined in Standard Model

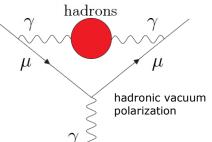
 \Rightarrow stringent test of theory

Additional effects from QED, electroweak theory and hadronic factors

$$a_{\mu} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{QCD} + a_{\mu}^{NP}$$
QED corrections known up to 5 loops
~ 0.001% of $\sigma(a_{\mu}^{SM})$

$$a_{\mu}^{QED} = 116584718.95(0.08) \times 10^{-11}$$

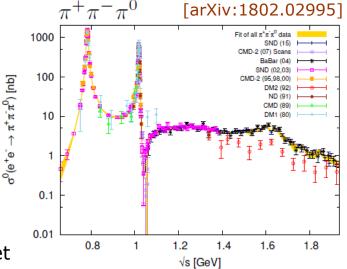

$$a_{\mu}^{QED} = 116584718.95(0.08) \times 10^{-11}$$
W
$$a_{\mu}^{W} = 153.6(1.0) \times 10^{-11}$$


$$a_{\mu}^{W} = 153.6(1.0) \times 10^{-11}$$
Hadronic - not calculable with pQCD
~ 99.8% of $\sigma(a_{\mu}^{SM})$
dominant: leading-order vacuum polarization

Hadronic vacuum polarization contribution

Hadronic vacuum polarization contribution determined from $e^+e^- \rightarrow hadrons$ x-section measurements at BESIII, CMD3, BaBar, KLOE, VEPP-2000

Dispersion relation, optical theorem (time-like)


- $\sigma^{(0)}$ from experiments & subtracted from ISR and vacuum polarization corrections
- improved by integrating e^+e^- data with spectra of hadronic τ decays

 $a_{\mu}^{\text{had,LO}} = \begin{cases} 6963(62)(36) \times 10^{-11} & e^+e^-\\ 7110(50)(8)(28) \times 10^{-11} & \tau \end{cases}$

Data-driven dispersive approach (accuracy ~0.6%)

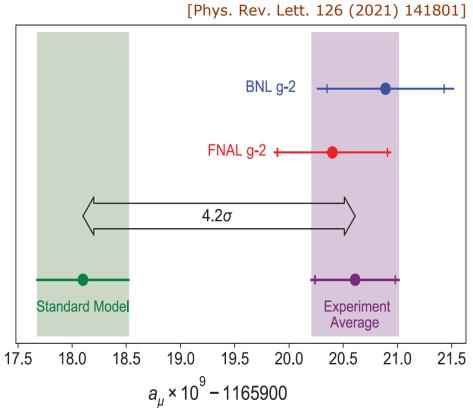
- low-energy region highly fluctuating
- hadron resonances and thresholds effects

Lattice QCD also tried \rightarrow progressing, not conclusive yet

Experiment vs SM predictions

Adding predictions and combining errors in quadrature \rightarrow overall SM prediction

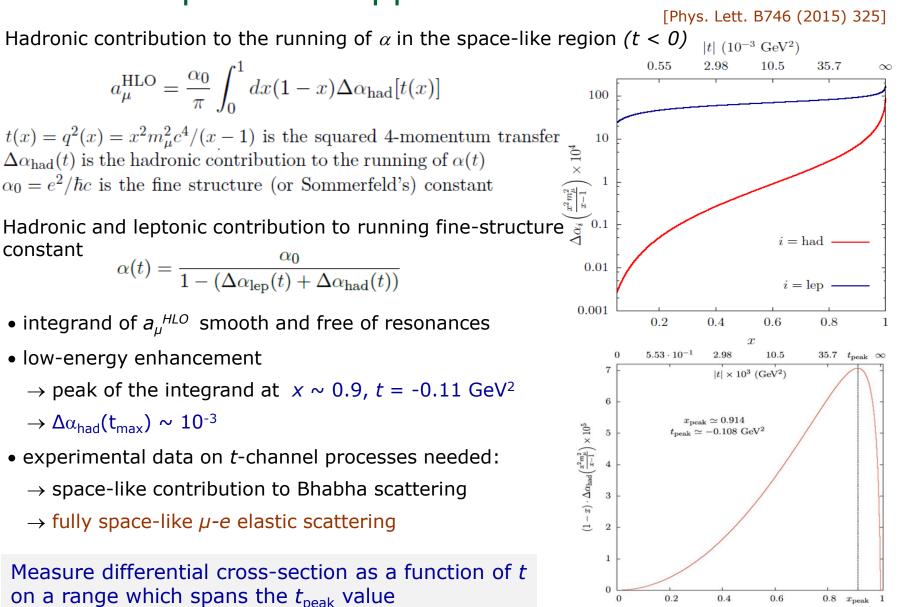
 $\Delta a_{\mu} = a_{\mu}^{e imes p} - a_{\mu}^{SM} = (251 \pm 59) imes 10^{-11}$


- This gives **4.2σ** discrepancy
- SM: LO-HVP determined with time-like data
- Prediction model- and dataset-dependent

In next years Fermilab experiment will increase the precision by factor of ~4

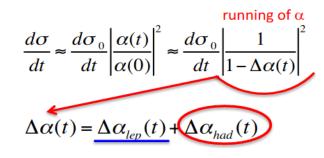
Forthcoming experiment at J-PARC should reach similar precision

Appropriate improvement in theoretical precision should be also reached


\Rightarrow proposal of new experiment - MUonE

Lattice QCD based calculations reduces discrepancy with measurement, and is in tension with data-driven estimates *Nature 593 (2021) 51–55*

LO-HVP: space-like approach

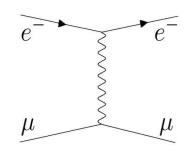


x

Proposal of the MUonE experiment

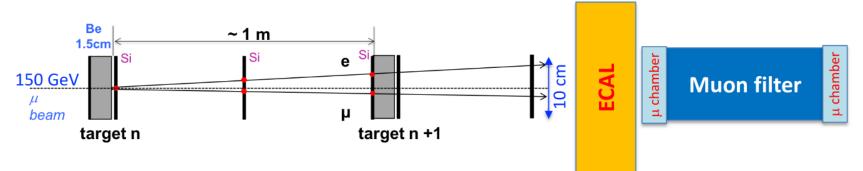
A novel method exploits space-like processes

- determination of a_{μ}^{HLO} from scattering μ -e data
- elastic scattering of high-energy muons on the atomic electrons in a low-Z target
- $\Delta \alpha_{had}(t_{max})$ can be extracted from differential x-section for μ -e elastic scattering, and then aµHLO by the space-like approach


- higly boosted final states produced in collisions: 0<-t<0.161 GeV², 0<x<0.93
- for E_{μ} = 160 GeV the phase space covers 87% of the integral
- smooth extrapolation to the full integral with a proper fit model

Marcin Kucharczyk

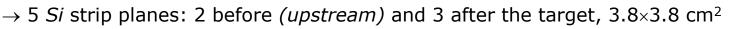
Auon scattering angle (mrad)


[Eur. Phys. J. C77 (2017) 139] Muon beam momentum = 160 GeV x = 0.928, E_ = 130.7 GeV e-out x = 0.9, E_a = 88.5 GeV u-out E.= 35.0 GeV x = 0.932 E_o = 139.5 GeV 20 10 30 Electron scattering angle (mrad)

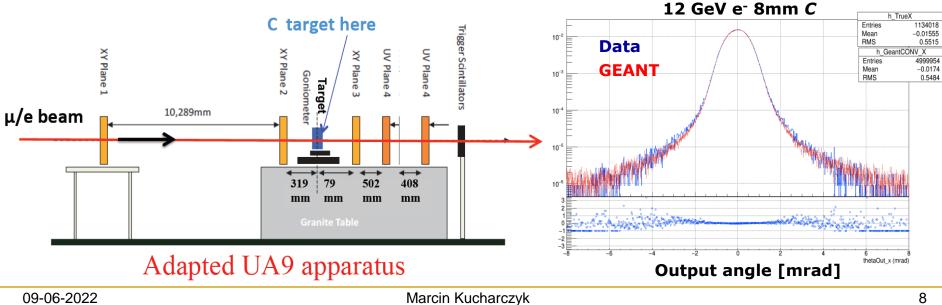
MUonE detector

- CERN SPS ~160 GeV muon beam M2 (1.3 \times 107 $\mu/s)$
- boosted kinematics: θ_{e} < 32mrad (for E_{e} > 1 GeV), θ_{μ} < 5mrad
 - \rightarrow whole acceptance covered by 10x10cm2 silicon sensor at 1m distance from the target
 - \rightarrow reduce systematics
- \bullet minimize distortions of the outgoing e/ μ trajectories
 - \rightarrow target material
 - \rightarrow low rate of radiative events
- modular structure made by up to 40 layers of Beryllium 1.5 cm thick
 - \rightarrow interleaved with 6 layers of Si tracking planes
 - \rightarrow expected angular resolution ${\sim}10~\mu m$ / 0.5 m = 0.02 mrad
- \bullet need to measure direction (and energy) of the incoming muon \rightarrow a la COMPASS
- PID crucial for low angle particles & background rejection
 - \rightarrow ECAL and Muon Filter after the last station

Main issue is to control the systematic error at the same level as the statistical one



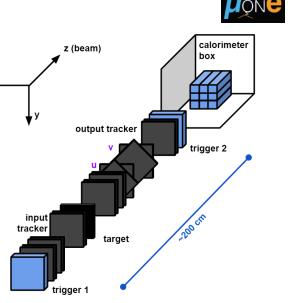
Hộne


Letter of Intent SPSC-I-252 (2019)

Test-beam 2017

used existing UA9 setup in H8-128

- data taken with electron and muon beams
 - \rightarrow beam energy: e- of 12/20 GeV; μ of 160 GeV
 - $\rightarrow 10^7$ events with C targets of different thickness (2,4,8,20mm)
- **Goal**: measure multiple scattering tails for $e \rightarrow e$ through material to compare with GEANT 4 model
- with muon data
 - \rightarrow identify μ and e from elastic scattering in the final state
 - \rightarrow measure multiplicity of particles from the target to evaluate background

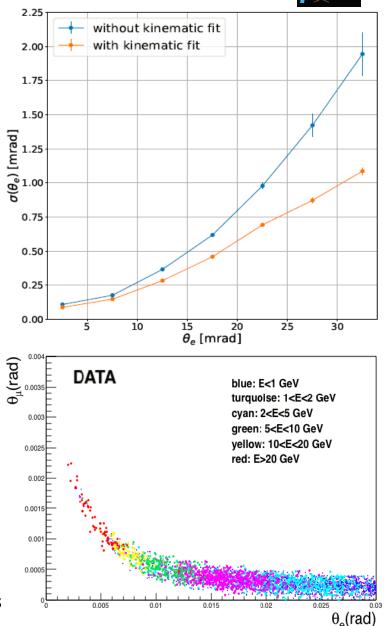


Test-beam 2018

- Setup located downstream COMPASS
- Aim of the measurement campaign
 - \rightarrow muon-electron elastic scattering with high statistics
- Using muons from pions decays (hadron beam)
 - \rightarrow estimated beam momentum p_{beam} = (187±7) GeV
- Measure correlation between the scattering angles
 - \rightarrow muon angle vs the electron angle
- Electron energy vs electron angle correlation and PID
- Detector
 - \rightarrow tracking system:

16 stations equipped with AGILE silicon strip sensors 400 micron thick, single sided, about 40 micron intrinsic hit resolution

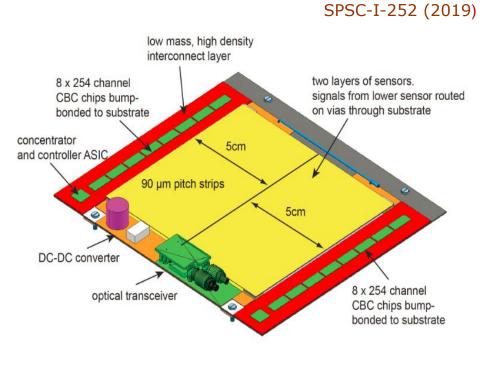
 \rightarrow electromagnetic calorimeter: 3x3 cell matrix, BGO-PMT crystals, ~8×8 cm²

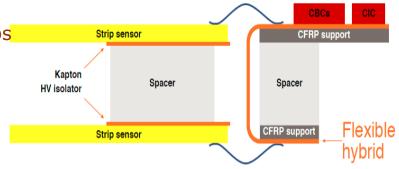

Test-beam 2018 - results

Published in JINST 16 (2021) P06005

- Aimed mainly to explore the ability to select a clean sample of elastic scattering events in view of designing the final experiment
 - \rightarrow able to select clean sample even if the resolution worse than the one planned to be used in MUonE
 - \rightarrow first results of this kind
- Importance of an adequate calorimeter
 - \rightarrow understand the electrons emitted in the range of a few GeV
 - \rightarrow determine the behaviour of the background
- Important upgrade of Geant4
 - \rightarrow accurate angular distribution of the electrons of the pair implemented
 - \rightarrow Geant4 version 10.7

(already implemented in MUonE software)


Conclusion: able to select a clean sample of elastic events



Muone detector: CMS 2S sensors

Developed for CMS Outer Tracker upgrade

- under production now
- module consists of paired sensors
 - \rightarrow pitch is 90µm, thickness 2 x 320µm
 - \rightarrow large active area 10x10 cm²
- two close-by planes of strips
 - \rightarrow provide track elements (stubs)
 - \rightarrow suppression of background
- distance bewteen sensors 1.8mm
- 16 CBC chips each reading 254 strips
 - ightarrow 127 from top and 127 bottom sensor
 - \rightarrow binary strip readout
- tilting a sensor around an axis parallel to the strips
 - \rightarrow induce charge sharing between adjacent strips
 - \rightarrow good position resolution ${\sim}20\mu m$
- modules provide stubs at 40MHz

Letter of Intent

Muone detector: Tracking station

Hộn**C**

target

- station length $\sim 1m$
- target + 3 tracking layers
- layer: pair of close-by 2S modules with orthogonal strips
- (x,y) modules tilted with respect to the strip axis
- (u,v) central modules rotated to resolve ambiguities
- required high precision of mounting and mechanical stability
 - \rightarrow stringent request: relative positions within station better than 10 μm
- structure with low thermal expansion coefficient material Invar, CTE = $1.2 \times 10^{-6} \text{ K}^{-1}$
- cooling circuit foreseen to control temperature while removing the heat produced by modules (stabilized within 1-2 °C)

XY 3

UV 2

cooling circuit

XY 1

(x,y) tilted modules

ECAL prototype

PbWO₄ 5 x 5 channels prototype

- 16 channels digitizer boards
- laser system used to pulse crystals
- DAQ for test and calibration ongoing
- integration of calorimeter into DAQ
 - \rightarrow requires high speed optical data links
 - \rightarrow optical mezzanine boards exists
 - \rightarrow firmware to be developed

Test of electronics chains ongoing

Requested beam time in T9 East Area \rightarrow end of July 2022

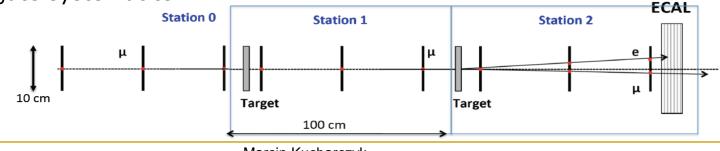
Preliminary test beam in 2021 with M2

Parasitic beam test, ran over 3 weeks in Oct/Nov 2021

- \rightarrow M2 muon beam in the CERN North Area
- \rightarrow apparatus located downstream of NA64
- \rightarrow 160 GeV muons, asynchronous rate of ${\sim}16$ kHz
- Goal: test DAQ system thoroughly for the first time
 - Module readout via Serenity FC7 prototype with KU15P FPGA
 - Ryzen 9 5900X server PC to receive data
 - MUonE power provided by CAEN SY4527 + A2519/A1542
 - 40MHz continuous readout of 2S modules (stubs)
 - Grafana monitoring of DAQ and module status

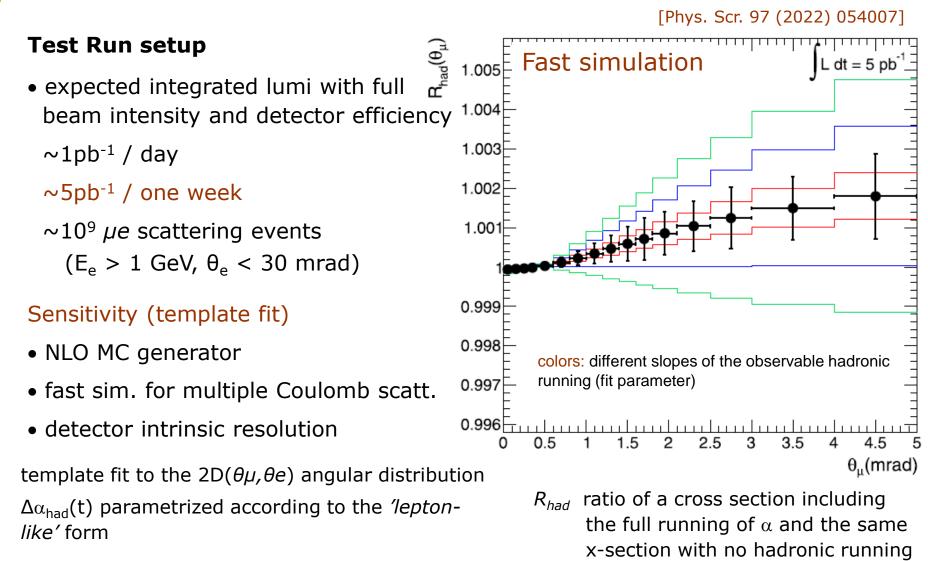
Test Run in 2022/2023

Requests: 2 weeks of M2 beam - end of 2022, 3 weeks - beginnig of 2023


- upstream COMPASS

Prototype of the final setup

- 2 stations, each consists of a thin Be target and 6 CMS tracking layers
- 6 other tracking layers upstream detector for tracking the incoming muons


Goal

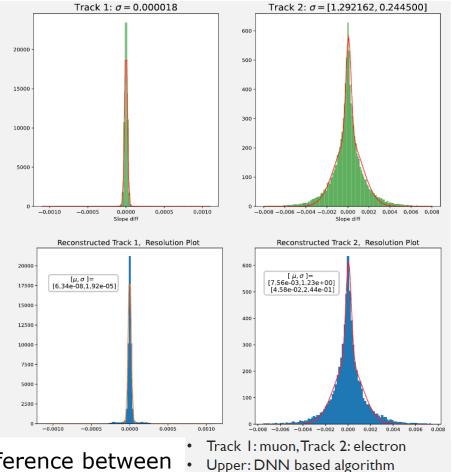
- confirm the system engineering, i.e. assembly, mounting and cooling
- assess the detector counting rate capability
- check the signal integrity in the process of data transfer for DAQ
- prove the validity of the trigger-less operation mode
- evaluate the FPGA real-time processing
- test the procedure for the alignment of the sensors
- investigate systematics

Test Run: expected sensitivity

Will have sensitivity to leptonic running (10× larger)

MuonE collaboration

1st MUonE Collaboration Meeting 25-26 Mar 2019, CERN 18 institutes from 9 countries, ~40 people



Deep Machine Learning for MUonE online

- Idea: SPEED UP PATTERN RECOGNITION
 - \rightarrow output is 3D regardless of 2D (x-z, y-z) inputs
- Input: all hits concatenated, no distinction between X, Y and stereo layers
- Ground truth: MC track slope parameters
- Model
 - \rightarrow PyTorch
 - \rightarrow 6 linear layers
 - \rightarrow up to 2000 neurons per layer
- Loss function
 - \rightarrow MSELoss from PyTorch uses difference between predicted slope parameters and ground truth

Marcin Kucharczyk

[Computer Science 20(4) (2019) 477-493] [DCAI 2021 Lecture Notes, vol. 2, p 202-205]

• Lower: "conventional" reconstruction

Conclusions

Exciting times for the muon g-2

• precise determination of a_{μ} at Fermilab and JPARC

LO-HVP corrections are essential

• space-like approach (MUonE) allows to reach the precision below 5 ppm

Successful test beams at CERN in 2017 and 2018

Letter of intent accepted by SPSC in 2019

Valuable solutions for the tracker exist (not require R&D for new technologies)

- final detector prototype will be tested in Test Run in 2022-2023
- data taking with final detector in 2023-2026.

Theoretical calculations

• MC at NLO available, and NNLO progressing successfully