

Precision measurements with Kaons at CERN

Chris Parkinson, for the NA62 collaboration

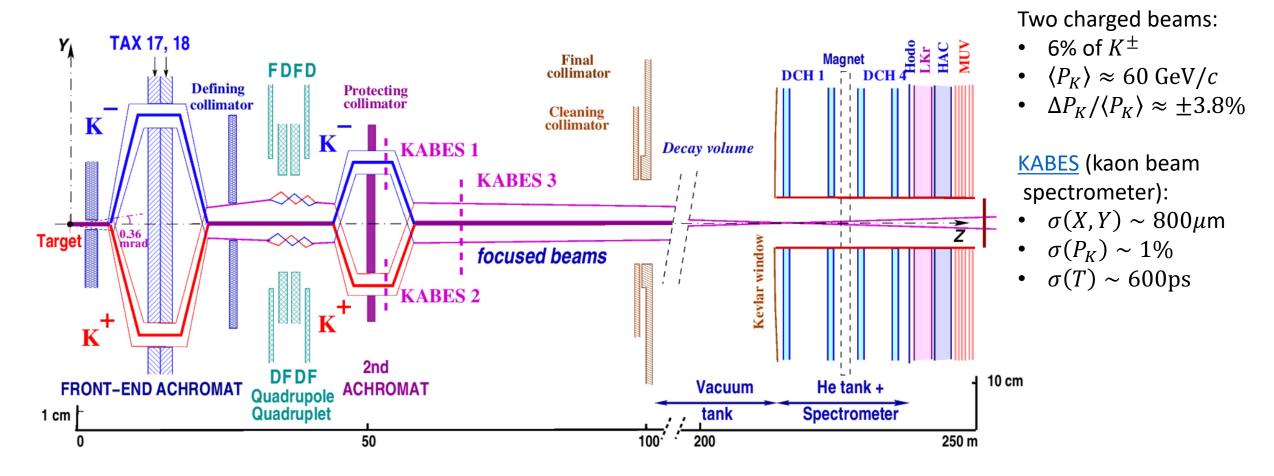
BEACH2022, Krakow, Poland

07/06/2022

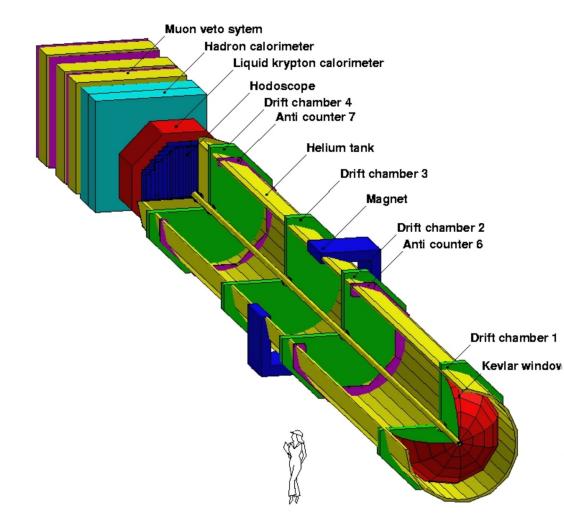
[PRELIMINARY]

- 1. First measurement of $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ [PRELIMINARY]
- 2. New study of $K^+ \rightarrow \pi^0 e^+ \nu \gamma$
- 3. Measurement of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ [PRELIMINARY]

Kaon physics at CERN

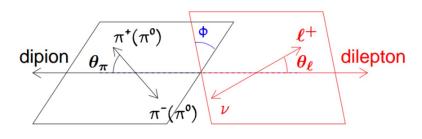

- Significant history of kaon physics experiments in the CERN North Area (NA)
- Today I will show results from NA48/2 and NA62

Recent history of NA kaon experiments


1984 ↓ 1990	NA31 (K _S /K _L)	First evidence of direct CPV
1997 ↓ 2001	NA48 (K _S /K _L)	Re ε'/ε Discovery of direct CPV
2002	NA48/1 (K _s /hyperons)	Rare K_s and hyperon decays
2003 ↓ 2004	NA48/2 (K⁺/K⁻)	Direct CPV Rare K ⁺ / K ⁻ decays
2007 ↓ 2008	NA62 R _K phase (K⁺/K⁻)	$R_{K} = K_{ev}^{\pm}/K_{\mu v}^{\pm}$
2016 ↓ 2018	NA62 (K+)	K ⁺ →π ⁺ νν Rare K ⁺ and π ⁰ decays

The NA48/2 beamline

07/06/2022


The NA48/2 detector

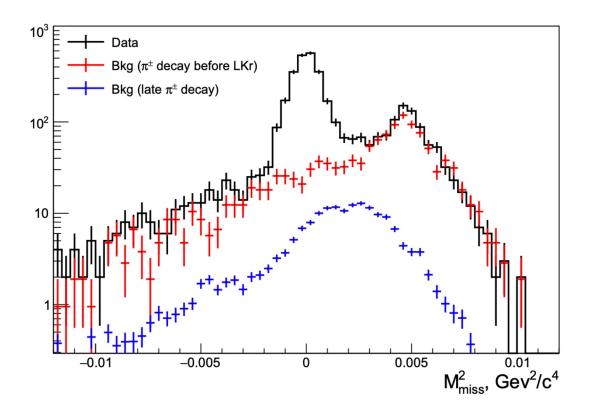
- Magnetic spectrometer (drift chambers DCH1–DCH4):
 - $\sigma(X, Y) \sim$ 90 μ m per chamber
 - $\sigma(P_{DCH})/P_{DCH} = (1.02 \oplus 0.044 \cdot P_{DCH})\%$ (P_{DCH} in GeV/c)
- Scintillator hodoscope (HOD):
 - $\sigma(T)\sim$ 150 ps
- Liquid Krypton EM calorimeter (LKr):
 - $\sigma_x = \sigma_y = (0.42/\sqrt{E_{\gamma}} \oplus 0.06) \text{ cm}$ • $\sigma(E_{\gamma})/E_{\gamma} = (3.2/\sqrt{E_{\gamma}} \oplus 9.0/E_{\gamma} \oplus 0.42)\%$ (E_{γ} in GeV)
- Hadronic calorimeter, muon system MUV.

First measurement of $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$

 $K \rightarrow \pi \pi \mu \nu(K_{I4})$ depends on F, G, R, H form-factors. Cabibbo-Maksymowicz variables: S_{π} (dipion mass squared), S_{I} (dilepton mass squared) and angles θ_{π} (in the dipion frame), θ_{I} (in the dilepton frame), ϕ .

- For $K^{00}_{\mu4}$, s-wave for $\pi^0\pi^0$, there are no dependence on $\cos\theta_{\pi}$, ϕ , and only F and R contribute.
- Unlike K_{e4}^{00} case, R plays some role due to μ mass.

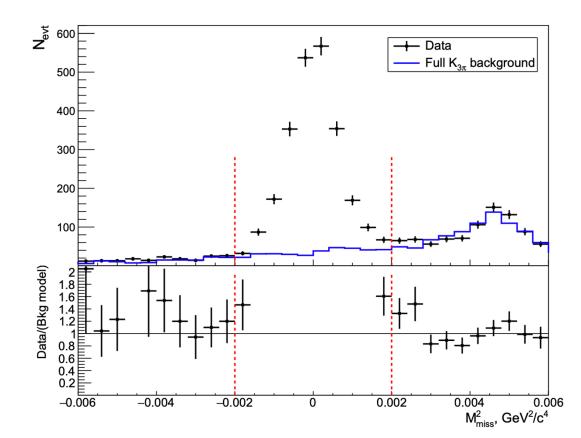
K _{/4} mode	BR [10 ⁻⁵]	N _{cand}	
K _{e4} ±	4.26 ± 0.04	1108941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65210	NA48/2 (2014)
$K_{\mu 4}^{\pm}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K_{\mu4}^{00}$?	0	


 $K^{00}_{\mu4}$: first observation, ChPT test, check of *R* presence, potential study of $\pi\pi$ rescattering effects in the $F(S_{\pi})$.

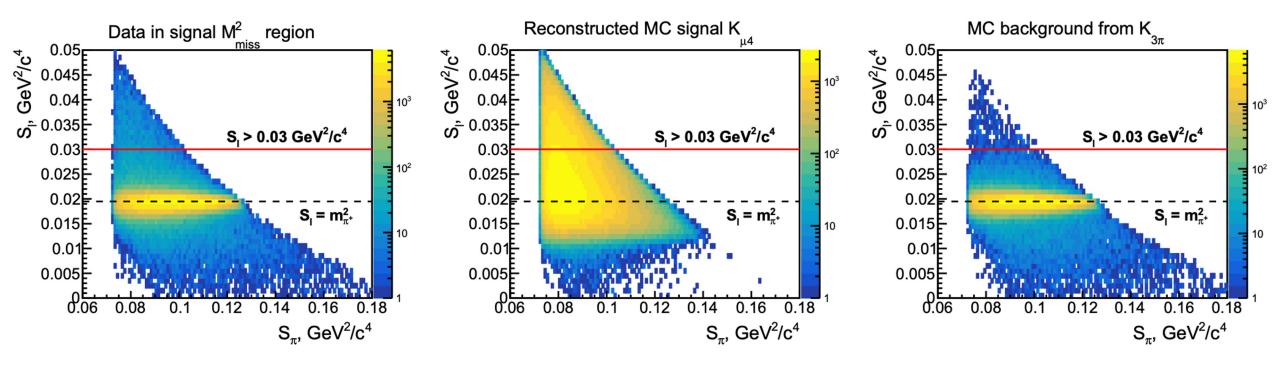
 $K_{\mu4}$: huge bkg $K^{\pm} \rightarrow \pi\pi(\pi^{\pm} \rightarrow \mu^{\pm}\nu)$.

- To simulate $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ decays, can use parameterisation of $F(S_{\pi}, S_{\ell})$ from K_{e4}^{00} measurements [NA48/2 JHEP 08 (2014) 159]
- The only available source of $R(S_{\pi}, S_{\ell})$ is ChPT calculation [J. Bijnes, G. Colangelo, J. Gasser, Nucl. Phys. B 427 (1994) 427]

Event selection


- Signal is $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$
- Normalised to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$
- Event selection: 4 isolated photons consistent with $2\pi^0$ matched in time and space with a KABES beam track and a DCH track with associated MUV response
- The main background is $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ with $\pi^{\pm} \rightarrow \mu^{\pm}\nu$ decay-in-flight before LKr
- Cuts imposed on 3-pion mass and p_T , missing mass, and $\cos(\theta_\ell)$
- Number of background events extracted from a fit to missing mass sidebands

Event selection


- Signal is $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$
- Normalised to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$
- Event selection: 4 isolated photons consistent with $2\pi^0$ matched in time and space with a KABES beam track and a DCH track with associated MUV response
- The main background is $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ with $\pi^{\pm} \rightarrow \mu^{\pm}\nu$ decay-in-flight before LKr
- Cuts imposed on 3-pion mass and p_T , missing mass, and $\cos(\theta_\ell)$
- Number of background events extracted from a fit to missing mass sidebands

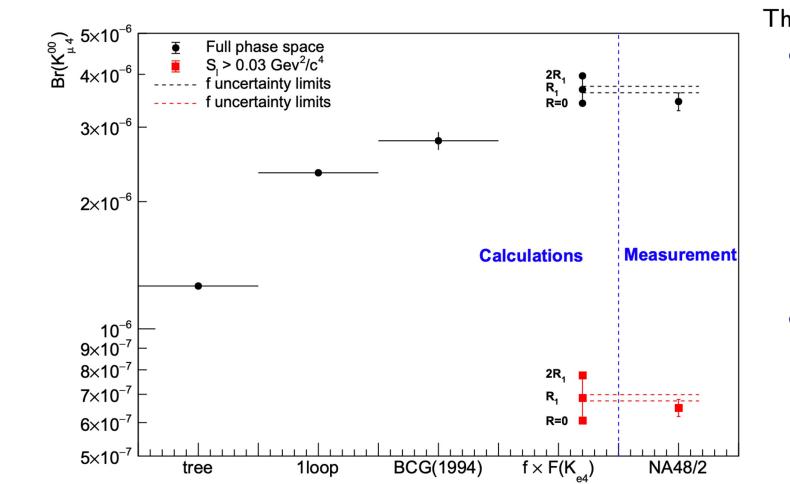
2437 candidates in signal region $354 \pm 33_{stat}$ background events

07/06/2022

Full and restricted phase-space

• The branching ratio is measured for the restricted phase space $S_{l}^{true} > 0.03 \text{ GeV}^{2}/c^{4}$.

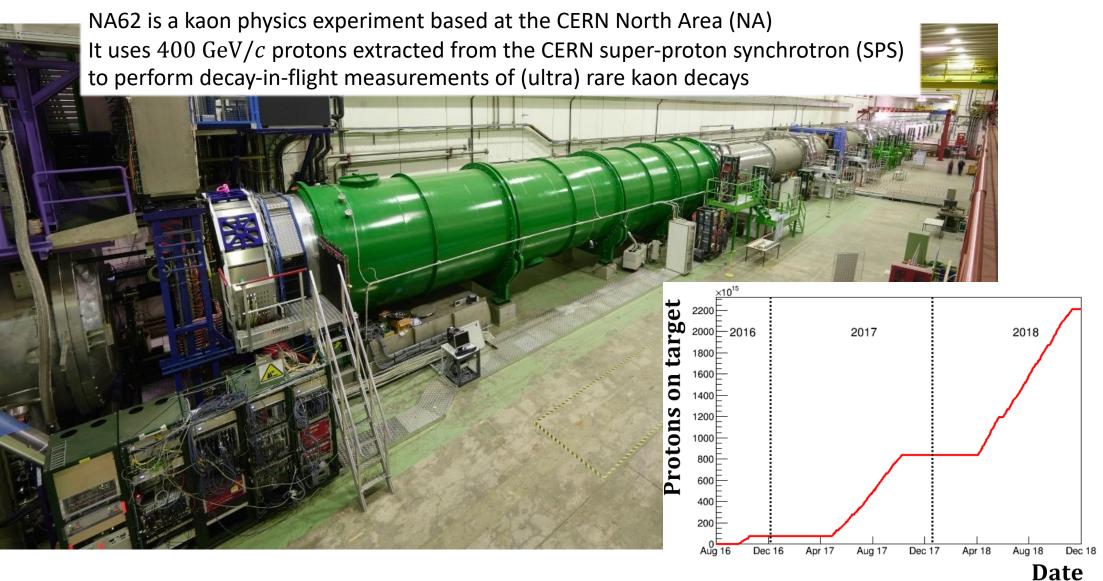
• Extrapolation to the full phase space depends on the theory.


Ingredients to the branching ratio

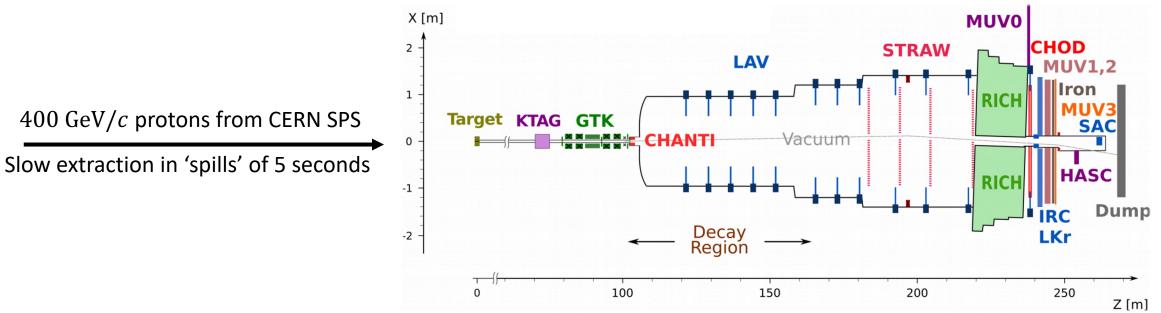
$$BR(K^{00}_{\mu 4}) = rac{N_S}{N_N} \cdot rac{A_N}{A_S} \cdot K_{trig} \cdot BR(K^{00}_{3\pi}).$$

- Extracted signal $N_S = N_{Sign. cand.} N_{Bkg} = 2437 (354 \pm 33_{stat}) = 2083 \pm 59_{stat}$ events;
 - Signal/Background is $5.89 \pm 0.66_{stat}$;
- Number of normalization events $N_N = 72.99 \times 10^6$;
- Normalization acceptance $A_N = (4.477 \pm 0.002)\%$;
- Signal acceptance for the restricted phase space $A_S^r = (3.453 \pm 0.007)\%$;
- Signal acceptance for the full phase space $A_S = (0.651 \pm 0.001)\%$;
- Trigger correction (extracted with control triggers) $K_{trig} = K_{CHT} \cdot K_{NUT} = (0.998 \pm 0.002) \cdot (1.0007 \pm 0.0007) = 0.999 \pm 0.002;$
- PDG $BR(K_{3\pi}^{00}) = (1.760 \pm 0.023)\%;$

	Full phase space		$S_l > 0.03~{ m GeV^2/c^4}$	
$BR(K_{\mu4})$ central value $[10^{-6}]$	3.45		0.65	51
	$\delta BR[10^{-6}]$	$\delta BR/BR$	$\delta BR[10^{-6}]$	$\delta BR/BR$
Data stat. error	0.10	2.85%	0.019	2.85%
MC stat. error	0.01	0.21%	0.001	0.21%
Trigger	0.01	0.18%	0.001	0.18%
Background	0.10	2.96%	0.019	2.96%
Accidentals	0.01	0.32%	0.002	0.32%
MUV inefficiency	0.06	1.65%	0.011	1.65%
Form Factor modelling	0.05	1.37%	0.001	0.14%
$BR(K_{3\pi})$ error (external)	0.05	1.31%	0.009	1.31%
Total error	0.17	4.83%	0.030	4.64%


Comparison to theory predictions

Theory:


- J. Bijnens, G. Colangelo, J. Gasser, Nucl. Phys. B, 427 (1994) 427:
 - Tree approximation;
 - 1-loop;
 - BCG(1994): 'beyond 1-loop' with measured F from [Rosselet etc. Phys. Rev. D 15 (1977) 574].
- Re-calculated now:
 - F(K_{e4}) from NA48/2 (2015);
 - $R_1 = R(1loop);$
 - 1-loop (F,R) phase;
 - 2020 PDG constants.

The NA62 experiment

The NA62 detector

JINST 12 P05025

- Proton-target interactions + achromatic selector forms secondary hadron beam with $p \approx 75 \ GeV/c$
 - There are 750MHz of particles in the secondary beam; 6% are K^+ (45MHz)
- Measurement of all beam particles by kaon tagger KTAG and beam-particle tracker GTK
- About 15% of K^+ decay within the ~ 75m vacuum **decay region**, which defines the experiments **fiducial volume**
- Measurement of K^+ decay products by the **STRAW** tracker and **CHOD** detectors
- Particle identification by the RICH, the LKr and MUV calorimeters, and the MUV3 detector
- Hermetic photon veto provided by the LAV, LKr, IRC, SAC photon detectors

07/06/2022

New study of $K^+ \rightarrow \pi^0 e^+ \nu \gamma$

- The $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay is a radiative decay described in ChPT, with the photon produced either via direct emission (DE) and inner bremstrahlung (IB)
- The IB amplitude diverges when $E_{\gamma} \rightarrow 0$ and $\theta_{e,\gamma} \rightarrow 0$
- Measure branching fraction ratio $R = BR(\pi^0 e^+ \nu \gamma)/BR(\pi^0 e\nu)$ in 3 kinematic regions R_i

Nucl. Phys. B 396 (1993) 81 Phys. Rev. D 65 (2002) 054038 Eur. Phys. J. C 50 (2007) 557 Phys. Atom. Nucl. 74 (2011) 1214

DE (a) + IB (b) + INT $W \stackrel{v_e}{\underset{a)}{\leftarrow} e^+}$ $K^+ \stackrel{W}{\underset{b)}{\leftarrow} \pi^0}$

arxiv:2010.07983

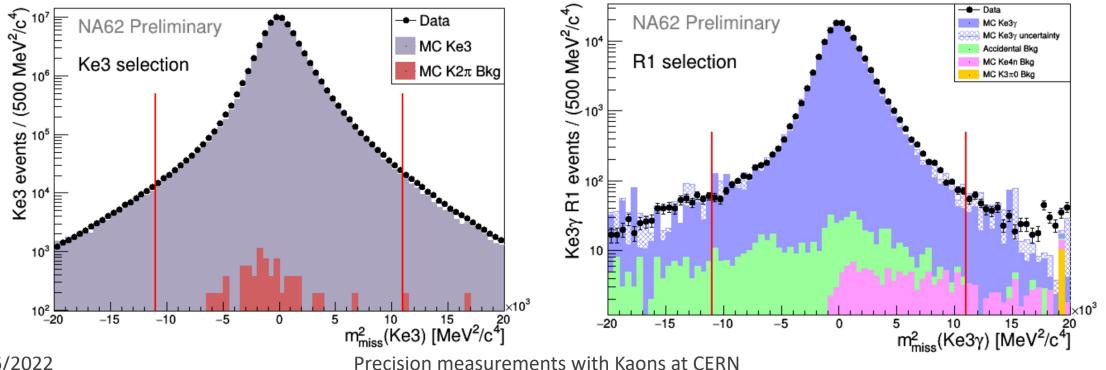
Range	$E_\gamma{ m cut}$	$ heta_{e,\gamma} \operatorname{cut}$	$O(p^6) \ ChPT \ [10^{-2}]$	$ISTRA + [10^{-2}]$	OKA [10 ⁻²]
R_1	$E_{\gamma} > 10 \; MeV$	$\theta_{e,\gamma} > 10^{\circ}$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
R_2	$E_{\gamma} > 30 \; MeV$	$ heta_{e,\gamma} > 20^{\circ}$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
R_3	$E_{\gamma} > 10 \; MeV$	$0.6 < \cos heta_{e,\gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$
					007)

Phys. Atom. Nucl.70, 29 (2007)

New study of
$$K^+ \rightarrow \pi^0 e^+ \nu \gamma$$

• The decay is also sensitive to a T-odd observable ξ , with asymmetry in ξ defined as A_{ξ}

$$\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_e} \times \overrightarrow{p_{\pi}})}{M_K^3} \; ; \; A_{\xi} = \frac{N_+ - N_-}{N_+ + N_-}$$

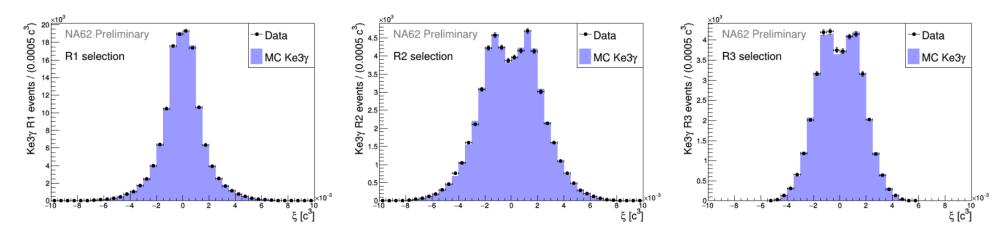

- Expect $|A_{\xi}| < 10^{-4}$ in SM and beyond; non-zero due to NLO electromagnetic corrections
- Exisiting measurement from ISTRA+

$$A_{\xi}^{ISTRA+}(R3) = 0.015 \pm 0.021$$

• No measurement in regions 1 or 2

Event selection

- Branching fraction measurements normalised to $K^+ \rightarrow \pi^0 e^+ \nu$
- Event selection based on K^+ associated to e^+ , $\pi^0 \rightarrow \gamma \gamma$ reconstructed in LKr
- Radiative γ must be in-time with the event and isolated; other activity not allowed to suppress $K^+ \to \pi^0 \pi^0 e^+ \nu$; cuts to remove γ from bremstrahlung and supress $K^+ \to \pi^+ \pi^0 \pi^0$ and $K^+ \to \pi^+ \pi^0$
- Obtain 66M normalisation events and 130k signal events (R1) with 0.5% background contamination


07/06/2022

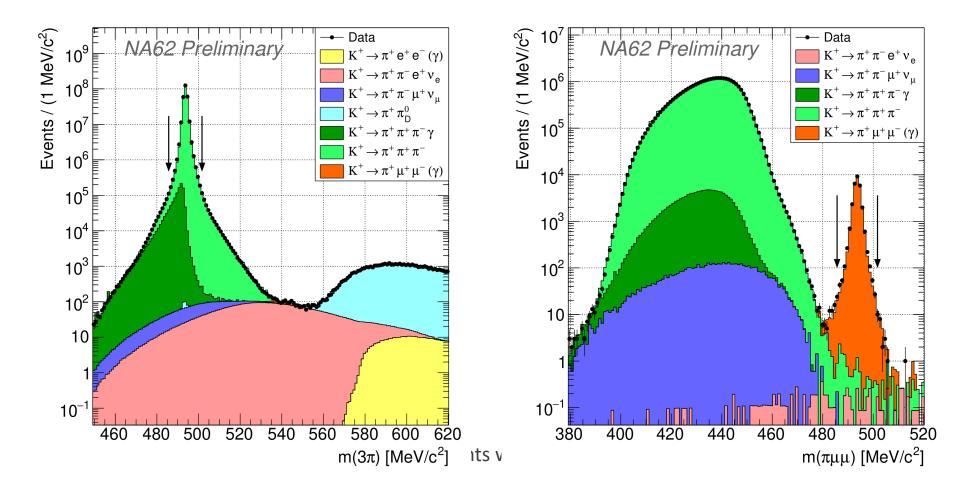
Results and systematics

	$O(p^6)$ ChPT	ISTRA+	OKA	NA62 preliminary
$R_1 (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.005 \pm 0.010$
$R_2 (\times 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.599 \pm 0.003 \pm 0.005$
$R_3 (\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$

Uncertainty source	$\delta R_1/R_1$	$\delta R_2/R_2$	$\delta R_3/R_3$
Statistical	0.3%	0.5%	0.6%
Acceptances from MC	0.2%	0.4%	0.4%
Background estimation	0.1%	0.2%	0.1%
LKr response modeling	0.5%	0.6%	0.5%
Theoretical model	0.1%	0.5%	0.1%
Total systematic	0.6%	0.9%	0.6%
Total stat+syst	0.7%	1.0%	0.8%

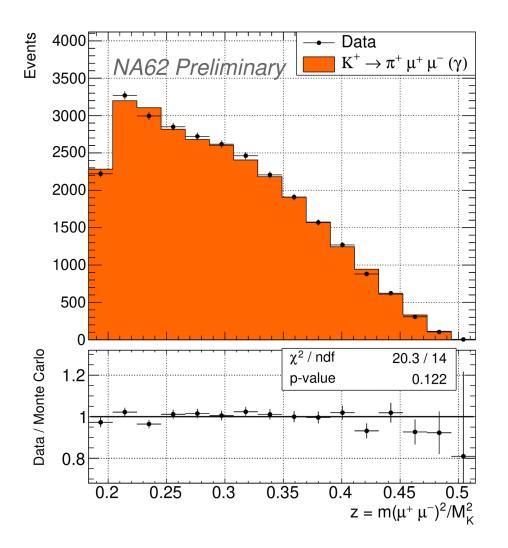
Measurements of A_{ξ}

	R_1 selection	R_2 selection	R_3 selection
A_{ξ}^{Data} (×10 ²)	0.2 ± 0.3	0.1 ± 0.4	-0.6 ± 0.5
A_{ξ}^{MCgene} (×10 ²)	-0.01 ± 0.01	0.00 ± 0.02	-0.01 ± 0.02
A_{ξ}^{MCreco} (×10 ²)	0.3 ± 0.2	0.4 ± 0.3	0.3 ± 0.5
$A_{\xi} (\times 10^2)$	$-0.1\pm0.3_{stat}\pm0.2_{MC}$	$-0.3\pm0.4_{stat}\pm0.3_{MC}$	$-0.9\pm0.5_{stat}\pm0.4_{MC}$


- First ever measurements of R_1 and R_2 T-asymmetry
- R_3 T-asymmetry precision improved by a factor greater than 3

Measurement of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$

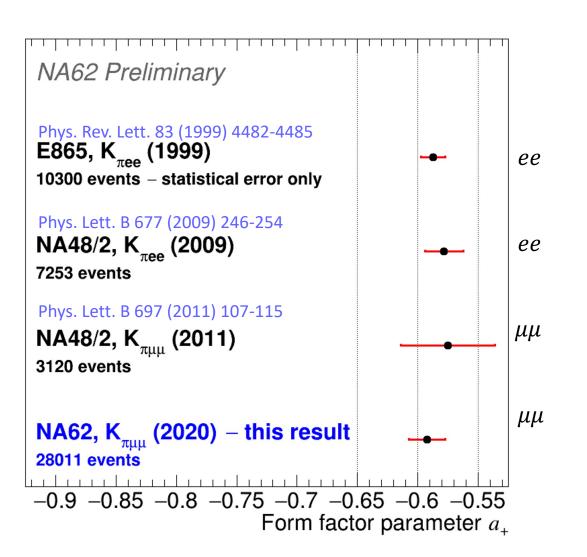
- The $K^+ \to \pi^+ \ell^+ \ell^-$ decay is a *Flavour Changing Neutral Current* $s \to d\ell\ell$ process
- The SM branching fraction is O(10⁻⁷); dominated by long-distance effects [Nucl. Phys. B291 (1987) 692–719], [JHEP 08 (1998) 004], [Phys. Part. Nucl. Lett. 5 (2008) 76–84], [Eur. Phys. J. C70 (2010) 219–231]
- The form factor is parameterised by two coefficients: a_+ and b_+
- Short distance physics can be extracted by comparing a_+ and b_+ between $\pi^+\mu^+\mu^+$ and $\pi^+e^+e^-$ as the SM predicts them to be identical: a probe of *Lepton Flavour Universality*
- The a_+ parameter can be related to B anomalies (assuming MFV) [Phys. Rev. D 93, 074038 (2016)]
- Largest uncertainty on a_+ is in the dimuon mode


Event selection

- Normalised to $K^+ \to \pi^+ \pi^+ \pi^-$. Events selected by reconstructing three-track vertices, and looking for associated K^+ and muon signatures. Kinematic cuts to further suppress $K^+ \to \pi^+ \pi^+ \pi^-$ backgrounds
- 2.78×10⁸ normalisation events, 28011 signal events (9x larger than earlier measurement)

07/06/2022

Fit to the form-factor parameters

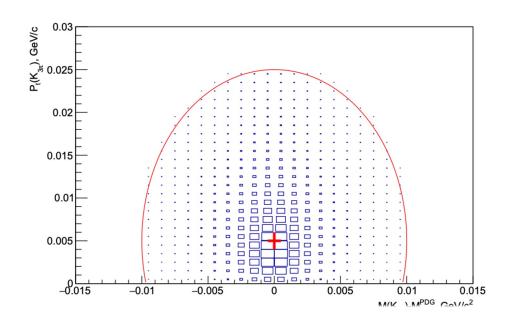

Fitting procedure:

• z spectrum of simulated $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ events reweighted to best fit the data by minimising $\chi^2(a,b)$

	a	b	$\mathcal{B}_{\pi\mu\mu} imes 10^8$
Best fit	-0.592	-0.699	9.27
Errors	δa	δb	$\delta \mathcal{B}_{\pi\mu\mu} \times 10^8$
Statistical	0.013	0.046	0.07
Systematic			
Reconstruction efficiency	0.005	0.026	0.06
Beam & pileup simulation	0.005	0.024	0.05
Trigger efficiency	0.001	0.005	0.04
Background	0.000	0.001	0.01
Total systematic	0.007	0.035	0.08
External			
PDG error on $\mathcal{B}(K_{3\pi})$	0.001	0.003	0.04
Total	0.015	0.058	0.11

Comparison with existing measurements

- The NA62 measurement of $a^{\mu\mu}_+$ is the worlds most precise determination
- The result is consistent with the earlier NA48/2 measurement, and is consistent with existing measurements of a^{ee}₊
- No indication of discrepancy with SM predictions, including LFU violation


Summary

- 1. First observation and BR measurement of $K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ by NA48/2 [PRELIMINARY]
 - Restricted phase-space: $BR(S_{\ell} > 0.03) = (0.65 \pm 0.019_{stat} \pm 0.024_{syst}) \times 10^{-6} = (0.65 \pm 0.03) \times 10^{-6}$
 - Full phase-space result:

$$BR = (3.4 \pm 0.10_{stat} \pm 0.13_{syst}) \times 10^{-6} = (3.4 \pm 0.2) \times 10^{-6}$$

- Consistent with contribution from R form-factor, as expected from ChPT.
- 2. New study of $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ by NA62 [PRELIMINARY]
 - Precision of R_i measurements improved by factors between 2.0 and 3.6
 - First T-asymmetry measurements in R_1 and R_2 , improved result on R_3 by factor 3
 - T-asymmetry results compatible with zero
- 3. Measurement of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ by NA62 [PRELIMINARY]
 - Most precise measurements of a_+ and b_+ parameters and branching ratio
 - No hints of lepton non-universality

- Signal $K_{\mu4}$ is $K^{\pm}
 ightarrow \pi^0 \pi^0 \mu^{\pm}
 u$
- Normalization $K_{3\pi}$ is $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$
- Trigger chain: L1 trigger using HOD and LKr, followed by L2 trigger using DCH for online momentum calculation.
- Event selection: 4 isolated photons consistent with $2\pi^0$ in time-spatial matching with a KABES beam track and a DCH track.

Normalization $K_{3\pi}$ kinematic selection ellipse:

center:

•
$$M(K_{3\pi}) = M_K^{PDG}$$

• $P_t = 5 \text{ MeV}/c$

semi-axes:

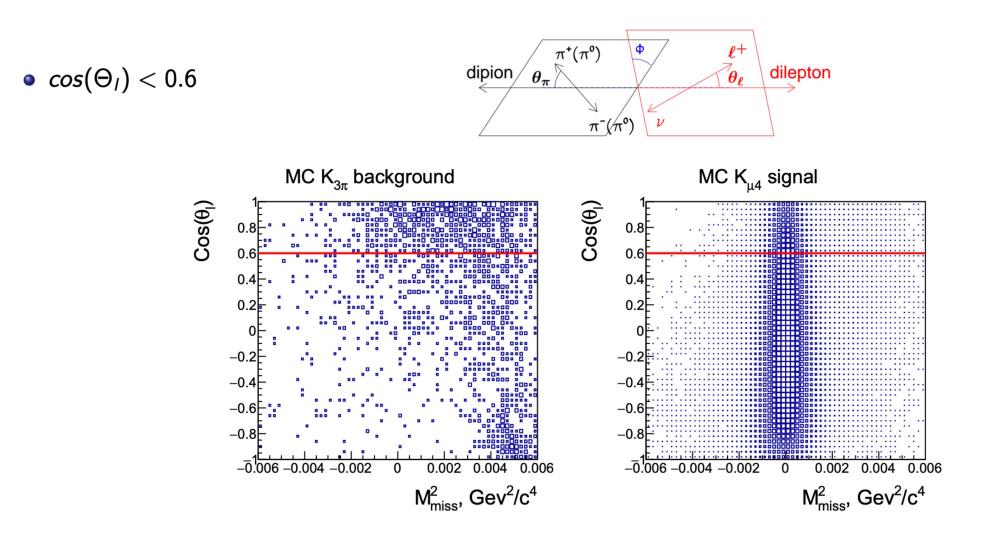
•
$$\Delta M(K_{3\pi}) = 10 \text{ MeV}/c^2$$

- $\Delta P_t = 20 \text{ MeV}/c$
- $72.99 \times 10^6 K_{3\pi}$ selected data events.

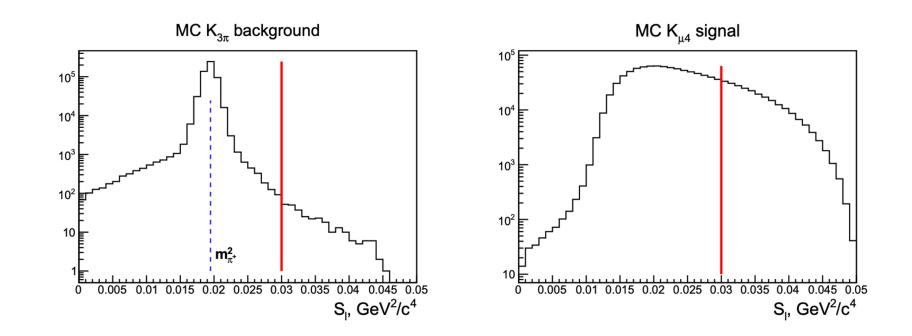
- Off the $K_{3\pi}$ kinematic ellipse
- DCH track has associated MUV response

$$M_{miss}^{2} = (P_{K} - P(\pi_{1}^{0}) - P(\pi_{2}^{0}) - P(\mu^{\pm}))^{2} \qquad M_{miss}^{2}(\pi^{\pm}) = (P_{K} - P(\pi_{1}^{0}) - P(\pi_{2}^{0}) - P(\pi^{\pm}))^{2}$$

$$\int_{0.004}^{0.004} MC K_{ss} background$$


$$\int_{0.004}^{0.004} MC K_{ss} background$$

$$\int_{0.004}^{0.004} 0.002 - 0.004 - 0.002$$

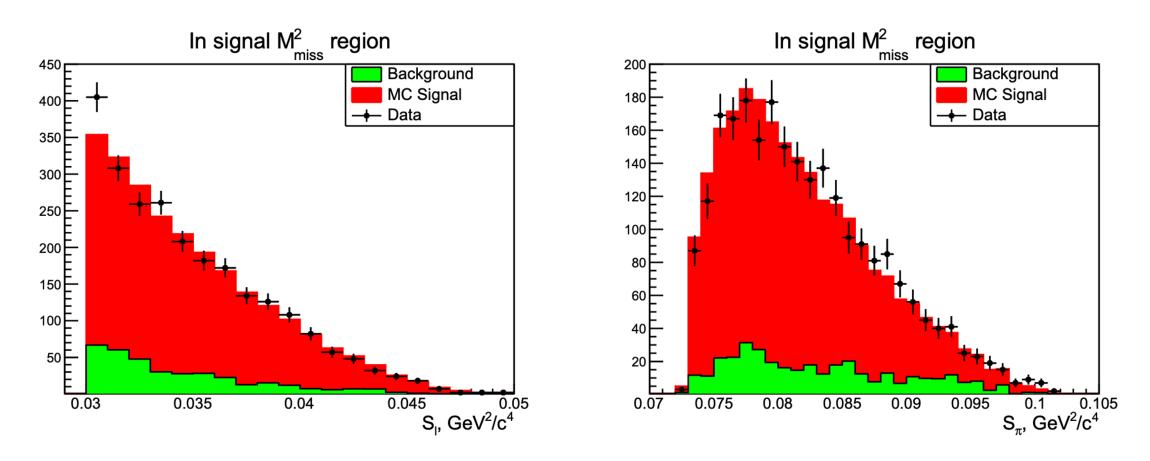

•
$$M_{miss}^2(\pi^{\pm}) < 0.5 M_{miss}^2 - 0.0008 \ {
m GeV}^2/c^4$$

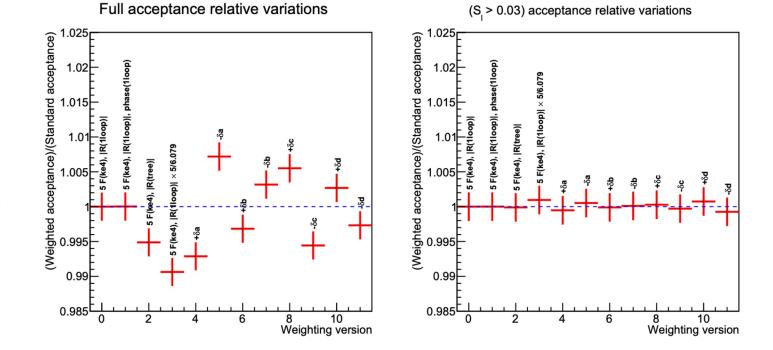
▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

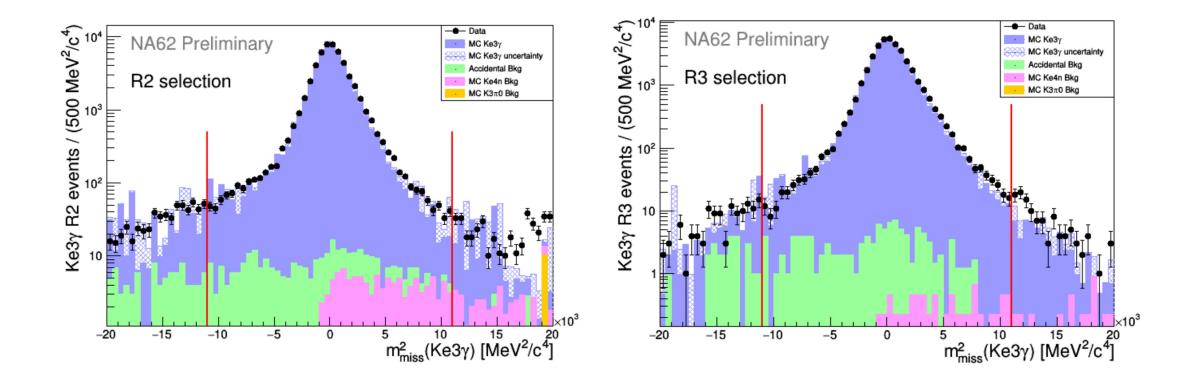
07/06/2022

07/06/2022

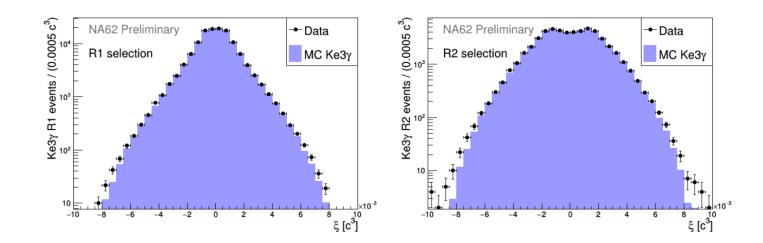
- $S_l = m(\mu\nu)^2 > 0.03 \text{ GeV}^2/c^4$ (to reject $\pi^{\pm} \to \mu^{\pm}\nu$).
- 3718 $K_{\mu4}$ data candidates selected
- 2437 data candidates in M_{miss}^2 signal region [-0.002,0.002] GeV²/c⁴
- The MC M_{miss}^2 signal region contains 98.2% of all selected MC events

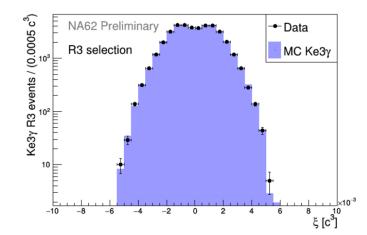



Figure: 1D projections comparison for $S_l > 0.03 \text{ GeV}^2/c^4$

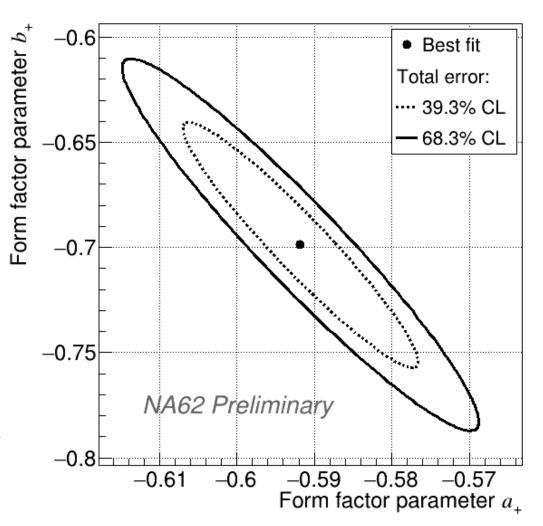

NA48/2 JHEP 08 (2014) 159:

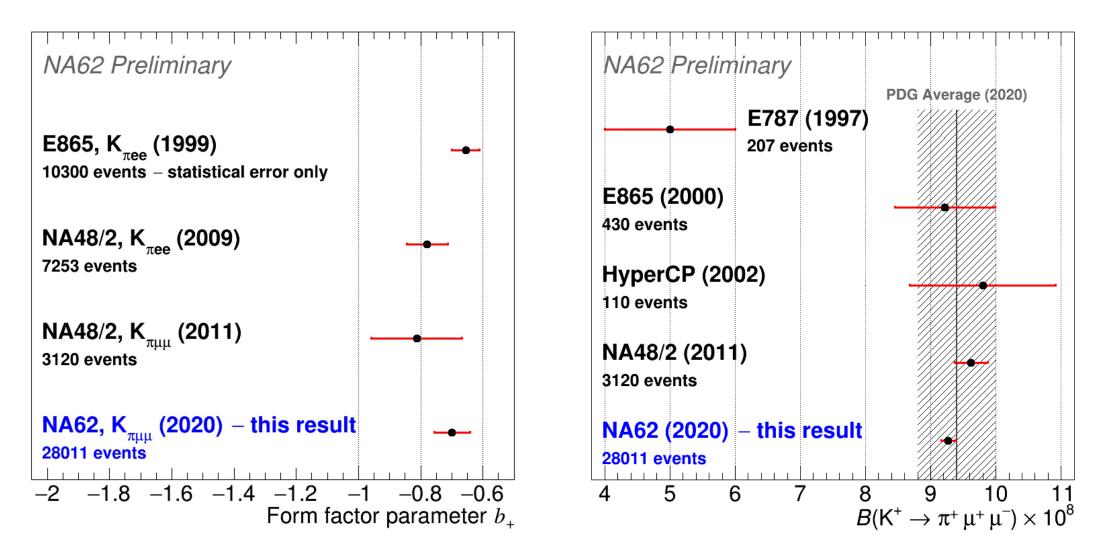
The absolute normalization is also measured $F = f \times F(K_{e4})$, $f = 6.079 \pm 0.055$.


$$egin{aligned} & F(\mathcal{K}_{e4}) = egin{cases} & (1+aq^2+bq^4+c\cdot S_l/4m_{\pi^+}^2) ext{ for } q^2 \geq 0 \ & (1+d\sqrt{|q^2/(1+q^2)|}+c\cdot S_l/4m_{\pi^+}^2) ext{ for } q^2 < 0 \end{aligned}$$
 where $q^2 = S_\pi/4m_{\pi^+}^2 - 1.$


- Decay generator was modified by MC events weighting.
- The acceptance spread is taken as systematics.

07/06/2022





07/06/2022

	a	b	$\mathcal{B}_{\pi\mu\mu} \times 10^8$
Best fit	-0.592	-0.699	9.27
Errors	δa	δb	$\delta \mathcal{B}_{\pi\mu\mu} \times 10^8$
Statistical	0.013	0.046	0.07
Systematic			
Reconstruction efficiency	0.005	0.026	0.06
Beam & pileup simulation	0.005	0.024	0.05
Trigger efficiency	0.001	0.005	0.04
Background	0.000	0.001	0.01
Total systematic	0.007	0.035	0.08
External			
PDG error on $\mathcal{B}(K_{3\pi})$	0.001	0.003	0.04
Total	0.015	0.058	0.11

Note: a_+ measurement limited by statistical uncertainty

