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Setting the scene
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On a serious note …
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Setting the scene

… and not so serious



Outline
❑What is ML all about

❑ Loss and the crucial bit

❑ Popular models

❑ Current landscape

❑ Selected (subjective) HEP solutions

❑ The biggest challenges for the future
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ML: New revolution, a.k.a. electricity 2.0

❑We are living in interesting times – data come in abundance and ability to 
process them and gain knowledge is of great value: data is very precious
resource (like iron, gold or water)

❑We want to process the data fast and in a robust way

❑Machine Learning (ML), which is a part of data mining business, allows us to 
use computer algorithms to make sense of data or to turn them into knowledge

❑What is more exciting we have a lot of open source libraries that implements 
the most sophisticated algorithms on the market and they are free!

❑ Convergence of technologies made it possible!
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Artificial neuron or perceptron

❑ 1943 with McCullock-Pitts neuron 
model

❑ Motivated by biological studies

𝑧(𝑖) = 𝑤1𝑥1
(𝑖)
+ 𝑤2𝑥2

(𝑖)
+⋯+𝑤𝑘𝑥𝑘

𝑖
=

𝑗=1

𝑗=𝑘

𝑤𝑗𝑥𝑗
𝑖
= 𝑤𝑇 Ԧ𝑥(𝑖)

❑ Perceptron equation

𝜙 𝑧 = ቊ
+1 𝑖𝑓 𝑧 ≥ 𝜃
−1 𝑖𝑓 𝑧 < 𝜃

Predefined 
threshold

Adapted from „Python Machine 
Learning”, S. Raschka



The algorithm
❑The perceptron algorithm, then goes like that:

❑ Initialise the weights vector to 𝟎 or „something small”

❑ For each training data sample 𝒙(𝒊) do:

❑ Get the output value (class label) 𝒚(𝒊), using the unit step function

❑ Update the weights accordingly (update concerns all the weights in one 
go)

❑We can write

❑ The second formula is called perceptron learning rule, and the 𝜼 is called the 
learning rate (just a number between 0 and 1)

𝑤𝑗 = 𝑤𝑗 + ∆𝑤𝑗

∆𝒘𝒋 = 𝜼 ∙ 𝒚(𝒊) − 𝒚(𝒊) ∙ 𝒙𝒋
(𝒊)
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Outcome
❑ For classification tasks we can provide an intuitive representation of the 
training outcome
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𝑥2

𝑥1

Adapted from „Python Machine 
Learning”, S. Raschka



„Magic” is here
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❑ The idea of a binary classification can be understood using the following example: say, we 
have given 30 training samples – half of them is negative (noise) and half positive (signal)

❑ Our algorithm must learn a rule to separate these two classes and classify a new instance into 
one of these classes given values 𝑥1, 𝑥2
❑ This rule is also called decision boundary (black dashed line)

❑ 2D data set – each data 
instance has two values 
𝑥1, 𝑥2 associated with it

❑ Using them separately is going 
to yield poor results!

❑ Try to imagine we project the 
data on the respective axes



Dark ages…
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Non-linear differentiable functions

11



Loss function (I)
❑ In practice we need to have a very good handle on the performance of our 
model

❑ Or, in other words we need to have means to penalise the model if it 
performs poorly and reward if it does good

ℳ Ԧ𝑥 = 0

ℳ Ԧ𝑥 > 0 ℳ Ԧ𝑥 < 0Red points are 
misclassified ℒ 𝑦𝑖 ,ℳ Ԧ𝑥𝑖 =

1

𝑛


𝑖
𝑦𝑖 ≠ 𝑠𝑖𝑔𝑛 ℳ Ԧ𝑥𝑖
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Loss function (II)
❑ Let’s create „an universal” formula for the loss function

𝑦 ∙ℳ Ԧ𝑥 < 0 𝑦 ∙ℳ Ԧ𝑥 > 0The opposite
signs

The same 
signs

𝑦 ∙ℳ Ԧ𝑥

Max penalty
each time!

ℒ =
1

𝑛


𝑖
1 𝑦∙ℳ Ԧ𝑥𝑖 <0
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Loss function (III)
❑ In theory such loss function is very powerfull, but in practice we cannot 
optimise such expression in any easy way and on top of this it has no 
sensitivity on how bad the decision was, i.e., each time the penalty is maximal

𝑦 ∙ℳ Ԧ𝑥 < 0 𝑦 ∙ℳ Ԧ𝑥 > 0

Very bad
decision

Close to 
good

Close to bad

Very good
decision

𝑦 ∙ℳ Ԧ𝑥

ℒ

AdaBoost

LogReg
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Loss function (IV)
❑ There are some tantalising facts regarding the loss function: the whole 
training process depends on the way we measure its performance – more 
aggressive approach may be more beneficial, it may determine how long the 
training process take and if it will be successful at all – how interesting

❑ Different loss functions determine upper limits w.r.t 1 𝑦∙ℳ Ԧ𝑥𝑖 <0
one: 

ℒ 𝑦𝑖 ,ℳ Ԧ𝑥𝑖 =
1

𝑛


𝑖
𝑦𝑖 ≠ 𝑠𝑖𝑔𝑛 ℳ Ԧ𝑥𝑖 =

1

𝑛


𝑖
1 𝑦∙ℳ Ԧ𝑥𝑖 <0

≤
1

𝑛


𝑖
𝑓ℳ 𝑦 ∙ℳ Ԧ𝑥𝑖
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What is ML?
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ML pipeline (I)
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❑ For our purposes we can define a ML pipeline (ML-P) or ML 
algorithm (ML-A) as a composite object consisting of:

❑ data set(s), we look for patterns/knowledge here

❑ a model

❑ an optimising algorithm (fitting/weights change)

❑ a loss function

❑ML-A is able to gain knowledge based on data

❑ The pipeline components are: experience (E), class of tasks (T) and 
performance metric (PM)
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ML pipeline (II)
❑ A general statement on ML (Mitchell): a computer program learns based on 
gained experience (E) for a particular class of tasks (T), the learning process is 
checked by the performance metric (PM)

❑ So, if we have a binary classification task its performance should increase 
when we expose the model to more and more data. More data – more 
experience

❑ Data quality and representation is critically important



Selected Tasks
❑ Classification, 𝑓: ℝ𝑛 → 1,2,… , 𝑘 , y = f(𝒙) (data labelling)

❑ Classification with missing features, 𝑓𝑖: ℝ
𝑛 → 1,2,… , 𝑘

❑ Regression, 𝑓: ℝ𝑛 →ℝ

❑ Natural Language Processing

❑ Anomaly detection

❑ Sampling (generative models), 𝑓:ℝ → ℝ𝑛

❑ Denoising, ෩𝒙 → 𝒙: p 𝒙 ෩𝒙

❑ Estimation of P.D.F.s, 𝑝𝑀𝑜𝑑𝑒𝑙 𝒙 : ℝ𝑛 →ℝ
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Classical programming vs. ML



GAN – Generative Adversarial Networks
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GAN – Generative Adversarial Networks
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GAN optimisation rules
❑ Let set 𝒢 and 𝒟 to represent the generator and discriminator models respectively, the 
performance function is 𝒱. The optimisation objective can be written as follow:

❑ Here: Ԧ𝑥 - real samples, Ԧ𝑥∗ = 𝒢 𝑧 - generated samples (𝑧 represents noise), 𝔼 Ԧ𝑥 𝑓 is the 
average value of any function over the sample space

❑Model 𝒟 should maximise the „good” prediction for the real sample - we are looking for the 
max – gradient ascent update rule

❑Model 𝒢 must trick the discriminator, thus, it minimise the 1 − 𝒟 Ԧ𝑥∗ = 1 − 𝒟 𝒢 𝑧

min
𝒢

max
𝒟

𝒱 𝒟, 𝒢 = 𝔼 Ԧ𝑥 𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝔼 Ԧ𝑥∗ 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒟 ← Ԧ𝜃𝒟 + 𝑟 ∙
1

𝑚
𝛻
𝜃𝒟


𝑖/1

𝑖/𝑚

𝑙𝑜𝑔𝒟 Ԧ𝑥 + 𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗

Ԧ𝜃𝒢 ← Ԧ𝜃𝒢 − 𝑟 ∙
1

𝑚
𝛻
𝜃𝒢


𝑖/1

𝑖/𝑚

𝑙𝑜𝑔 1 − 𝒟 Ԧ𝑥∗



ML GEMS (I) - GANs
https://syncedreview.com/2019/02/09/nvidia-open-sources-hyper-realistic-face-generator-
stylegan/
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CycleGAN
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WGAN – Wasserstein GAN
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Optimal transport – aka W-distance

27Improving Generative Adversarial Network (GAN), Hung-yi Lee



Autoencoders
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Decision trees

29
Christian Böser, Simon Fink, Steffen Röcker
Institut für Experimentelle Kernphysik, KIT



HEP landscape
❑ BDT models for binary classification of events – online trigger systems, offline 
selections

❑ ANN models – PID enhancements (crucial for flavour physics, precise 
measurements), P.D.F. reconstruction

❑ Generative models based on GANs and Autoencoders – event generators, data 
augmentation

❑ A comprehensive repository regarding current status: https://iml-
wg.github.io/HEPML-LivingReview/ (A Living Review of Machine Learning for 
Particle Physics)
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https://iml-wg.github.io/HEPML-LivingReview/


HEP landscape
❑ Very interesting overview: „Machine Learning in High Energy Physics Community White 
Paper” (https://arxiv.org/abs/1807.02876)

❑ Challenges of learning Standard Model

❑ Speeding simulation via generative models

❑ Computing resources and sustainability

❑ Engaging commercial partners (new LHCb trigger based on GPU processors)

❑ Interpretability of models

❑ Uncertainty of predictions (just beginning this large subject)
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https://arxiv.org/abs/1807.02876


HEP landscape
❑ „Generative Networks for LHC events” (https://arxiv.org/abs/2008.08558)

❑ Physics specific challenges: phase-space integration, conservation of 4-
momentum

❑ Parton shower and matrix elements modelling

❑ CycleGANs for understanding the patron showers
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LHCb Trigger (Run 2)

33https://doi.org/10.1016/j.cpc.2016.07.022, Tesla: An application for real-time data analysis in High Energy Physics

Long-lived tracking in HLT using XGBoost algoritym

Adam Dendek LHCb Thesis
http://cds.cern.ch/record/2772792?ln=en

https://doi.org/10.1016/j.cpc.2016.07.022
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Readout electronics response with ANN

Simulation and Optimization Studies of the LHCb Beetle Readout ASIC and Machine Learning 
Approach for Pulse Shape Reconstruction, DOI: 10.3390/s21186075

https://doi.org/10.3390/s21186075


Predicting the future for HEP
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❑HEP challenges are definitely closely coupled with the recent trends in 
ML

❑ Use more sustainable code (share/use the latest and greatest)

❑ Interpretability – critical especially for selection algorithms (SHAP and 
LIME)

❑ Prediction error – when looking for New Physics we should now it!

❑ Use latest hardware developments – GPU clusters, tensor cores, 
hardware ANN

❑More models!



Thanks!
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A simple one



A simple one



Visualisation please!



Be a responsible punisher …



41

Algorytm uczący się – AL-U
❑ Potrzeba stworzenia nowej klasy algorytmów, które się uczą wynika z tego, że 
próbujemy rozwiązać szereg problemów zbyt skomplikowanych dla programisty 
człowieka

❑ Uwaga! Wykonywanie zadań przez algorytm nie jest związane z uczeniem się!

❑ Uczenie to sposób nabywania umiejętności do wykonywania zadań

❑ Proces uczenia dotyczy więc, sposobu przetwarzania przez AL-U przypadków 
ze zbioru treningowego. Każdy przypadek będzie reprezentowany przez wektor 
cech – zmienne losowe, które zostały zmierzone podczas zbierania danych

❑ Każdy przypadek (próbka, egzemplarz) zapiszemy  𝒙 ∈ ℝ𝑛: 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑛


