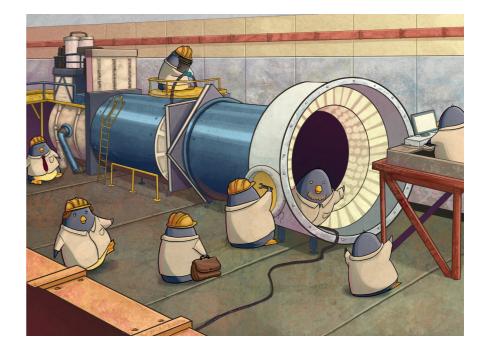
XIV International Conference on Beauty, Charm and Hyperon Hadrons

Latest results on rare decays at the NA62 experiment at CERN

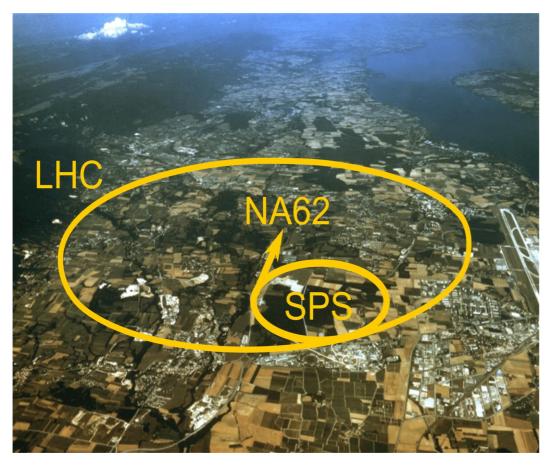
Alina Kleimenova

(Comenius University, Bratislava)



on behalf of NA62 Collaboration

BEACH 2022, 6th June


Outline

- Overview of the NA62 experiment
- Lepton Flavour/Number Violating decays
- Heavy Neutral Leptons (HNL) searches:
 - HNL production: $K^+ \rightarrow e^+ N, K^+ \rightarrow \mu^+ N$
- $K^+ \to \mu^+ \nu \nu \nu, K^+ \to \mu^+ \nu X$
- Summary

The NA62 experiment

~30 institutes, ~200 participants from:

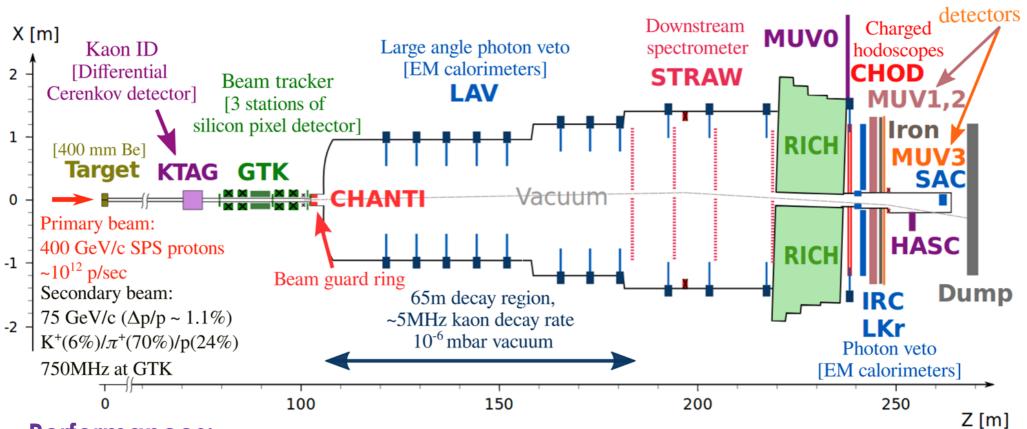
Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC NA62 is a fixed-target experiment at CERN SPS

Main goal: measure $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ with 10% precision using novel kaon-in-flight technique

Current theoretical prediction:

 $\mathcal{B}(K^+ \to \pi \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ [Buras et al., JHEP11(2015)033] **Experimental values:** $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ E949/E787[Phys. Rev D 79, 092004 (2009)] $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ $= (10.6^{+4.0}_{3.4 \, stat} \pm 0.9_{syst}) \times 10^{-11}$ NA62[JHEP06 (2021) 093]

Broader physics programme:


- Rare/forbidden kaon decays
- Searches for **exotic particles** in kaon decays and in beam dump mode

06/06/2022

Muon veto

Detector overview

Performances:

- GTK-KTAG-RICH time resolution: $\mathcal{O}(100 \text{ ps})$
- $\mathcal{O}(10^4)$ background suppression from kinematics
- $\mathcal{O}(10^{\prime})$ muon rejection for $15 < p(\pi^+) < 35$ GeV
- $\mathcal{O}(10^8) \pi^0$ rejection of for $E(\pi^0) > 40$ GeV

[NA62 Detector Paper, JINST 12 (2017), P05025]

4

The NA62 experiment

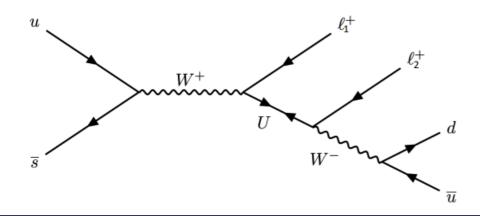
RICH

Time scale: 2014 – Pilot run 2015 – Commissioning run: ~1% of design intensity, no beam tracker 2016 - Commissioning run + Physics run (30 days) 2017 – Physics run (161 days) 2018 – Physics run (217 days) 2019-2020 – LS2 2021 – Physics run (85 days) 2022 – Ongoing

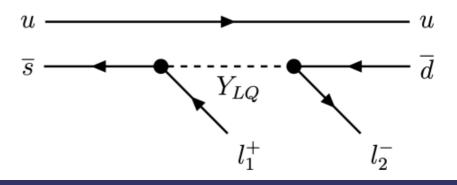
Bean

Triggers:

Spectrometer

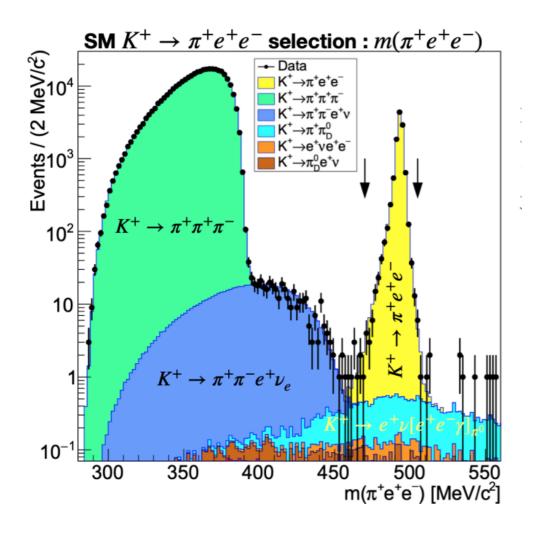

- $\pi v v$ trigger: 1 track, γ / μ veto
- **Control trigger:** samples for normalization, background estimation
- 3-track triggers: samples for lepton flavour violation study

06/06/2022


Lepton Number/Flavour violation

- Lepton number (L) and lepton flavour (L_e, L_μ, L_τ) are conserved quantities in the Standard Model
- Violation of these quantities is a clear indication of Physics Beyond the Standard Model

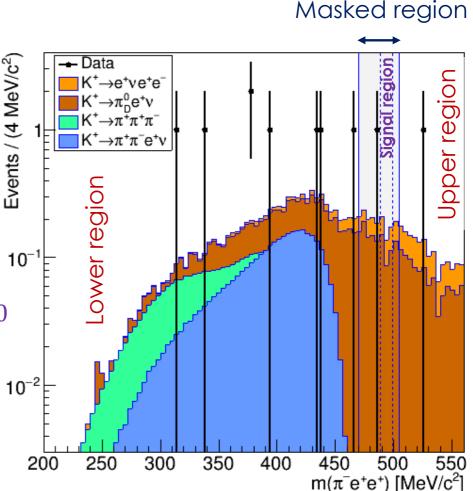
Seesaw mechanism provides a source of LNV through the exchange of Majorana neutrinos as in 0vββ decay [JHEP 0905 (2009) 030]


LFV processes can occur via the exchange of leptoquarks, of a Z' boson, or in SM extensions with light pseudoscalar bosons [JHEP 10 (2018) 148, Rev. Mod. Phys. 81, 1199 (2009), JHEP 01 (2020)158]

06/06/2022

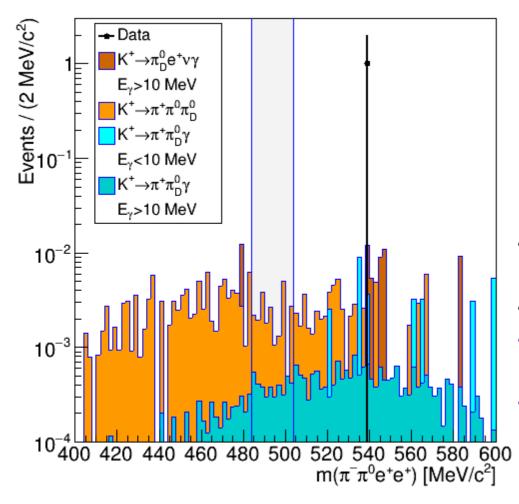
Searches for $K^+ \rightarrow \pi^-(\pi^0)e^+e^+$

- Normalisation to the SM $K^+ \to \pi^+ e^+ e^-$, $\mathcal{B}(K^+ \to \pi^+ e^+ e^-) = (3.00 \pm 0.09) \times 10^{-7}$.
- 11041 candidates are found – world's largest sample


[PLB830 (2022)137172]

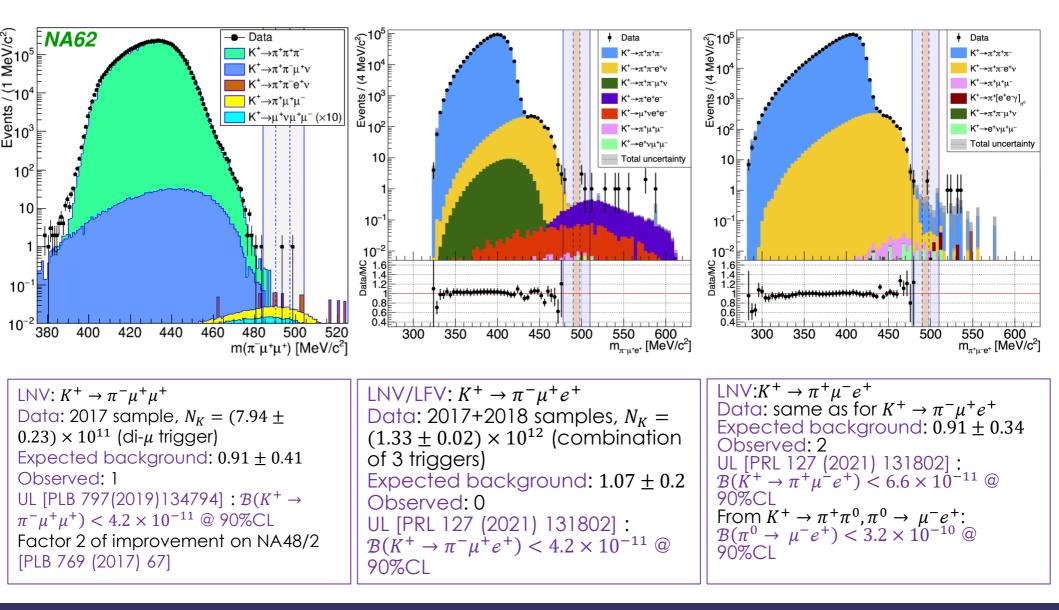
Result for $K^+ \rightarrow \pi^- e^+ e^+$

Mode	Lower region	Upper region	Masked region	Signal region
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.9	_	_	_
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	3.3	_	_	_
$K^+ \rightarrow \pi^+ \pi_D^0$	_	0.02	0.01	_
$K^+ \rightarrow \pi_D^0 e^+ \nu$	3.7 ± 0.7	1.20 ± 0.24	1.23 ± 0.25	0.29 ± 0.06
$K^+ \rightarrow e^+ \nu e^+ e^-$	0.7 ± 0.1	0.76 ± 0.15	0.47 ± 0.09	0.14 ± 0.03
Total	8.6 ± 0.9	1.98 ± 0.39	1.71 ± 0.34	0.43 ± 0.09
Data	8	1	1	0


- Blind analysis method validate background estimation in control regions.
- In signal region $n_{exp} = 0.43 \pm 0.09$, $n_{obs} = 0$
- Set upper limit: $\mathcal{B}(K^+ \to \pi^- e^+ e^+) < 5.3 \times 10^{-11}$ at 90% CL 10⁻²
- A factor of 4 improvement with respect to previous NA62 result with partial data set (2017 only): [PLB 797 (2019) 13479]

[PLB830 (2022)137172]

Result for $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$


Mode	Control region	Signal region
$K^+ \rightarrow \pi^+ \pi^0 \pi_D^0$	0.16 ± 0.01	0.019
$K^+ \rightarrow \pi^+ \pi^0_D \gamma$	0.06 ± 0.01	0.004
$K^+ \rightarrow \pi_D^0 e^+ \nu \gamma$	0.05 ± 0.02	_
$K^+ ightarrow \pi^+ \pi^0 e^+ e^-$	0.01	0.001
Pileup	0.20 ± 0.20	0.020 ± 0.020
Total	0.48 ± 0.20	0.044 ± 0.020
Data	1	0

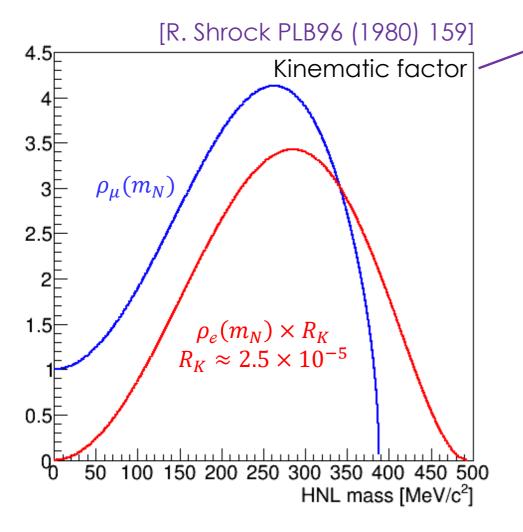

- Blind analysis method validate background estimation in control regions.
- In signal region $n_{exp}=0.044\pm0.020$, $n_{obs}=0$
- Set upper limit: $\mathcal{B}(K^+ \to \pi^- \pi^0 e^+ e^+) < 8.5 \times 10^{-10}$ at 90% CL
- First search for this LNV decay!

[PLB830 (2022)137172]

Other LNV/LFV decays

NA62 LNV/LFV summary

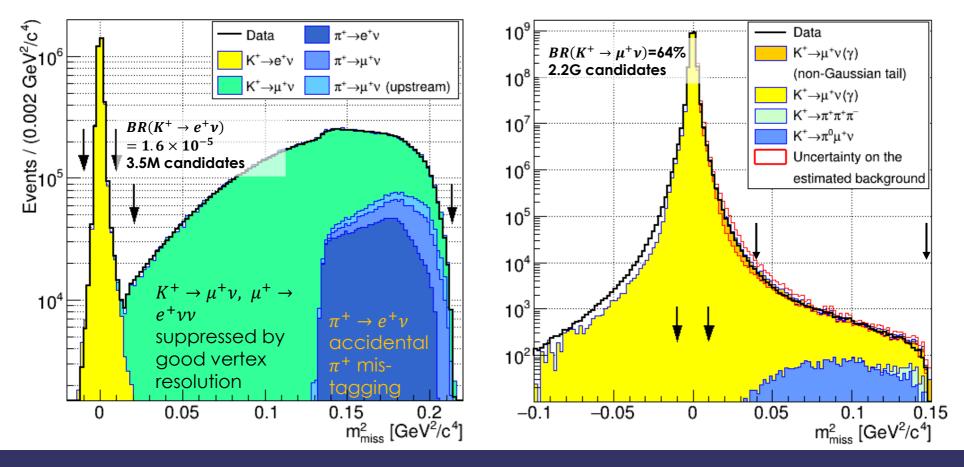
	Previous UL @ 90% CL	NA62 UL @ 90%CL		
$K^+ o \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data \rightarrow improved by factor 2 Phys. Lett. B 797 (2019) 134794	
$K^+ \to \pi^- e^+ e^+$	$6.4 imes 10^{-10}$	5.3×10^{-11}	Run1 data \rightarrow improved by factor 12 Phys. Lett. B 830 (2022) 137172	
$K^+ \to \pi^- \pi^0 e^+ e^+$	no limit	$8.5 imes 10^{-10}$	Run1 data	
$K^+ \to \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	2017+2018 data \rightarrow improved by factor 12	
$K^+ \to \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data \rightarrow improved by factor 8 PRL 127 131802 (2021)	
$\pi^0 \to \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data \rightarrow improved by factor 13	
$K^+ \to \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	sensitivity similar to previous search	
$\pi^0 \to \mu^+ e^-$	3.8×10^{-10}	-	sensitivity similar to previous search	
$K^+ \to \mu^- \nu e^+ e^+$	2.1×10^{-8}	-	Analysis in progress	
$K^+ \rightarrow e^- \nu \mu^+ \mu^+$	no limit		Analysis in progress	



Heavy Neutral Leptons (HNL)

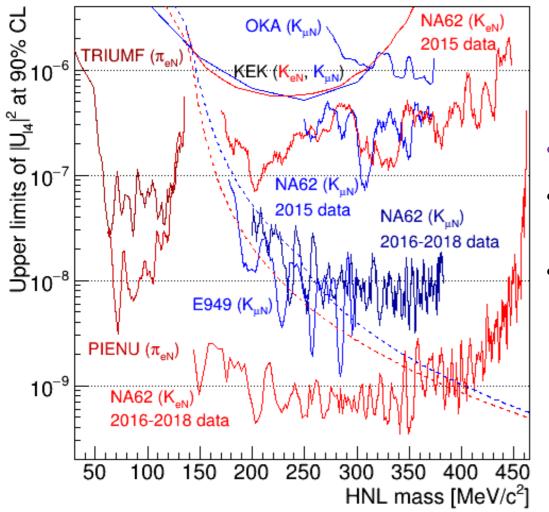
- The vMSM ([Asaka et al., Phys.Lett.B 620(2005)17]) is an extension of the SM to explain simultaneously neutrino oscillations, dark matter and baryon asymmetry of the Universe.
 - SM + 3 right-handed sterile neutrinos:
 - $N_1: m_1 \sim 10 \text{ keV} \text{dark matter candidate}$
 - N_{2,3}: $m_{2,3} \sim 100 \text{MeV} 100 \text{ GeV} \text{baryon}$ asymmetry
- GeV-scale HNLs can be observed via their production and decay (both searches are possible at NA62)

HNL production in K^+ decays $\Gamma(K^{\pm} \rightarrow l^{\pm}N) = \Gamma(K^{\pm} \rightarrow l^{\pm}\nu_l)\rho(m_N)|U_{l4}|^2$


- HNL production is enhanced compared to SM decays
- Large $f \sim 10^5$ enhancement in the $K^+ \rightarrow e^+ N$ case: helicity suppression is relaxed.

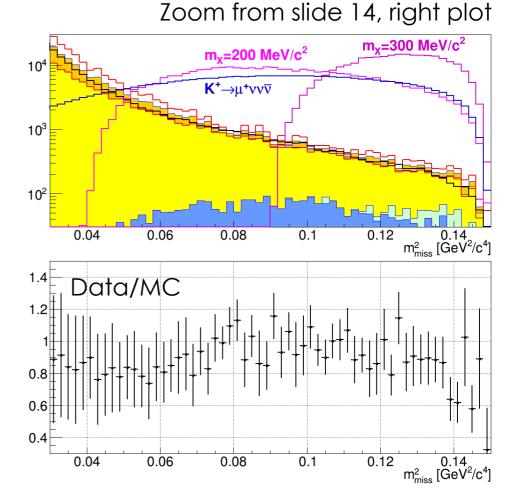
Heavy Neutral Leptons (HNL)

Triggers used: the main $K_{\pi\nu\nu}$ for $K^+ \rightarrow e^+N$; Control (min bias)/400 for $K^+ \rightarrow \mu^+N$. Numbers of K⁺ decays in the fiducial volume: $N_K = (3.52 \pm 0.02) \times 10^{12}$ in positron case; $N_K = (1.14 \pm 0.02) \times 10^{10}$ in muon case.

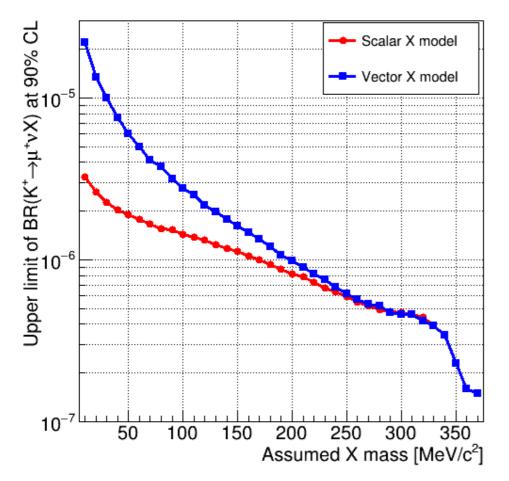

Peak searches in the squared missing mass: $m_{miss}^2 = (P_K - P_l)^2$, where P_K is kaon 4-momentum measured using GTK, and P_l is lepton 4-momentum measured using STRAW.

06/06/2022

HNL Results


- No signal observed
- Full 2016-18 (Run I) data set is analyzed
- Close related study: $K^+ \rightarrow l^+ \nu \nu \nu$ and $K^+ \rightarrow l^+ \nu X$, X is invisible: predict background from MC simulation

$K^+ \rightarrow \mu^+ \nu \nu \nu$ and $K^+ \rightarrow \mu^+ \nu X$


 $K^+ \rightarrow \mu^+ \nu \nu \nu$:

- Very rare in the Standard Mode: $\mathcal{B}(K^+ \rightarrow \mu^+ \nu \nu \nu) = 1.6 \times 10^{-16} [\text{JHEP1610} (2016) 039]$
- The current limit: < 2.4 × 10⁻⁶ [E949, PRD94 (2016) 032012]
- Search region $m_{miss}^2 > 0.1 \ GeV^2/c^4$ (optimized to extract strongest limit):
 - Observed events: 6894
 - Expected from MC: 7549±928
 - Set upper limit: 1.0×10^{-6} at 90%CL in the SM framework
- $K^+ \rightarrow \mu^+ \nu X$, X is scalar or vector:
- [PRL124 (2020) 041802]
- Mass range $10 370 MeV/c^2$
- Compare expected and observed number of event for each mass hypothesis and extract limit



$K^+ \rightarrow \mu^+ \nu X$ results

 $K^+ \rightarrow \mu^+ \nu X$, X is scalar or vector

- No signal observed
- The limits obtained in the scalar model are stronger than those in the vector model due to larger mean m_{miss}^2 value.

Summary

- The NA62 experiment is a powerful laboratory to make searches for exotic particles/processes
- World best upper limits on LNV/LFV kaon decays have been set
- World best upper limits on HNL mixing parameters have been set
- World best upper limit on $\mathcal{B}(K^+ \to \mu^+ \nu \nu \nu)$ has been set
- NA62 will continue to take data until Long Shutdown 3 (LS3) – resumed in 2021

06/06/2022