

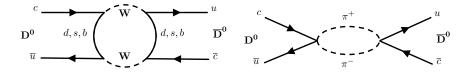
BEACH 2022

Mixing and indirect CPviolation in charm mesons at LHCb

Edward Shields on behalf of the LHCb collaboration Univeristá di Milano-Bicocca & INFN edward.brendan.shields@cern.ch June 6, 2022

- Setting the stage
- y_{CP} in $D^0 \to h^+ h^-$ (Phys. Rev. D 105, 092013)
- Mixing and CPV parameters in $D^0 \to K_S^0 \pi^+ \pi^-$ with 'bin-flip' (Phys. Rev. Lett. 127, 111801)
- ΔY in $D^0 \rightarrow h^+ h^-$ (Phys. Rev. D 104, 072010)
- Summary

Neutral charm meson mixing



The mass eigenstates of neutral D mesons are superpositions of the flavour eigenstates,

$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$$

Oscillations characterised by four parameters:

$$x = (m_1 - m_2) / \Gamma \\ y = (\Gamma_1 - \Gamma_2) / 2\Gamma \\ \end{vmatrix}$$
Mixing
$$|q/p| \\ \phi = \arg(q/p) \\ CP \text{ violation}$$

Edward Shields

3/17

- Unique access to up-type quarks
- New-Physics sensitive (CPV very small $\mathcal{O}(10^{-3})$) in SM

Types of CPV in Charm

• $\left|\bar{A}_f/A_f\right| \neq 1$

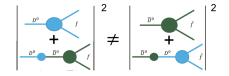
$$\underbrace{\begin{array}{c} D^{0} \\ \hline \end{array} }_{f} \left| \begin{array}{c} 2 \\ \neq \end{array} \right| \underbrace{\begin{array}{c} \overline{D^{0}} \\ \hline \end{array} \\ \hline \end{array} \\ \left| \begin{array}{c} 2 \\ f \end{array} \right|^{2}$$

Indirect CPV (Focus of this talk!)

$$\left| \underbrace{\overline{p}}_{p_{0}} \underbrace{\overline{p}}_{\bar{p}} \right|^{2} \neq \left| \underbrace{\overline{p}}_{p_{0}} \underbrace{p}_{p_{0}} \underbrace{p}_{f} \right|^{2} \begin{array}{c} \text{CPV in mixing} \\ \bullet \ |q/p| \neq 1 \end{array}$$

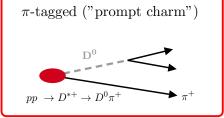
CPV in interference between mixing and decay

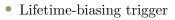
•
$$\phi \equiv \arg\left(\frac{q\bar{A}_f}{pA_f}\right) \neq 0$$



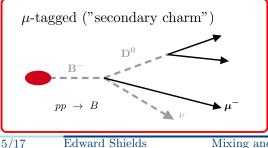
4/17

Charm flavour tagging





- High signal yield & purity
- (All analyses presented today use 'prompt' tagged decays)



Edward Shields

- Lifetime unbiased trigger
- Higher backgrounds, lower yields
- Important background to prompt analyses!

 $y_{CP} \text{ in } D^0 \to h^+ h^-$ Phys. Rev. D 105, 092013

What do we want to measure?

$$y_{CP}^{f} = \frac{\hat{\Gamma}\left(D^{0} \rightarrow f\right) + \hat{\Gamma}\left(\bar{D}^{0} \rightarrow f\right)}{2\Gamma} - 1$$

In the absence of CP violation, $y_{CP} = y$.

Important input for global fits of charm mixing and CPV parameters

Use average of $K\pi$ in denominator, introduces a small shift of $\approx 0.04\%$

$$\frac{\hat{\Gamma}\left(D^{0} \to f\right) + \hat{\Gamma}\left(\bar{D}^{0} \to f\right)}{\hat{\Gamma}\left(D^{0} \to K^{-}\pi^{+}\right) + \hat{\Gamma}\left(\bar{D}^{0} \to K^{+}\pi^{-}\right)} - 1 \approx y_{CP}^{f} - y_{CP}^{K\pi}$$

Measure separately for $f = K^+K^-, \pi^+\pi^-$ final states. 6/17 Edward Shields Mixing and indirect *CP* violation in charm $\frac{y_{CP}}{\text{Phys. Rev. D 105, 092013}} \xrightarrow{D^0 \to h^+ h^-}$

$$R^{f}(t) = \frac{N\left(D^{0} \to f, t\right)}{N\left(D^{0} \to K^{-}\pi^{+}, t\right)} \propto \epsilon$$

$$-(\underbrace{y_{CP}^f - y_{CP}^{K\pi}}_{W})t/\tau_D ($$

What we want

Ratio of time -dependent efficiencies

Measure this ratio by fitting yields in bins of decay time

Account for backgrounds:

- Combinatorial
- Secondary charm $(b \rightarrow c)$
- Partially reconstructed decays and misID

Control by:

- Careful event selection criteria
- Kinematic equalization procedure
- Validate with MC and real data

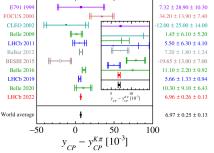
 $y_{CP} \text{ in } D^0 \to h^+ h^-$ Phys. Rev. D 105, 092013

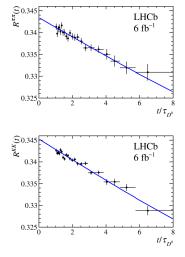
$$y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53 \pm 0.16) \times 10^{-3}$$

$$y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30 \pm 0.14) \times 10^{-3}$$

Combining channels:

 $y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$





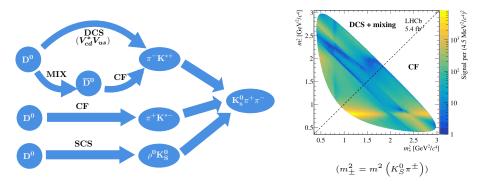
4x more precise than previous world-average

8/17

Edward Shields

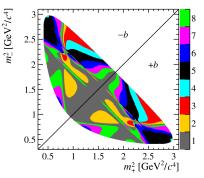
Mixing and CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Phys. Rev. Lett. 127, 111801

Many possible interfering amplitudes, including via $D^0 - \overline{D}^0$ oscillation.



Can directly measure all four mixing and CPV parameters, $x, y, |q/p|, \& \arg(q/p).$

Mixing and CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Phys. Rev. Lett. 127, 111801



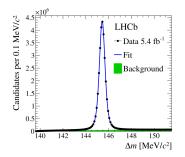
The data is partitioned into disjoint regions (bins) of the Dalitz plot, which are defined to preserve nearly constant strong-phase differences $(\Delta \delta (m^2_-, m^2_+))^a$. Two sets of eight bins are formed symmetrically about the $m^2_+ = m^2_-$ bisector.

^aPhys. Rev. D 82, 112006

The data is further split into 13 bins of decay time, chosen such that they are approximately equally populated. For each decay-time interval the ratio of the number of decays in each bin above the bisector to below the bisector is measured.¹

¹Formalism in the backup

Mixing and CPV in $D^0 \to K_S^0 \pi^+ \pi^-$ Phys. Rev. Lett. 127, 111801



~ **31M** signal candidates coming from $D^{*+} \rightarrow D^0 \pi^+$ decays. Fit the $\Delta m \ (m_{D^{*+}} - m_{D^0})$ distributions in bins of the Dalitz-plot and decay time to get the ratio of number of decays.

Correct for experimental effects:

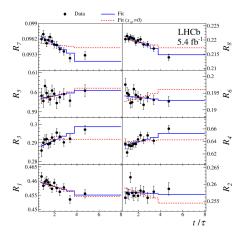
- 1 Correlations between time and phasespace
- 2 Charge detection asymmetries

Source	x_{CP}	y_{CP}	Δx	Δy
Reconstruction and selection	0.199	0.757	0.009	0.044
Secondary charm decays	0.208	0.154	0.001	0.002
Detection asymmetry	0.000	0.001	0.004	0.102
Mass-fit model	0.045	0.361	0.003	0.009
Total systematic uncertainty	0.291	0.852	0.010	0.110
Strong phase inputs	0.23	0.66	0.02	0.04
Detection asymmetry inputs	0.00	0.00	0.04	0.08
Statistical (w/o inputs)	0.40	1.00	0.18	0.35
Total statistical uncertainty	0.46	1.20	0.18	0.36

Mixing and CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Phys. Rev. Lett. 127, 111801

$$x_{CP} = (3.97 \pm 0.46 \pm 0.29) \times 10^{-3}$$
$$y_{CP} = (4.59 \pm 1.20 \pm 0.85) \times 10^{-3}$$
$$\Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}$$
$$\Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$$

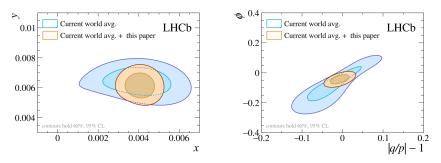
$$\begin{aligned} x &= \left(3.98^{+0.56}_{-0.54}\right) \times 10^{-3} \\ y &= \left(4.6^{+1.5}_{-1.4}\right) \times 10^{-3} \\ |q/p| &= 0.996 \pm 0.052 \\ \phi &= 0.056^{+0.047}_{-0.051} \end{aligned}$$



12/17

Mixing and CPV in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ Phys. Rev. Lett. 127, 111801

Significant improvements in World Average for both mixing and CPV parameters



First observation of non-zero mass-difference between neutral charm-meson eigenstates $(x \neq 0)$

Edward Shields

13/17

 $\Delta Y \text{ in } D^0 \to h^+ h^-$ Phys. Rev. D 104, 072010

Cabibbo-suppressed $D^0 \to f$ decays, where the final state $f = K^+ K^-, \pi^+ \pi^-$ is common to D^0 and \bar{D}^0 mesons, provide one of the most sensitive tests of the time-dependent CP violation.

$$A_{CP}(f,t) \equiv \frac{\Gamma\left(D^{0} \to f,t\right) - \Gamma\left(\bar{D}^{0} \to f,t\right)}{\Gamma\left(D^{0} \to f,t\right) + \Gamma\left(\bar{D}^{0} \to f,t\right)}$$

As mixing is expected to be small (< 1%) this can be expanded as,

$$A_{CP}(f,t) \approx a_f^d + \Delta Y_f \frac{t}{\tau_{D^0}},$$

where²

$$\Delta Y_f \approx -x_{12} \sin \phi_f^M + y_{12} a_f^d$$

 $\frac{^{2}\Delta Y_{f} \approx -A_{\Gamma}^{f}}{14/17}$ Edward Shields Mixing and indirect *CP* violation in charm

 $\Delta Y \text{ in } D^0 \to h^+ h^-$ Phys. Rev. D 104, 072010

The measured raw asymmetry between the number of D^0 and \overline{D}^0 decays into the final state f and time t,

$$A_{\rm raw}(f,t) \equiv \frac{N\left(D^{*+} \to D^0(f,t)\,\pi_{\rm tag}^+\right) - N\left(D^{*-} \to \bar{D}^0(f,t)\,\pi_{\rm tag}^-\right)}{N\left(D^{*+} \to D^0(f,t)\,\pi_{\rm tag}^+\right) + N\left(D^{*-} \to \bar{D}^0(f,t)\,\pi_{\rm tag}^-\right)},$$

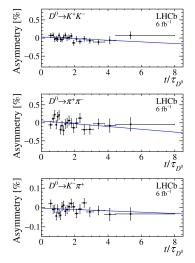
is equal to

$$A_{\text{raw}}(f,t) \approx A_{CP}(f,t) + A_{\text{det}}\left(\pi_{\text{tag}}^{+}\right) + A_{\text{prod}}\left(D^{*+}\right)$$

- $A_{\text{det}}(\pi_{\text{tag}}^+)$ is the detection asymmetry due to different reconstruction efficiencies of positively and negatively charged tagging pions.
- $A_{\text{prod}}(D^{*+})$ is the production asymmetry of $D^{*\pm}$ mesons in pp collisions.

15/17 Edward Shields

 $\Delta Y \text{ in } D^0 \rightarrow h^+ h^-$ Phys. Rev. D 104, 072010



$$\begin{split} \Delta Y_{K^+K^-} &= (-2.3 \pm 1.5 \pm 0.3) \times 10^{-4} \\ \Delta Y_{\pi^+\pi^-} &= (-4.0 \pm 2.8 \pm 0.4) \times 10^{-4} \\ \Delta Y &= (-2.7 \pm 1.3 \pm 0.3) \times 10^{-4} \\ \Delta Y_{K^-\pi^+} \text{ consistent with } 0 \end{split}$$

Combined with previous LHCb results, gives,

$$\Delta Y_{K^+K^-} = (-0.3 \pm 1.3 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{\pi^+\pi^-} = (-3.6 \pm 2.4 \pm 0.4) \times 10^{-4}$$
$$\Delta Y = (-1.0 \pm 1.1 \pm 0.3) \times 10^{-4}$$

A factor of 2 improvement on previous world average!

No CPV observed, constrained at the 10^{-4} level

16/17

Edward Shields

- Reaching incredible levels of precision, $\mathcal{O}(10^{-4})$, of measurements of mixing and indirect CPV in charm.
- New channels and techniques are being exploited to get the most of the available data.
- Lot's of exciting new results to come with LHCb Run 3-4, Belle-II, BES-III, ...
- Expecting to be approaching $\mathcal{O}(10^{-5})$ precision in Run 3 and beyond $(A_{\Gamma})!$

17/17

BACKUP

The mass eigenstates of neutral D mesons are not flavour eigenstates. But they can be written in terms of the flavour eigenstates:

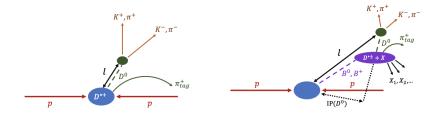
$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\bar{D}^{0}\right\rangle$$

The time evolution of the flavour eigenstates is then given by

$$\left| D^{0}\left(t\right) \right\rangle = g_{+}\left(t\right) \left| D^{0} \right\rangle + \frac{q}{p}g_{-}\left(t\right) \left| \bar{D}^{0} \right\rangle$$
$$\left| \bar{D}^{0}\left(t\right) \right\rangle = \frac{p}{q}g_{-}\left(t\right) \left| D^{0} \right\rangle + g_{+}\left(t\right) \left| \bar{D}^{0} \right\rangle$$

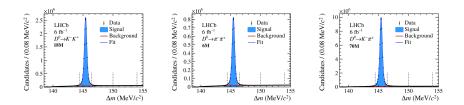
where $g_{\pm}(t) = e^{-iMt}e^{i\Gamma t/2} \left[\cos \left(-i(x+iy)\Gamma t/2 \right) \right]$.

Secondaries contamination



Decay-time is calculated as,

$$t = \frac{lm}{p}$$



21/17

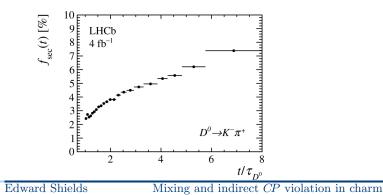
y_{CP} in $D^0 \to h^+ h^-$

Correct for secondary contamination:

$$R^{f}(t) = (1 - f_{\text{sec}}(t)) R^{f}_{\text{prompt}}(t) + f_{\text{sec}}(t) R^{f}_{\text{sec}}(t),$$

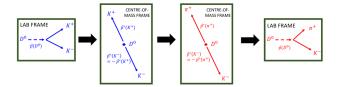
where,

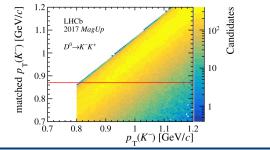
$$R_{\rm sec}^{f}\left(t\right) \propto e^{-\left(y_{CP}^{f} - y_{CP}^{K\pi}\right)\langle t_{D^{0}}(t)\rangle/\tau_{D^{0}}}$$



22/17

y_{CP} in $D^0 \to h^+ h^-$

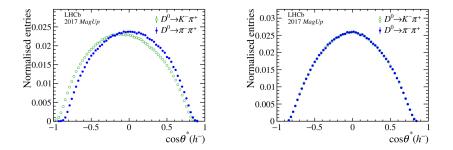




23/17

Edward Shields

Example kinematic matching and reweighting results



Mixing and CP violation are parametrized by z_{CP} and Δz , which is defined as,

$$z_{CP} \pm \Delta z \equiv -(q/p)^{\pm 1} (y + ix).$$

These results are expressed in terms of the *CP*-even mixing parameters,

$$x_{CP} \equiv -\text{Im}(z_{CP}), \quad y_{CP} \equiv -\text{Re}(z_{CP}),$$

and of the CP-violating differences,

$$\Delta x \equiv -\mathrm{Im}\left(\Delta z\right), \quad \Delta y \equiv -\mathrm{Re}\left(\Delta z\right)$$

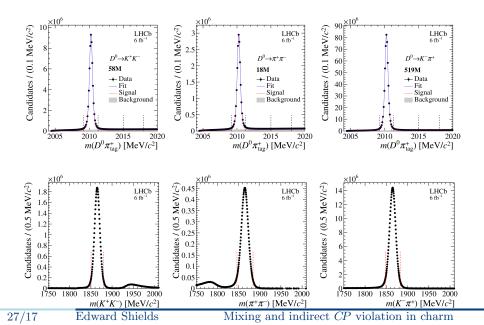
Conservation of *CP* symmetry implies that $x_{CP} = x$, $y_{CP} = y$, and $\Delta x = \Delta y = 0$.

Data are partitioned into disjoint regions (bins) of the Dalitz plot, which are defined to preserve nearly constant strong-phase differences, $\Delta \delta (m_{-}^2, m_{+}^2)$, between the D^0 and \bar{D}^0 amplitudes within each bin. Bins are labelled -b above the symmetric bisector and +b below. For each decay-time interval (j), the ratio of the number of decays in each negative Da; itz-plot bin (-b) to its positive counterpart (+b) is measured.

$$R_{bj}^{\pm} \approx \frac{r_b + r_b \frac{\langle t^2 \rangle_j}{4} \operatorname{Re} \left(z_{CP}^2 - \Delta z^2 \right) + \frac{\langle t^2 \rangle_j}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re} \left[X_b^*(z_{CP} \pm \Delta z) \right]}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re} \left(z_{CP}^2 - \Delta z^2 \right) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re} \left[X_b^*(z_{CP} \pm \Delta z) \right]}$$

where r_b is the value of R_{bi} at t = 0. X_b is the amplitude-weighted strong-phase differences between opposing bins. External information on $c_b \equiv \operatorname{Re}(X_b)$ and $s_b \equiv -\operatorname{Im}(X_b)$, is used as a constraint.

$\Delta Y \text{ in } D^0 \to h^+ h^-$



ΔY definition

$$A_{CP}(f,t) \equiv \frac{\Gamma\left(D^{0} \to f,t\right) - \Gamma\left(\bar{D}^{0} \to f,t\right)}{\Gamma\left(D^{0} \to f,t\right) + \Gamma\left(\bar{D}^{0} \to f,t\right)}$$

As mixing is expected to be small (< 1%) this can be expanded as,

$$A_{CP}(f,t) \approx a_f^d + \Delta Y_f \frac{t}{\tau_{D^0}}.$$

Where a_f^d is the *CP* asymmetry in the decay, τ_{D^0} is the lifetime of the D^0 meson, and the ΔY_f parameter is approximately equal to

$$\Delta Y_f \approx -x_{12} \sin \phi_f^M + y_{12} a_f^d$$

and $\phi_f^M \equiv \arg(M_{12}A_f/\bar{A}_f)$. At the current level of experimental precision, final-state dependent contributions to ΔY_f can safely be neglected. Under this assumption,

$$\Delta Y \approx -x_{12} \sin \phi_2^M,$$

 $_{28}$ where $\phi_{2Edward}^{M}$ is the selience mixing physic continuous to voltation decays mixing the selience of the selie

Future prospects

Mixing and CPV parameters in $D^0 \to K^0_S \pi^+\pi^-$

Sample (lumi \mathcal{L})	Tag	Yield	$\sigma(x)$	$\sigma(y)$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1–2 (9 fb ⁻¹)	\mathbf{SL}	10M	0.07%	0.05%	0.07	4.6°
	Prompt	36M	0.05%	0.05%	0.04	1.8°
Run 1–3 (23 fb ⁻¹)	\mathbf{SL}	33M	0.036%	0.030%	0.036	2.5°
	Prompt	200M	0.020%	0.020%	0.017	0.77°
Run 1–4 (50 fb ⁻¹)	\mathbf{SL}	78M	0.024%	0.019%	0.024	1.7°
	Prompt	520M	0.012%	0.013%	0.011	0.48°
Run 1–5 (300 fb ⁻¹)	\mathbf{SL}	490M	0.009%	0.008%	0.009	0.69°
	Prompt	3500M	0.005%	0.005%	0.004	0.18°

29/17

A_{Γ} in $D^0 \to h^+ h^-$

Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_\Gamma)$	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})$
Run 1–2 (9 fb ^{-1})	Prompt	60M	0.013%	18M	0.024%
Run 1–3 (23 fb $^{-1}$)	Prompt	310M	0.0056%	92M	0.0104~%
Run 1–4 (50 fb ⁻¹)	Prompt	793M	0.0035%	236M	0.0065~%
Run 1–5 (300 fb ⁻¹)	Prompt	$5.3\mathrm{G}$	0.0014%	$1.6\mathrm{G}$	0.0025~%