



# Physics prospects, experimental challenges -LHCb Upgrade II

XIV International Conference on Beauty, Charm and Hyperon Hadrons 5-11.06.2022 Kraków

Agnieszka Obłąkowska-Mucha

AGH-UST Kraków

on behalf of LHCb Collaboration





### Timeline for the LHCb Upgrades



# LHCb Upgrades



- LHCb physics programme in Run 1 Run 3 and 4 is limited exclusively by the detector.
- LHCb Upgrade I has been completed this year, Run 3 starts next month!

# Upgrade I:

- $\mathcal{L}_{max} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- $\mathcal{L}_{int} = 50 \text{ fb}^{-1}$  (Run 3+4)
- LHCb Upgrade II starts after LS4 (major upgrade of ATLAS/CMS)

Upgrade II:

- $\mathcal{L}_{max} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- $\mathcal{L}_{int} = 250-300 \text{ fb}^{-1}$  (Run 5+6)



# Physics programme for Upgrade I

# Run 1 -2 and 3-4

- Time-dependent and time-integrated CPV measurements
- Measurement of unitarity triangle sides
- Mixing and CPV in charm
- Rare decays, exotic hadrons
- Forward physics, QCD
- Dark matter
- Heavy ion physics



BEACH2022





5000

5500

6000

 $m_{\mu^+\mu^-} \,[{\rm MeV}/c^2]$ 



### Run 5-6

- Time-dependent and time-integrated CPV measurements
- Measurement of unitarity triangle sides
- Mixing and CPV in charm
- Rare decays, exotic hadrons
- Forward physics, QCD
- Dark matter
- New Physics Searches
- Heavy ion physics

AIM: increase the precision (larger data sample) with the same performance as in Run 2,3-4 but with pile-up  $\sim$ 42!

Expresion of Interest LHCC-2017-003 Physics case LHCC-2018-027 Accelerator study CERN-ACC-2018-038





### Measurement of UT



- CP observables measured in Run 1, 2 and 3 may not exclude NP!
- More and more precise results may reveal possible inconsistencies
- HL-LHC era: possibility for clean picture of the physics of flavour



Run 1 - 3



Two independent measurements of triangle apex:

 $(\Delta m_d / \Delta m_s, sin 2\beta)$  and  $(V_{ub}, \gamma)$ 

Both require Upgrade II:  $(\Delta m_d / \Delta m_s, sin 2\beta, \gamma)$  for statistics, and theory improvements  $(\Delta m_d / \Delta m_s \text{ and } V_{ub})$ 

CKM elements  $|V_{ub}|$  and  $|V_{cb}|$  affect the UT apex and interpretation of rare  $B_{(s)} \rightarrow \mu^+ \mu^-$ 

LHCb-PUB-2022-012

# CKM angle $\gamma$



### CKM angle $\gamma$

- The only angle that can be determined exclusively from tree processes
- Theoretically clean:  $\delta \gamma / \gamma \leq \mathcal{O}(10^{-7})$ 2.
- 3. SM benchmark for New Physics searches
- The most recent LHCb result (15 decay modes):  $\gamma = (65.4^{+4.2}_{-3.8})$ 4.

Run 1-2: some tension between direct and indirect methodsneed better precision from trees measurements

- Upgrade in sensitivity: combination of many final states in  $B_{(s)} \rightarrow D_{(s)}^{(*)}h^{(*)}$ : 5.
  - charged and neutral  $(\pi^0, \gamma)$ ,
  - two- and multi body D decays
  - fully and partially reconstructed

LHCb Upgrade II anticipates a precision on  $\gamma$  of about 0.35°.



50 Integrated Luminosity [fb<sup>-1</sup>]

23

5

300



CP Violation in charm

- SM CPV in charm at level of 10<sup>-4</sup>
- Fully software LHCb trigger more charm hadrons than B-factories.
- Tracking stations inside magnet more flavour-tagged decays
- LHCb Upgrade II is the only planned experiment with possibility to observe CPV in charm mixing at the level of 10<sup>-5</sup>
- Strighten CP violation in decay:
  - ✓ Higher rate of two-body  $D^0$  decays
  - Interfering structure of three(four-)body decays of charm mesons
- Searches of NP more efficient.



see also A.Ukleja's and E.Shields' talk

# **Dark Matter**



### Search for prompt and detached dark photons

Model of A':

- dark force in SM with dark mediator,
- A' can mix kinematically with SM photon with: mixing term  $\epsilon^2$ ,  $m_{A'}$  $\epsilon^2$  is the ratio DM to EM force strength

### In Run 2:

- small luminosity
- hardware trigger removed most of possible  $A' \rightarrow \mu^+ \mu^-$  events
- world best upper limits in  $(\epsilon^2 m_{A'})$  space



### Upgrade II:

LHCb can explore significant ranges of unconstrained A' parameter space for prompt and detached dark photon



| Observable                                                                         | Current LHCb                    | LHCb 2025           | Belle II            | Upgrade II           | ATLAS & CMS      |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------|---------------------|---------------------|----------------------|------------------|--|--|--|--|--|--|
| EW Penguins                                                                        | EW Penguins                     |                     |                     |                      |                  |  |  |  |  |  |  |
| $\overline{R_K \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)}$                                | 0.044 [6]                       | 0.025               | 0.036               | 0.007                | _                |  |  |  |  |  |  |
| $R_{K^*} (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$                                         | 0.12 [19]                       | 0.031               | 0.034               | 0.009                | _                |  |  |  |  |  |  |
| CKM tests                                                                          |                                 |                     |                     |                      |                  |  |  |  |  |  |  |
| $\gamma$                                                                           | 4° [5]                          | $1.5^{\circ}$       | $1.5^{\circ}$       | $0.35^{\circ}$       | _                |  |  |  |  |  |  |
| $\sin 2\beta$ , with $B^0 \to J/\psi K_{\rm S}^0$                                  | 0.04 [20]                       | 0.011               | 0.005               | 0.003                | _                |  |  |  |  |  |  |
| $\phi_s$ , with $B_s^0 \to J/\psi\phi$                                             | 32  mrad [21]                   | $14 \mathrm{mrad}$  | _                   | $4 \mathrm{mrad}$    | 22 mrad [22]     |  |  |  |  |  |  |
| $\phi_s$ , with $B_s^0 \to D_s^+ D_s^-$                                            | 170  mrad [23]                  | $35 \mathrm{mrad}$  | _                   | $9 \mathrm{mrad}$    |                  |  |  |  |  |  |  |
| $\phi_s^{s\bar{s}s}$ , with $B_s^0 \to \phi\phi$                                   | $154 \text{ mrad} \ \boxed{24}$ | $39 \mathrm{mrad}$  | _                   | $11 \mathrm{mrad}$   | Under study [25] |  |  |  |  |  |  |
| $a_{ m sl}^s$                                                                      | $33 \times 10^{-4}$ [26]        | $10 \times 10^{-4}$ | _                   | $3 \times 10^{-4}$   | _                |  |  |  |  |  |  |
| $ V_{ub} / V_{cb} $                                                                | 6% [27]                         | 3%                  | 1%                  | 1%                   | _                |  |  |  |  |  |  |
| $B^0_s, B^0 \rightarrow \mu^+ \mu^-$                                               |                                 |                     |                     |                      |                  |  |  |  |  |  |  |
| $\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$ | 69% [4,28]                      | 41%                 | _                   | 11%                  | 21% [29]         |  |  |  |  |  |  |
| $	au_{B^0_s  ightarrow \mu^+ \mu^-}$                                               | 14% [4,28]                      | 8%                  | _                   | 2%                   | —                |  |  |  |  |  |  |
| $S_{\mu\mu}$                                                                       | _                               | _                   | _                   | 0.2                  | _                |  |  |  |  |  |  |
| $b \to c \ell^- \bar{\nu_l}$ LUV studies                                           |                                 |                     |                     |                      |                  |  |  |  |  |  |  |
| $\overline{R(D^*)}$                                                                | 0.026 30,31                     | 0.007               | 0.005               | 0.002                | _                |  |  |  |  |  |  |
| $R(J/\psi)$                                                                        | 0.24 32                         | 0.07                | _                   | 0.02                 | _                |  |  |  |  |  |  |
| <u>Charm</u>                                                                       |                                 |                     |                     |                      |                  |  |  |  |  |  |  |
| $\Delta A_{CP}(KK - \pi\pi)$                                                       | $29 \times 10^{-5}$ [7]         | $13 \times 10^{-5}$ | $5.4 	imes 10^{-4}$ | $3.3 	imes 10^{-5}$  | _                |  |  |  |  |  |  |
| $A_{\Gamma} \ (\approx x \sin \phi)$                                               | $11 \times 10^{-5}$ [33]        | $5 \times 10^{-5}$  | $3.5 	imes 10^{-4}$ | $1.2 \times 10^{-5}$ | _                |  |  |  |  |  |  |
| $\Delta x \ (D^0 \rightarrow K_{\rm S}^0 \pi^+ \pi^-)$                             | $18 \times 10^{-5}$ 34          | $6.3 	imes 10^{-5}$ | _                   | $1.6 	imes 10^{-5}$  | _                |  |  |  |  |  |  |

LHCC-2018-027

LHCb-PUB-2022-012



### AIM: the same performance as in Run 2 but with pile-up $\sim 42!$

(•••)

(;-;)

### LHCb Run 2 performance breaks down at Upgrade II luminosity:

- tracking efficiency is reduced
- ghost rate has increased
- PV reconstruction has low efficiency 😒

### New tracker concept

- radiation hardness  $\Phi_{eq} > n \times 10^{16}$  (sensors) and > 1 Grad (electronics)
- space resolution:  $\sigma(10 \ \mu m)$
- time resolution < 100 ps per pixel
- data rates > n ×Tb/s must be handled

### New PID system

• TORCH for low momentum hadrons

### New ECAL

requires granularity and timing



# LHCb Upgrade II













# Vertex reconstruction for LHCb Upgrade II







R. Bates http://indico.hep.manchester.ac.uk/ event/NewDimensions2017

A new dimension will be added to the LHCb experiment. Tracking detectors must be fast with common time information.

Innovative technology for detector and data processing. Develop a novel tracking devices both for tracking and timing





### Mighty Tracker

- Silicon inner and middle tracker regions:
  - Monolithic Active Pixel Sensors  $\phi = 3 imes 10^{15} \, n_{eq}/cm^2$
- Scintillating fibers in the outer region

### Magnet stations

- low momentum tracker (down to 150 MeV)
- increase in charm events with slow pion





### RICH

Photon arrival can be predicted to better than 10 ps need of time estimate from tracking

- reduction of background
- improving Cherenkov angle resolution to 0.1-0.2 mrad

### TORCH

Time of internally Reflected Cherenkov light:

- 1 cm crystal and large area time-of-flight detector
- measurement of Cherenkov angle, path length and time of arrival
- provide PID in low momentum range 1-10 GeV/c







LHCb Run 3:  $\Phi_{eq} \approx 1 \times 10^{16} \text{ cm}^{-1} \text{ neq}$ Hi-Lumi LHC:  $\Phi_{eq} \approx n \times 10^{16} - 10^{17} \text{ cm}^{-1} \text{ neq}$ , 300 fb<sup>-1</sup>, FCC-hh  $\Phi_{eq} \approx 1 \times 10^{18} \text{ cm}^{-1} \text{ neq}$ , TID 300 MGy,

LHCb VELO Upgrade II:  $\Phi_{max,eq} \approx 5 \times 10^{16} \text{ cm}^{-1}$  with huge fluence spread over the sensor, full 4D tracking desired.

IP measurement is the best if the first station is close to the IP. Problem of material budget:

current VELO is separated from primary vacuum by a thin foil, can a thin tube be used instead?





CERN-LHCb-PUB-2022-001

VELO: maintain performance at ~7.5 times occupancy and 6 x radiation damage

- Sensors can be retreated to 12.5 mm from the beam (but we do not want to do that),
  - pixel pitch should be reduced from 55 to 41  $\mu$ m,
  - material in RF foil and first detection layer is drastically reduced
- to date no single sensor technology has been shown to survive the required life time fluence
- bi- or annual replacement could be an option





VELO: maintain performance at ~7.5 times occupancy and 6 x radiation damage



#### CERN-LHCb-PUB-2022-001



Redesigning of the trackers:

- additional timing layers
- 4D structures (LHCb)

Interexperiment projects within RD50:

- LGADS
- 3D sensors



time resolution depends on:

- noise (jitter)
- time walk (fluctuation in amount of deposit charge, electric field, Landau fluctuations in signal shape – hit position



mix in inner and outer areas



- 1. The Run 3 LHCb physic program will be reinforced by higher statistic and modernisation of the detector.
- 2. LHCb shows potential for flavour measurements with high-luminosity LHC runs with unique results on:
  - CKM matrix parameters (expected precision of  $\gamma$  0.35°),
  - LFV and rare decays in muon, electron modes and full range of b hadrons,
  - CP violation in charm with 10<sup>-5</sup> precision,
  - dark matter and effects of physics beyond the Standard Model,
  - prospects for heavy-ion and fixed-targed physics.
- 3. New tracking and vertexing system with radiation-hard with timing possibility is a reasonable option.
- 4. Two technologies: 3D pixels or LGADs are proposed for a new VELO.



| ±33.0                     | ×10 <sup>-4</sup> ±5.4 |       | 5.4     | ±49            |                                                                           | $\pm 28.0 \times 10^{-5}$ |                    | LHCb     |
|---------------------------|------------------------|-------|---------|----------------|---------------------------------------------------------------------------|---------------------------|--------------------|----------|
|                           |                        |       |         |                |                                                                           |                           |                    | Current  |
|                           |                        | +     | 1.5     |                |                                                                           | ±35.0                     | × 10 <sup>-5</sup> | Belle II |
| -                         |                        |       |         |                |                                                                           |                           | ATLAS/OMS          |          |
| ±10.0×10 <sup>-4</sup> ±1 |                        | 1.5 ± |         | 14 ±4.3        |                                                                           | < 10 <sup>-5</sup>        | LHCb               |          |
|                           |                        |       |         |                |                                                                           |                           | 2025               |          |
|                           |                        |       |         | +              | 22                                                                        |                           |                    |          |
|                           |                        | _     |         |                |                                                                           |                           |                    |          |
| ±3.0×10 <sup>-4</sup> ±0  |                        | .35 ± |         | 4              | ±1.0>                                                                     | (10-5                     |                    |          |
| assi                      |                        | γ[°]  |         | $\phi_s$ [mrac | <i>d</i> ]                                                                | AΓ                        |                    | HL-LHC   |
| ±10.0                     |                        | ±2.6  |         | ±90            |                                                                           | LUCE                      |                    |          |
|                           |                        |       |         |                |                                                                           | LHCD                      |                    |          |
|                           |                        |       |         |                |                                                                           | Current                   |                    |          |
|                           | ±3.6                   |       | ±0.50   |                |                                                                           |                           | Bellell            |          |
|                           |                        |       |         |                |                                                                           |                           | ATLAS/CMS          |          |
|                           | ±2.2                   |       | ±0.72   |                | ±34                                                                       |                           | LHCb               |          |
|                           |                        |       |         |                |                                                                           |                           | 2025               |          |
|                           |                        |       |         |                | ±                                                                         | 21                        |                    |          |
|                           |                        | .0.70 |         |                |                                                                           | 10                        |                    |          |
|                           | ±0.70                  |       | ±0      | .20            | ±                                                                         | 10                        |                    |          |
|                           | R <sub>K</sub> [%]     |       | R(D*)[9 | 6]             | $\frac{B(B^+ \rightarrow \mu^+ \mu^-)}{B(B_x^+ \rightarrow \mu^+ \mu^-)}$ | <del>}</del> [%]          | HL-LHC             |          |

# Exclusively @LHCb U2





- main systematics of Run 1-2 due to f<sub>s</sub>/f<sub>d</sub>, improved after Run 3
- at 300 fb<sup>-1</sup>:  $\sigma_{\mathcal{B}}(B_s \to \mu^+ \mu^-) \sim 1.8$  %,
- key measurement to understand NP contribution to C<sub>10</sub>



Lepton Flavour Universality:  $B^0 \to K^{*0}\tau^+\mu^-, B^+ \to K^+l^+l^-, B^+ \to K^+e^+\mu^-$ 

Difference between  $b \rightarrow s\mu^+\mu^-$  and  $b \rightarrow se^+e^-$  is a sign of NP

- new modes in LHCB Upgrade II
- 1%-level uncertainties expected, enough to establish or reject LFV





Sensitivity to the difference between muon and electron mode contributions to the vector,  $C_{g}$ , and axial-vector,  $C_{10}$ , Wilson coeff.



#### see also Marcin Chrząszcz's talk

### Methods of 4D tracking

#### Timing at each point along the track

- use only points with time stamps
- algorithms may be faster even in very dense environments







### Timing in the event reconstruction:

 disentanglement of overlapping events by means of an extra dimension

### Timing at the trigger level:

 disentanglement of topologies that look similar but actually are different





Adding time information to the event changes radically the design of experiments

# Sensors designes



### 3D detectors for timing applications:

- sensor sustain  $\Phi_{eq} > 10^{17}$  cm<sup>-2</sup>,
- short collection times
- rather thin sensor, otherwise of large noise and jitter
- small fill factor very complicated production, limited efficiency and position resolution
- novel materials?



### LGADs (planar sensors with gain):

- seem to be ideal solution to reach excellent resolution,
- main limitation radiation hardness up to  $\Phi_{eq} < 3 \times 10^{15} \ {\rm cm^{-2}}$
- many attempts to design a more radiation hard gain layer

