

# Rare decays at LHCb including LFU test and LFV

## searches

#### Marcin Chrzaszcz mchrzasz@cern.ch

on behalf of the LHCb collaboration, Institute of Nuclear Physics, Polish Academy of Science

45

#### BEACH, Krakow, 6 June 2022

### Rare Decays at LHCb

#### Muonic B decays

 $\Rightarrow \operatorname{Br} B_{s}^{0}/B_{d}^{0} \to \mu\mu/\tau\tau.$   $\Rightarrow \operatorname{Br} + \operatorname{Ang.} B \to K^{*}\mu\mu.$   $\Rightarrow \operatorname{Br} + \operatorname{Ang.} B_{s}^{0} \to \phi\mu\mu.$   $\Rightarrow \operatorname{Br} + \operatorname{Ang.} \Lambda_{b} \to p\pi\mu\mu.$  $\Rightarrow \operatorname{Isospin} B \to K\mu\mu.$ 

## LFU test $\Rightarrow B^{+} \to K^{+}\ell\ell$ $\Rightarrow B^{0}_{d} \to K^{*}\ell\ell$ $\Rightarrow \Lambda_{b} \to p\pi\ell\ell$

## Strange decays $\Rightarrow K_5^0 \rightarrow \mu\mu.$

#### Charm decays

 $\Rightarrow$  D  $\rightarrow$  hh $\mu\mu$ 

 $\Rightarrow D \rightarrow e\mu.$ 

⇒ Enormous Physics program
 which is constantly expanding.
 ⇒ Will cover only part of the results.

Radiative decays  

$$\Rightarrow B \to K^* \gamma, B_s^0 \to \phi \gamma$$

$$\Rightarrow \Xi_b \to \Xi \gamma$$

$$\Rightarrow B_s^0 / B_d^0 \to J/\psi \gamma$$

$$\tau \text{ decays}$$

$$\Rightarrow \tau \to \mu \mu \mu \Rightarrow \tau \to \mu \mu \mu$$

## Why rare decays?

- In SM allows only the charged interactions to change flavour. • Other interactions are flavour conserving.
- One can escape this constrain and produce  $b \rightarrow s$  and  $b \rightarrow d$  at loop level.
  - This kind of processes are suppressed in SM  $\rightarrow$  Rare decays. 0
  - New Physics can enter in the loops.



#### Tools

#### • Operator Product Expansion and Effective Field Theory

$$H_{eff} = -\frac{4G_f}{\sqrt{2}}VV'^* \sum_i \left[\underbrace{C_i(\mu)O_i(\mu)}_{\text{left-handed}} + \underbrace{C_i'(\mu)O_i'(\mu)}_{\text{right-handed}}\right], \qquad \stackrel{\text{i=1,2}}{\underset{i=3-6,8}{\text{Gluon penguin}}}_{\substack{\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}, \qquad \stackrel{\text{i=1,2}}{\underset{i=3-6,8}{\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}, \qquad \stackrel{\text{i=1,2}}{\underset{i=3-6,8}{\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}, \qquad \stackrel{\text{i=1,2}}{\underset{i=3-6,8}{\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{Gluon penguin}}}_{\substack{\text{i=7}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i=3-6,8}\\\text{i$$

where  $C_i$  are the Wilson coefficients and  ${\cal O}_i$  are the corresponding effective operators.



i=P

Pseudoscalar penguin

## $B_{s/d} \to \mu \mu$

#### PHYS. REV. LETT. 128, (2022) 041801

⇒ Golden channel for LHCb. ⇒ Normalized to the  $B \to K\pi$  and  $B \to KJ/\psi$ .

 $\Rightarrow$  The selection is achived by BDT trained on MC and calibrated on data.

$$\Rightarrow \mathcal{B}(B_{s}^{0} \to \mu\mu) = (3.09^{+0.46+0.15}_{-0.43-0.11})10^{-9} > 10 \sigma \text{ significant!}$$

$$\Rightarrow \mathcal{B}(\mathcal{B}^0_{\mathsf{d}} \to \mu\mu) < 2.3 \times 10^{-10}, 90\% \mathrm{CL} \\ \Rightarrow \mathcal{B}(\mathcal{B}^0_{\mathsf{s}} \to \mu\mu\gamma) < 1.5 \times 10^{-9}, 90\% \mathrm{CL}$$



 $B_{s/d} \to \mu \mu$ 

#### PHYS. REV. LETT. 128, (2022) 041801



/ 26

#### JHEP 03 (2022) 109

## $B_{s/d} \to \mu \mu \mu \mu$

- $\Rightarrow$  Golden Platinum channel for LHCb.
- ⇒ Normalized to the  $B_s^0 \rightarrow J/\psi(\mu\mu)\phi(\mu\mu)$ .

#### UL at 95~% CL:

 $\Rightarrow \mathcal{B}(B_{\rm s}^0 \to \mu \mu \mu \mu) < 8.6 \times 10^{-10} \\\Rightarrow \mathcal{B}(B_{\rm d}^0 \to \mu \mu \mu \mu) < 1.8 \times 10^{-10}$ 





#### Phys. Rev. Lett. 118, 251802 (2017)

## $B_{s/d} ightarrow au au$

 $\Rightarrow$  NP sensitivity enhanced due to the high  $\tau$  mass.

 $\Rightarrow$  More challenging: at least  $2\nu$  are escaping.

- $\Rightarrow$  Selecting  $au o 3\pi \nu$ , o 9.31 %
- $\Rightarrow$  Normalization channel:
- $B \rightarrow D(K\pi\pi)D_{s}(KK\pi).$
- $\Rightarrow$  No peak in the *B* mass window  $\rightarrow$  fit the NN output.





## $B_{s/d} \to ee$

#### PHYS. REV. LETT. 124 (2020) 211802





/ 26

#### PHYS. REV. LETT. 125 (2020) 011802

 $\Rightarrow B^0 \rightarrow K^* \mu^- \mu^+$  is a smoking gun for NP hunting!

 $B^{0} \rightarrow K^{*} \mu^{-} \mu^{+}$  decay

 ⇒ Rich angular observables makes is sensitive to different NP models
 ⇒ In addition one can construct less form factor dependent observables:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

⇒ Analysed 4.7 fb<sup>-1</sup> of data. ⇒ Results correspond to 3.3  $\sigma$ deviation in  $\Re(C_9)$  WC wrt. SM.



## $B^+ \rightarrow K^{*+} (K^0_S \pi^+) \mu^- \mu^+$ decay

#### PHYS. REV. LETT.126 (2021) 161802

⇒ Isospin partner of previous decay. ⇒ Experimentally more chalanging due to the  $K_S^0$  presents. ⇒ Analysed 9 fb<sup>-1</sup> of data.





## $B^0_{\!s} ightarrow \phi/f_2^\prime(1525)\mu^-\mu^+$ decays

#### PHYS. REV. LETT.127 (2021) 151801, JHEP 11 (2021) 043

## $\Rightarrow$ No self-tagging $\rightarrow$ not all angular observables accessible.



## $\Rightarrow$ Tension wrt. the current SM prediction remains.





J. High Energy Phys. 04 (2017) 029

6000

<sup>12</sup>/<sub>26</sub>

#### $\Lambda_b \to p\pi\mu\mu$



Marcin Chrzaszcz (IFJ PAN)

Rare Decays at LHCb

### Search for light scalars

 $\Rightarrow$  Hidden sector models are gathering more and more attention.

 $\Rightarrow$  Inflaton model: new scalar then mixes with the Higgs.

 $\Rightarrow$  *B* decays are sensitive as the inflaton might be light.

 $\Rightarrow$  Searched for long living particle  $\chi$ produced in:  $B \rightarrow \chi(\mu\mu)K$ .

 $\Rightarrow$  Analysis performed blindly as a peak search.







#### Phys. Rev. D 95, 071101 (2017)

Marcin Chrzaszcz (IFI PAN)

Rare Decays at LHCb

m(\chi) [MeV/c2]

## $B^+ \rightarrow K^+ e^- e^+$

#### NATURE PHYSICS 18, (2022) 277-282

- $\Rightarrow$  Most precise measurements performed at LHCb.
- $\Rightarrow$  Main challenge is due to electron Bremsstrahlung.



 $\Rightarrow$  To protect ourself from electron reconstruction issue we use double ratio:

$$R_{K} = \frac{\mathcal{B}(\textbf{B} \rightarrow \textbf{K}\mu\mu) \times \mathcal{B}(\textbf{B} \rightarrow \textbf{K}\textbf{J}\!/\psi(\rightarrow ee))}{\mathcal{B}(\textbf{B} \rightarrow \textbf{K}ee) \times \mathcal{B}(\textbf{B} \rightarrow \textbf{K}\textbf{J}\!/\psi(\rightarrow \mu\mu))}$$

/ 26

#### $B^+ \rightarrow K^+ e^- e^+$

#### NATURE PHYSICS 18, (2022) 277-282

 $\Rightarrow$  The efficiency correction was calculated using  $B \rightarrow //\psi K$ .  $\Rightarrow$  Cross-checked with  $B \to \psi(2S) K.$  $\Rightarrow$  The result:  $R_{\kappa}(1.1 < q^2 < 6.0 \text{ GeV}^2/c^4) =$  $0.846^{+0.042+0.013}_{-0.039-0.012}$ Profile of  $-\ln(L/L_{\min})$ LHCb 12  $9 \, \text{fb}^{-1}$ 10 8 6 4 2 0 0.7 0.8 0.9 1.1 1  $R_{K}$ 



 $B_d^0 \rightarrow K^* e^- e^+$ 

JHEP 08 (2017) 055

/ 26

 $\Rightarrow$  The neutral continuation of the  $R_K$  measurement is to measure its partner:

$$R_{\mathbf{K}^*} = \frac{\mathcal{B}(\mathbf{B} \to \mathbf{K}^* \mu \mu)}{\mathcal{B}(\mathbf{B} \to \mathbf{K}^* ee)}$$



Marcin Chrzaszcz (IFJ PAN)

Rare Decays at LHCb

## $B_d^0/B^+ \rightarrow K_S^0/K^{*+}e^-e^+$

#### Phys. Rev. Lett. 128 (2022) 191802



 $\Rightarrow$  Measurement performed in the low  $q^2$  regions.

⇒ The electron decays have been observed with significance  $> 5 \sigma$ .

 $\Rightarrow$  Same strategy as previous measurements.



 $\Rightarrow$  Consistent with SM at  $2\sigma$  level.



 $\begin{array}{l} B^0_d \rightarrow {\cal K}^* e^- e^+ \mbox{ at low } q^2 \\ \Rightarrow \mbox{ Use the electrons to measure the radiative penguing.} \\ \Rightarrow \mbox{ Accessign the kinematic range:} \\ [0.0008, 0.257] \ {\rm GeV}^2/{\rm c}^4. \end{array}$ 

$$\begin{split} F_L &= 0.044 \pm 0.026 \pm 0.014 \\ A_T^{Re} &= 0.06 \pm 0.08 \pm 0.02 \\ A_T^2 &= 0.11 \pm 0.10 \pm 0.02 \\ A_T^{Im} &= 0.02 \pm 0.10 \pm 0.01 \end{split}$$



#### JHEP 12 (2020) 081



/26

## $D \to h h \mu \mu$

 $\Rightarrow$  Extreamly suppressed by GIM mechanism.

 $\Rightarrow$  Dominated by long-range iteractions.



 $\Rightarrow$  Because of tagging  $(D^* \rightarrow D\pi_{\rm slow})$  one can measure angular observables.



## $D \to h h \mu \mu$

## $\Rightarrow$ Extreamly suppressed by GIM mechanism.

 $\Rightarrow$  Dominated by long-range iteractions.



 $\Rightarrow$  Because of tagging  $(\textit{D}^* \rightarrow \textit{D}\pi_{slow})$  one can measure angular observables.

#### LHCB-PAPER-2021-035, accepted by PRL



 $\Lambda_c \rightarrow p \mu \mu$ 

 $\Rightarrow SM \text{ predictions:} \\ \mathcal{O}(10^{-8}) \\ \Rightarrow \text{ Long distance effects:} \\ \mathcal{O}(10^{-6}) \\ \end{cases}$ 

 $\Rightarrow$  Previous measurement done by Babar:  ${\rm Br}(\Lambda_c^+ \to p \mu^+ \mu^-) < 4.4 \cdot 10^{-5}$  at 90% CL





#### Phys. Rev D , 091101 (2018]



 $\Rightarrow \text{ It's the first observation of } \\ \Lambda_c \rightarrow p \mu \mu \text{ in the } \omega \text{ region, with } \\ 5.0 \ \sigma \text{ significance.} \end{cases}$ 

⇒ The corresponding branching fraction reads:

$$\mathcal{B}(\Lambda_c \to p\omega) = (9.4 \pm 3.2 \pm 1.0 \pm 2.0) \cdot 10^{-4}$$

 $\Rightarrow$  No significant excess observed in the nonresonant region:

 $\mathcal{B}(\Lambda_c \to p\mu\mu) < 7.7(9.6) \times 10^{-8}$ 

⇒ Improving BaBar result by 3 orders of magnitude!



#### Eur. Phys. J. C 77 (2017) 678

## $K_{\rm S}^0 \to \mu\mu$

 $\Rightarrow pp$  collisions create enormous amount of strange mesons.

 $\Rightarrow$  Can be used to search for  $K_{\rm S}^0 \rightarrow \mu\mu$ .

 $\Rightarrow$  SM prediction:

 $\mathcal{B}(K_{\rm S}^0 \to \mu\mu) = (5.0 \pm 1.5) \times 10^{-12}$ 

 $\Rightarrow$  Dominated by the long distance effects.





⇒ No significant enhanced of signal has been observed and UL was set:

 $\begin{array}{l} \mathcal{B}(\textit{K}^{\rm 0}_{\rm S} \rightarrow \mu\mu) < 0.8(1.0) \times 10^{-9} \\ {\rm at} \; 90(95)\% \; {\rm CL} \end{array}$ 

 $B^+ \to K^+ \mu e$ 

#### PHYS. REV. LETT.123 (2019) 241802



Marcin Chrzaszcz (IFJ PAN)

Rare Decays at LHCb

/26

#### $B \rightarrow K \mu \tau$

#### JHEP 06 (2020) 129



/26

#### Conclusions

- Lots of rare decays studied at LHCb.
- Observed tensions wrt. to SM in the  $b 
  ightarrow s\ell\ell$  transitions.
- LHCb is setting nowadays strongest limits on LFV.
- LUV are the cleanest (wrt. theory errors) of the anomalies.

## Thank you for the attention!



## Backup



<sup>27</sup>/<sub>26</sub>

## Theory implications

| Coefficient                                                                                                                                                               | Best fit | $1\sigma$      | $3\sigma$      | $\mathrm{Pull}_{\mathrm{SM}}$ | p-value (% |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------|-------------------------------|------------|
| $\mathcal{C}_7^{\mathrm{NP}}$                                                                                                                                             | -0.02    | [-0.04, -0.00] | [-0.07, 0.04]  | 1.1                           | 16.0       |
| $\mathcal{C}_9^{ m NP}$                                                                                                                                                   | -1.11    | [-1.32, -0.89] | [-1.71, -0.40] | 4.5                           | 62.0       |
| $\mathcal{C}_{10}^{\mathrm{NP}}$                                                                                                                                          | 0.58     | [0.34, 0.84]   | [-0.11, 1.41]  | 2.5                           | 25.0       |
| $\mathcal{C}^{\mathrm{NP}}_{7'}$                                                                                                                                          | 0.02     | [-0.01, 0.04]  | [-0.05, 0.09]  | 0.7                           | 15.0       |
| $\mathcal{C}^{\mathrm{NP}}_{9'}$                                                                                                                                          | 0.49     | [0.21, 0.77]   | [-0.33, 1.35]  | 1.8                           | 19.0       |
| $\mathcal{C}^{\mathrm{NP}}_{10'}$                                                                                                                                         | -0.27    | [-0.46, -0.08] | [-0.84, 0.28]  | 1.4                           | 17.0       |
| $\mathcal{C}_9^{\rm NP}=\mathcal{C}_{10}^{\rm NP}$                                                                                                                        | -0.21    | [-0.40, 0.00]  | [-0.74, 0.55]  | 1.0                           | 16.0       |
| $\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{10}^{\rm NP}$                                                                                                                     | -0.69    | [-0.88, -0.51] | [-1.27, -0.18] | 4.1                           | 55.0       |
| $\mathcal{C}_{9'}^{\rm NP}=\mathcal{C}_{10'}^{\rm NP}$                                                                                                                    | -0.09    | [-0.35, 0.17]  | [-0.88, 0.66]  | 0.3                           | 14.0       |
| $\mathcal{C}_{9'}^{\rm NP} = -\mathcal{C}_{10'}^{\rm NP}$                                                                                                                 | 0.20     | [0.08, 0.32]   | [-0.15, 0.56]  | 1.7                           | 19.0       |
| $\mathcal{C}_9^{\rm NP} = -\mathcal{C}_{9'}^{\rm NP}$                                                                                                                     | -1.09    | [-1.28, -0.88] | [-1.62, -0.42] | 4.8                           | 72.0       |
| $ \begin{aligned} \mathcal{C}_9^{\mathrm{NP}} &= -\mathcal{C}_{10}^{\mathrm{NP}} \\ &= -\mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{aligned} $ | -0.68    | [-0.49, -0.49] | [-1.36, -0.15] | 3.9                           | 50.0       |
| $ \begin{aligned} \mathcal{C}_9^{\mathrm{NP}} &= -\mathcal{C}_{10}^{\mathrm{NP}} \\ &= \mathcal{C}_{9'}^{\mathrm{NP}} = -\mathcal{C}_{10'}^{\mathrm{NP}} \end{aligned} $  | -0.17    | [-0.29, -0.06] | [-0.54, 0.18]  | 1.5                           | 18.0       |

Table 2: Best-fit points, confidence intervals, pulls for the SM hypothesis and p-values for different one-dimensional NP scenarios.

Marcin Chrzaszcz (IFJ PAN)

Rare Decays at LHCb

#### If not NP?

- How about our clean  $P_i$  observables?
- The QCD cancel as mentioned only at leading order.
- Comparison to normal observables with the optimised ones.



## Transversity amplitudes

 $\Rightarrow$  One can link the angular observables to transversity amplitudes

$$J_{1s} \quad = \quad \frac{(2+\beta_{\ell}^2)}{4} \left[ |A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \mathrm{Re} \left( A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right) \,,$$

$$J_{1c} \quad = \quad |A_0^L|^2 + |A_0^R|^2 + \frac{4m_\ell^2}{q^2} \left[ |A_t|^2 + 2 \mathrm{Re}(A_0^L A_0^{R^*}) \right] + \beta_\ell^2 \left| A_S \right|^2,$$

$$J_{2s} = \frac{\beta_{\ell}^2}{4} \left[ |A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right], \qquad J_{2c} = -\beta_{\ell}^2 \left[ |A_0^L|^2 + |A_0^R|^2 \right],$$

$$J_{3} = \frac{1}{2}\beta_{\ell}^{2} \left[ |A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} - |A_{\parallel}^{R}|^{2} \right], \qquad J_{4} = \frac{1}{\sqrt{2}}\beta_{\ell}^{2} \left[ \operatorname{Re}(A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R}A_{\parallel}^{R*}) \right],$$

$$J_{5} = \sqrt{2}\beta_{\ell} \left[ \operatorname{Re}(A_{0}^{L}A_{\perp}^{L^{*}} - A_{0}^{R}A_{\perp}^{R^{*}}) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L}A_{S}^{*} + A_{\parallel}^{R^{*}}A_{S}) \right],$$

$$J_{6s} = 2\beta_{\ell} \left[ \operatorname{Re}(A_{\parallel}^{L} A_{\perp}^{L^{*}} - A_{\parallel}^{R} A_{\perp}^{R^{*}}) \right], \qquad \qquad J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{0}^{L} A_{S}^{*} + A_{0}^{R^{*}} A_{S}),$$

$$J_7 \quad = \quad \sqrt{2}\beta_\ell \left[ \mathrm{Im}(\mathbf{A}_0^{\mathrm{L}}\mathbf{A}_\parallel^{\mathrm{L}*} - \mathbf{A}_0^{\mathrm{R}}\mathbf{A}_\parallel^{\mathrm{R}*}) + \frac{\mathbf{m}_\ell}{\sqrt{\mathbf{q}^2}} \mathrm{Im}(\mathbf{A}_\perp^{\mathrm{L}}\mathbf{A}_\mathrm{S}^* - \mathbf{A}_\perp^{\mathrm{R}*}\mathbf{A}_\mathrm{S})) \right],$$

$$J_8 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[ \operatorname{Im}(\mathbf{A}_0^{\mathrm{L}} \mathbf{A}_\perp^{\mathrm{L}} * + \mathbf{A}_0^{\mathrm{R}} \mathbf{A}_\perp^{\mathrm{R}}) \right], \qquad \qquad J_9 = \beta_\ell^2 \left[ \operatorname{Im}(\mathbf{A}_\parallel^{\mathrm{L}} * \mathbf{A}_\perp^{\mathrm{L}} + \mathbf{A}_\parallel^{\mathrm{R}} * \mathbf{A}_\perp^{\mathrm{R}}) \right]$$

#### Link to effective operators

 $\Rightarrow$  So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

$$A_{\perp}^{L,R} \quad = \quad \sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}}) \bigg] \xi_{\perp}(E_{K^*})$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \bigg] \xi_{\perp}(E_{K}^*)$$

$$A_0^{L,R} = -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \bigg[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff\prime}) \bigg] \xi_{\parallel}(E_{K^*}),$$

where  $\hat{s} = q^2/m_B^2$ ,  $\hat{m}_i = m_i/m_B$ . The  $\xi_{\parallel,\perp}$  are the form factors.

#### Link to effective operators

 $\Rightarrow$  So here is where the magic happens. At leading order the amplitudes can be written as (soft form factors):

$$A_{\perp}^{L,R} \quad = \quad \sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}}) \bigg] \xi_{\perp}(E_{K^*})$$

$$A_{\parallel}^{L,R} \quad = \quad -\sqrt{2}Nm_B(1-\hat{s}) \left[ (\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \right] \xi_{\perp}(E_{K^*})$$

$$A_0^{L,R} = -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \Big[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff'}) \Big] \xi_{\parallel}(E_{K^*}),$$

where  $\hat{s} = q^2/m_B^2$ ,  $\hat{m}_i = m_i/m_B$ . The  $\xi_{\parallel,\perp}$  are the form factors.  $\Rightarrow$  Now we can construct observables that cancel the  $\xi$  form factors at leading order:

$$P_5' = \frac{J_5 + J_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

## $B^0 \rightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of  $B^0 \to K^* \mu^- \mu^+$  decay is described by three angles  $\theta_l$ ,  $\theta_k$ ,  $\phi$  and invariant mass of the dimuon system  $(q^2)$ .

⇒  $\cos \theta_k$ : the angle between the direction of the kaon in the  $K^*$  ( $\overline{K}^*$ ) rest frame and the direction of the  $K^*$  ( $\overline{K}^*$ ) in the  $B^0$  ( $\overline{B}^0$ ) rest frame. ⇒  $\cos \theta_l$ : the angle between the direction of the  $\mu^-$  ( $\mu^+$ ) in the dimuon rest frame and the direction of the dimuon in the  $B^0$  ( $\overline{B}^0$ ) rest frame.

⇒  $\phi$ : the angle between the plane containing the  $\mu^-$  and  $\mu^+$  and the plane containing the kaon and pion from the  $K^*$ .



## $B^0 \rightarrow K^* \mu^- \mu^+$ kinematics

⇒ The kinematics of  $B^0 \to K^* \mu^- \mu^+$  decay is described by three angles  $\theta_l$ ,  $\theta_k$ ,  $\phi$  and invariant mass of the dimuon system  $(q^2)$ .

$$\begin{split} \frac{d^4\Gamma}{dq^2\,d\cos\theta_K\,d\cos\theta_l\,d\phi} &= \frac{9}{32\pi} \Big[ J_{1s}\sin^2\theta_K + J_{1c}\cos^2\theta_K + (J_{2s}\sin^2\theta_K + J_{2c}\cos^2\theta_K)\cos2\theta_l \\ &+ J_3\sin^2\theta_K\sin^2\theta_l\cos2\phi + J_4\sin2\theta_K\sin2\theta_l\cos\phi + J_5\sin2\theta_K\sin\theta_l\cos\phi \\ &+ (J_{6s}\sin^2\theta_K + J_{6c}\cos^2\theta_K)\cos\theta_l + J_7\sin2\theta_K\sin\theta_l\sin\phi + J_8\sin2\theta_K\sin2\theta_l\sin\phi \\ &+ J_9\sin^2\theta_K\sin^2\theta_l\sin2\phi \Big] \,, \end{split}$$

 $\Rightarrow$  This is the most general expression of this kind of decay.  $\Rightarrow$  The *CP* averaged angular observables are defined:

$$S_i = \frac{J_i + \bar{J}_i}{(d\Gamma + d\bar{\Gamma})/dq^2}$$

#### Link to effective operators

 $\Rightarrow \mbox{The observables } J_i \mbox{ are bilinear combinations of transversity amplitudes: } A^{L,R}_{\perp}, \ A^{L,R}_{\parallel}, \ A^{L,R}_{0}. \label{eq:alpha}$ 

 $\Rightarrow$  So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= \sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\rm eff} + \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} + \mathcal{C}_7^{\rm eff'}) \bigg] \xi_{\perp}(E_{K^*}) \\ A_{\parallel}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff'}) \bigg] \xi_{\perp}(E_{K^*}) \\ A_0^{L,R} &= -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \bigg[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff'}) \bigg] \xi_{\parallel}(E_{K^*}), \end{split}$$

where  $\hat{s}=q^2/m_B^2$ ,  $\hat{m}_i=m_i/m_B$ . The  $\xi_{\parallel,\perp}$  are the soft form factors.

#### Link to effective operators

 $\Rightarrow \mbox{The observables } J_i \mbox{ are bilinear combinations of transversity amplitudes: } A^{L,R}_{\perp}, \ A^{L,R}_{\parallel}, \ A^{L,R}_{0}. \label{eq:alpha}$ 

 $\Rightarrow$  So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= \sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\rm eff} + \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} + \mathcal{C}_7^{\rm eff\prime}) \bigg] \xi_{\perp}(E_{K^*}) \\ A_{\parallel}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff\prime}) \bigg] \xi_{\perp}(E_{K^*}) \\ A_0^{L,R} &= -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \bigg[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff\prime}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff\prime}) \bigg] \xi_{\parallel}(E_{K^*}), \end{split}$$

where  $\hat{s} = q^2/m_B^2$ ,  $\hat{m}_i = m_i/m_B$ . The  $\xi_{\parallel,\perp}$  are the soft form factors.  $\Rightarrow$  Now we can construct observables that cancel the  $\xi$  soft form factors at leading order:

$$P_5' = \frac{J_5 + \bar{J}_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

Marcin Chrzaszcz (IFJ PAN)

#### Symmetries in $B \rightarrow K^* \mu \mu$

 $\Rightarrow$  We have 12 angular coefficients (S<sub>i</sub>).

 $\Rightarrow$  There exist 4 symmetry transformations that leave the angular distributions unchanged:

$$n_{\parallel} = \begin{pmatrix} A_{\parallel}^L \\ A_{\parallel}^{R*} \end{pmatrix}, \quad n_{\perp} = \begin{pmatrix} A_{\perp}^L \\ -A_{\perp}^{R*} \end{pmatrix}, \quad n_0 = \begin{pmatrix} A_0^L \\ A_0^R \end{pmatrix}.$$

$$n_i^{\,\prime} = U n_i = \left[ \begin{array}{cc} e^{i\phi_L} & 0 \\ 0 & e^{-i\phi_R} \end{array} \right] \left[ \begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right] \left[ \begin{array}{cc} \cosh i\tilde{\theta} & -\sinh i\tilde{\theta} \\ -\sinh i\tilde{\theta} & \cosh i\tilde{\theta} \end{array} \right] n_i \,.$$

 $\Rightarrow$  Using this symmetries one can show that there are 8 independent observables. The pdf can be written as:

$$\begin{split} \left. \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma + \bar{\Gamma})}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_k \,\mathrm{d}\phi} \right|_{\mathrm{P}} &= \frac{9}{32\pi} \left[ \frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_k \\ &+ F_{\mathrm{L}} \cos^2 \theta_k + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_k \cos 2\theta_l \\ &- F_{\mathrm{L}} \cos^2 \theta_k \cos 2\theta_l + S_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi \\ &+ S_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_k \sin^2 \theta_l \cos \phi \\ &+ \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_k \cos \theta_l + S_7 \sin 2\theta_k \sin \theta_l \sin \phi \\ &+ S_8 \sin 2\theta_k \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi \right]. \end{split}$$

J. High Energy Phys. 04 (2017) 029

6000

35 /26

#### $\Lambda_b \to p\pi\mu\mu$



Marcin Chrzaszcz (IFJ PAN)

Rare Decays at LHCb

### Search for light scalars

 $\Rightarrow$  Hidden sector models are gathering more and more attention.

 $\Rightarrow$  Inflaton model: new scalar then mixes with the Higgs.

 $\Rightarrow$  *B* decays are sensitive as the inflaton might be light.

⇒ Searched for long living particle  $\chi$  produced in:  $B \rightarrow \chi(\mu\mu)K$ .

 $\Rightarrow$  Analysis performed blindly as a peak search.







m(\chi) [MeV/c2]

#### JHEP 02 (2016) 104, CMS-PAS-BPH-15-008, ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)

 $\Rightarrow B^0 \rightarrow K^* \mu^- \mu^+$  is a smoking gun for NP hunting!

 $B^0 \rightarrow K^* \mu^- \mu^+$  decay

⇒ Reach angular observables makes
 is sensitive to different NP models
 ⇒ In addition one can construct less
 form factor dependent observables:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

 $\Rightarrow$  In single analysis observed  $3.4~\sigma$  discrepancy in the  $C_9$  WC.



#### JHEP 02 (2016) 104, CMS-PAS-BPH-15-008, ATLAS-CONF-2017-023, Phys. Rev. Lett. 118 (2017)

 $\Rightarrow B^0 \rightarrow K^* \mu^- \mu^+$  is a smoking gun for NP hunting!

 $B^0 \rightarrow K^* \mu^- \mu^+$  decay

⇒ Reach angular observables makes
 is sensitive to different NP models
 ⇒ In addition one can construct less
 form factor dependent observables:

 $\frac{S_5}{\overline{F_-}}$ 



Marcin Chrzaszcz (IFJ PAN)

## Branching fraction measurements of $B_s^0 \rightarrow \phi \mu \mu$



Marcin Chrzaszcz (IFJ PAN)

/26

## Theory implications of $b \to s\ell\ell$ JHEP 06 (2016) 092

- A fit prepared by S. Descotes-Genon, L. Hofer, J. Matias, J. Virto.
- The data can be explained by modifying the  $C_9$  Wilson cœfficient.
- Overall there is  $>4~\sigma$  discrepancy wrt. the SM prediction.



#### Observables in $B \rightarrow K^* \mu \mu$

⇒ The kinematics of  $B^0 \to K^* \mu^- \mu^+$  decay is described by three angles  $\theta_l$ ,  $\theta_k$ ,  $\phi$  and invariant mass of the dimuon system  $(q^2)$ . ⇒ The angular distribution can be written as:

$$\begin{split} \frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}(\Gamma+\Gamma)}{\mathrm{d}\cos\theta_l \,\mathrm{d}\cos\theta_k \,\mathrm{d}\phi} \bigg|_{\mathrm{P}} &= \frac{9}{32\pi} \big[\frac{3}{4}(1-F_{\mathrm{L}})\sin^2\theta_k \\ &+ F_{\mathrm{L}}\cos^2\theta_k + \frac{1}{4}(1-F_{\mathrm{L}})\sin^2\theta_k \cos 2\theta_l \\ &- F_{\mathrm{L}}\cos^2\theta_k \cos 2\theta_l + S_3\sin^2\theta_k \sin^2\theta_l \cos 2\phi \\ &+ S_4\sin 2\theta_k \sin 2\theta_l \cos\phi + S_5\sin 2\theta_k \sin^2\theta_l \cos\phi \\ &+ \frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_k \cos\theta_l + S_7\sin 2\theta_k \sin\theta_l \sin\phi \\ &+ S_8\sin 2\theta_k \sin 2\theta_l \sin\phi + S_9\sin^2\theta_k \sin^2\theta_l \sin 2\phi\big]. \end{split}$$

#### Link to effective operators

 $\Rightarrow \text{The observables } S_i \text{ are bilinear combinations of transversity amplitudes: } A^{L,R}_{\perp}, \ A^{L,R}_{\parallel}, \ A^{L,R}_{0}.$ 

 $\Rightarrow$  So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= \sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\rm eff} + \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} + \mathcal{C}_7^{\rm eff'}) \bigg] \xi_{\perp}(E_{K^*}) \\ A_{\parallel}^{L,R} &= -\sqrt{2}Nm_B(1-\hat{s}) \bigg[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2\hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff'}) \bigg] \xi_{\perp}(E_{K^*}) \\ A_0^{L,R} &= -\frac{Nm_B(1-\hat{s})^2}{2\hat{m}_{K^*}\sqrt{\hat{s}}} \bigg[ (\mathcal{C}_9^{\rm eff} - \mathcal{C}_9^{\rm eff'}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2\hat{m}_b (\mathcal{C}_7^{\rm eff} - \mathcal{C}_7^{\rm eff'}) \bigg] \xi_{\parallel}(E_{K^*}), \end{split}$$

where  $\hat{s}=q^2/m_B^2$ ,  $\hat{m}_i=m_i/m_B$ . The  $\xi_{\parallel,\perp}$  are the soft form factors.

#### Link to effective operators

 $\Rightarrow \text{The observables } S_i \text{ are bilinear combinations of transversity amplitudes: } A^{L,R}_{\perp}, \ A^{L,R}_{\parallel}, \ A^{L,R}_{0}.$ 

 $\Rightarrow$  So here is where the magic happens. At leading order the amplitudes can be written as:

$$\begin{split} A_{\perp}^{L,R} &= \sqrt{2} N m_B (1-\hat{s}) \bigg[ (\mathcal{C}_9^{\mathrm{eff}} + \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} + \mathcal{C}_{10}') + \frac{2 \hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} + \mathcal{C}_7^{\mathrm{eff}}) \bigg] \xi_{\perp} (E_{K^*}) \\ A_{\parallel}^{L,R} &= -\sqrt{2} N m_B (1-\hat{s}) \bigg[ (\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + \frac{2 \hat{m}_b}{\hat{s}} (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \bigg] \xi_{\perp} (E_{K^*}) \\ A_0^{L,R} &= -\frac{N m_B (1-\hat{s})^2}{2 \hat{m}_{K^*} \sqrt{\hat{s}}} \bigg[ (\mathcal{C}_9^{\mathrm{eff}} - \mathcal{C}_9^{\mathrm{eff}}) \mp (\mathcal{C}_{10} - \mathcal{C}_{10}') + 2 \hat{m}_b (\mathcal{C}_7^{\mathrm{eff}} - \mathcal{C}_7^{\mathrm{eff}}) \bigg] \xi_{\parallel} (E_{K^*}), \end{split}$$

where  $\hat{s} = q^2/m_B^2$ ,  $\hat{m}_i = m_i/m_B$ . The  $\xi_{\parallel,\perp}$  are the soft form factors.  $\Rightarrow$  Now we can construct observables that cancel the  $\xi$  soft form factors at leading order:

$$P_5' = \frac{J_5 + \bar{J}_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}$$

Marcin Chrzaszcz (IFJ PAN)

#### Measurement of phase difference

 $\Rightarrow$  One could try to measure the phase difference between the resonances and the nonresonant amplitudes to see if the interference is large enough to explain the effects.

- $\Rightarrow$  Measured firstly done for the decay  $B \rightarrow K \mu \mu$ .
- $\Rightarrow$  The analysis based:

$$C_9^{\text{eff}} = C_9 + Y(q^2) = C_9 + \sum_j \eta_j e^{i\delta_i} A_j^{\text{res}}(q^2)$$

⇒ The amplitudes are modelled
 Briet-Wigner and Flatte functions.
 ⇒ Interference cannot explain the observed anomalies.

