

Istituto Nazionale di Fisica Nucleare

Measurement of the rare $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ decay

Gemma Tinti on behalf of the NA62 Collaboration

INFN Laboratori Nazionali di Frascati

Beach 2022

A. Kleimenova 06/06/2022, 15:15

C. Parkinson 07/06/2022, 13:55

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ in the Standard Model

- FCNC loop process s \rightarrow d coupling with high CKM suppression
- Clean theoretical prediction: short distance contributions
- Hadronic matrix elements: obtained from KI3 measurements and SU(2) isospin symmetry

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$

• Channel sensitive to physics BSM

Complementarity to B flavour Physics

Measurement of BR of (K⁺ $\rightarrow \pi^+ vv$) and

 $(K_{L} \rightarrow \pi^{0} v v)$ modes can determine the unitarity

triangle independently from B inputs

- $BR(K^+ \rightarrow \pi^+ vv)$ to ±10%
- $BR(K_L \rightarrow \pi^0 vv)$ to 15%
 - Complementarity to B physics
 - Over-constraining CKM matrix can reveal new physics effects

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ New Physics

NP affects K⁺ and K_L BRs differently: measure of both can discriminate among new physics scenarios

- Models with CKM-like flavour structure:
 Models with MFV
- Models with new flavour-violating interactions in which either LH or RH couplings dominate:
 - Z/Z' models with pure LH/RH couplings
 - Littlest Higgs with T parity
- Models without above constraints:
 - Randall-Sundrum
- Grossman-Nir bound:
 - Model independent relation

$$\stackrel{\mathsf{O}}{=} \frac{\mathrm{BR}(K_L \to \pi^0 \nu \bar{\nu})}{\mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})} \times \frac{\tau_+}{\tau_L} \leq 1$$

6

The NA62 experiment at the SPS

NA62 @ CERN North Area, exploits a 400 GeV/c primary proton beam from the SPS. 2×10^{12} protons/spill

p on 40 cm Be target. 75 GeV/c unseparated hadrons beam: $\pi^+(70\%)$, K⁺ (6%), p(24%). 100 mrad divergence (RMS) 60x30 mm² transverse size.

The NA62 experiment at the SPS

NA62 @ CERN North Area, exploits a 400 GeV/c primary proton beam from the SPS. 2 x 10¹² protons/spill

Intensity: 750 MHz (45 MHz K⁺). 4.8 x 10¹² K⁺ decays/year, ~ 4 10¹² K⁺ in FV Run I 2016 -2018: 2016/2017/2018 40%/60%/60-70% nominal intensity

- **GTK:** Si pixel tracker
- **CHANTI:** Anti-counter for inelastic interactions

Decay region detectors (π^+) :Vetos:STRAW: Track momentum spectrometerLAV/IRC/SAC:CHOD: Scintillator hodoscopephotonsRICH: For $\pi/\mu/e$ IDMUV3:LKR/MUV1/2: Calorimetric systems 9

$$m_{miss}^2 = (P_K - P_\pi)^2$$

Selection steps:

- K⁺ and π^+ track reconstruction
 - L0: presence of charged particles and μ/γ veto
 - L1: K⁺ ID+ photon veto
- K⁺- π^+ matching
 - Excellent time resolution O(100ps)
- Decay vertex FV, CDA and other cuts
- π^+ ID (μ^+ rejection ~ 10⁻⁷)
- Photon rejection (~ 10⁻⁷)
- Kinematic cuts (m_{miss}^2, p_{π}) :
 - Signal regions + control regions defined: blind analysis performed

NORMALIZATION CHANNEL $\pi^{+}\pi^{0}$ in MIN BIAS

Upstream background

OLD collimator, "S1" sample early 2018

NEW collimator, "S2" majority of 2018

Upstream background

Track extrapolation at collimator in enriched sample of upstream events (data).

Single Event Sensitivity

SES

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = \frac{N_{\pi\nu\nu} \cdot BR(K^+ \to \pi^+ \pi^0) \cdot A_{\pi\pi} \cdot \epsilon_{trig}^{MB}}{D \cdot N_{\pi\pi} \cdot A_{\pi\nu\nu} \cdot \epsilon_{RV} \cdot \epsilon_{trig}^{\mu\nu\nu}}$$

$N_{\pi\pi} \times 10^{-7}$ 3.1411.6 $A_{\pi\pi} \times 10^2$ 7.62 ± 0.7711.77 ± 1.18 $A_{\pi\nu\bar{\nu}} \times 10^2$ 3.95 ± 0.406.37 ± 0.64 $\epsilon_{\rm trig}^{\rm PNN}$ 0.89 ± 0.050.89 ± 0.05 $\epsilon_{\rm RV}$ 0.66 ± 0.010.66 ± 0.01 $SES \times 10^{10}$ 0.54 ± 0.040.14 ± 0.01		Subset S1	Subset S2
$A_{\pi\pi} \times 10^2$ 7.62 ± 0.77 11.77 ± 1.18 $A_{\pi\nu\bar{\nu}} \times 10^2$ 3.95 ± 0.40 6.37 ± 0.64 $\epsilon_{\rm trig}^{\rm PNN}$ 0.89 ± 0.05 0.89 ± 0.05 $\epsilon_{\rm RV}$ 0.66 ± 0.01 0.66 ± 0.01 $SES \times 10^{10}$ 0.54 ± 0.04 0.14 ± 0.01	$N_{\pi\pi} \times 10^{-7}$	3.14	11.6
$A_{\pi\nu\bar{\nu}} \times 10^2$ 3.95 ± 0.40 6.37 ± 0.64 $\epsilon_{\rm trig}^{\rm PNN}$ 0.89 ± 0.05 0.89 ± 0.05 $\epsilon_{\rm RV}$ 0.66 ± 0.01 0.66 ± 0.01 $SES \times 10^{10}$ 0.54 ± 0.04 0.14 ± 0.01	$A_{\pi\pi} \times 10^2$	7.62 ± 0.77	11.77 ± 1.18
$\epsilon_{\rm trig}^{\rm PNN}$ 0.89 ± 0.05 0.89 ± 0.05 $\epsilon_{\rm RV}$ 0.66 ± 0.01 0.66 ± 0.01 SES $\times 10^{10}$ 0.54 ± 0.04 0.14 ± 0.01	$A_{\pi\nu\bar{\nu}} \times 10^2$	3.95 ± 0.40	6.37 ± 0.64
$\epsilon_{\rm RV}$ 0.66 ± 0.01 0.66 ± 0.01 SES × 10 ¹⁰ 0.54 ± 0.04 0.14 ± 0.01	$\epsilon_{ m trig}^{ m PNN}$	0.89 ± 0.05	0.89 ± 0.05
$SES \times 10^{10} \qquad 0.54 \pm 0.04 \qquad 0.14 \pm 0.01$	$\epsilon_{ m RV}$	0.66 ± 0.01	0.66 ± 0.01
T-CYD	$SES \times 10^{10}$	0.54 ± 0.04	0.14 ± 0.01
$N_{\pi\nu\bar{\nu}}^{cxp}$ 1.56 ± 0.10 ± 0.19 _{ext} 6.02 ± 0.39 ± 0.72 _{ext}	$N_{\pi uar u}^{ m exp}$	$1.56 \pm 0.10 \pm 0.19_{\rm ext}$	$6.02 \pm 0.39 \pm 0.72_{\rm ext}$

Single Event Sensitivity

SES

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = \frac{N_{\pi\nu\nu} \cdot BR(K^+ \to \pi^+ \pi^0) \cdot A_{\pi\pi} \cdot \epsilon_{trig}^{MB}}{D \cdot N_{\pi\pi} \cdot A_{\pi\nu\nu} \cdot \epsilon_{RV} \cdot \epsilon_{trig}^{\mu\nu\nu}}$$

P

Cancellation of systematic effects (PID, detector efficiencies, Kaon ID, beam related acceptance loss) Remaining systematic uncertainties:

Trigger efficiency	5%
MC acceptance	3.5%
Random Veto	2%
ackground(normalization)	0.7%
Instantaneous intensity	0.7%
Total	6.5%

Background from Kaon decays

Data driven estimation of background in control and signal region:

- $K^+ \rightarrow \pi^+ \pi^0$
- $K^+ \rightarrow \mu^+ \nu$
- $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

$$N_{\text{decay}}^{\text{exp}} = N_{\text{bkg}} \cdot f_{\text{kin}}(\text{region})$$

Events expected in signal/control region after *πνν* selection

Events in $\pi^+\pi^0$ region after $\pi\nu\nu$ selection

Fraction of events in signal/control region in MINIMUM BIAS sample

MC estimation (validated using minimum-bias samples) normalized:

• $K^+ \rightarrow \pi^+ \pi^- e^+ v$

Upstream background

- Data-driven estimate
- Evaluation using an enriched sample:
 - Signal selection with inverted CDA condition
 - weighted by mistag probability evaluated in data

Background	Subset S1	Subset S2
$\pi^+\pi^0$	0.23 ± 0.02	0.52 ± 0.05
$\mu^+ u$	0.19 ± 0.06	0.45 ± 0.06
$\pi^+\pi^-e^+\nu$	0.10 ± 0.03	0.41 ± 0.10
$\pi^+\pi^+\pi^-$	0.05 ± 0.02	0.17 ± 0.08
$\pi^+\gamma\gamma$	< 0.01	< 0.01
$\pi^0 l^+ \nu$	< 0.001	< 0.001
Upstream	$0.54_{-0.21}^{+0.39}$	$2.76^{+0.90}_{-0.70}$
Total	$1.11_{-0.22}^{+0.40}$	$4.31_{-0.72}^{+0.91}$

Control regions and expectation

• 7.6 SM signal events expected

π⁺ momentum [GeV/c]

Data selection 2018 unblinded

2016 and 2017 results

Br (K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$) results

- Maximum likelihood fit using observed data and background expectations in each category
- 2016, 2017, 2018 with old collimator (S1) and 2018 with new collimator (S2)
- S2: sample split in 5 GeV/c wide bins from 15-45 GeV/c

<u>JHEP 06 (2021) 093</u>

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4 stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})_{20}$

$K^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} v \overline{v}$ and New Physics

- Large deviation from the SM expectation seems to be excluded
- A more precise measurement is needed

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4 stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$

$K^+ \rightarrow \pi^+ v \overline{v}$ and New Physics

Marzocca et al., Eur. Phys. J. C (2022)

Generic scalar Leptoquark model addressing B anomalies

<u>Tessio B. de Melo et al., *Phys.Rev.D* 103 (2021) 11</u> <u>Z' mediated interactions</u>, setting lower limits on the Z' mass mZ'~5TeV at δ =0

Conclusions

Run II just started: stay tuned!

100% beam intensity

Conclusions

$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$

- The most precise measurement of $K^+ \rightarrow \pi^+ \nu \nu$
- Compatible with the SM prediction within 1*o*
- Run II started in August 2021 till 2024
- New K⁺ tracker with extra station and veto counter to reduce upstream background
- New calorimeter to reject K⁺ bkg decays
- 100% beam intensity

Run II just started: stay tuned!

Backup slides

Analysis strategy

$$\delta p_{K} = 1.\% p_{K}$$

$$\delta p_\mu = 0.3\% p_\mu \oplus 0.005\% p_\mu^2$$

$$\delta\theta = 40\mu rad$$

$$\delta M^2 = 0.00196 \text{ GeV}^2$$

- Decay in flight technique
- Build missing invariant mass square

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ selection

O(10⁻⁸) muon rejection

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ selection

Selection steps:

- K⁺ and π^+ track reconstruction
 - L0: presence of charged particles and μ/γ veto
 - L1: K⁺ ID+ photon veto
- $K^+-\pi^+$ matching
 - dT(RICH,KTAG,GTK) and closest distance of approach
- Decay vertex reconstruction + cuts
- π^+ ID (μ^+ rejection)
- Photon rejection

$K^+ \rightarrow \pi^+ v \overline{v}$ beyond the Standard Model

New Physics: BR sensitive to the highest mass scale New Physics Models: MFV; Simplified Z, Z'; LFU violation; MSSM; Leptoquarks..

$K^+ \rightarrow \pi^+ v \overline{v}$ and New Physics

- Large deviation from the SM expectation seems to be excluded
- A more precise measurement is needed

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$

