XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

J-PET tomography as a *novel detector* for discrete symmetries studies in charge leptonic system

S. Sharma on behalf of the J-PET collaboration 07.06.2022

European Unio European Regional Development Fund

Jagiellonian Positron Emission Tomography

Positronium atom Purely charged leptonic system, a potential laboratory for discrete symmetry test

Odd-symmetry operators accessible with J-PET New list of operators considering the photon's polarization

Future upgrades Towards modular based detectors

S. Sharma

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

Outline

first plastic scintillator based tomograph as novel detectors for testing symmetries

Jagiellonian Positron Emission Tomography

Positronium atom Purely charged leptonic system, a potential laboratory for discrete symmetry test

Odd-symmetry operators accessible with J-PET New list of operators considering the photon's polarization

Future upgrades Towards modular based detectors

S. Sharma

Outline

first plastic scintillator based tomograph as novel detectors for testing symmetries

Jagiellonian Positron Emission Tomography

Positronium atom Purely charged leptonic system, a potential laboratory for discrete symmetry test

Odd-symmetry operators accessible with J-PET New list of operators considering the photon's polarization

Future upgrades Towards modular based detectors

S. Sharma

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

Outline

first plastic scintillator based tomograph as novel detectors for testing symmetries

Jagiellonian Positron Emission Tomography first plastic scintillator based tomograph as novel detectors for testing symmetries

Positronium atom Purely charged leptonic system, a potential laboratory for discrete symmetry test

Odd-symmetry operators accessible with J-PET New list of operators considering the photon's polarization

Future upgrades Towards modular based detectors

Outline

Evolution of plastic scintillator based multi-modules detector

2 strip based

Prototype with 24 plastic strips

Characterize scintillator properties Energy resolution, hit time, ...

NIM A 764 (2014) 317

Data acquisition validation for <u>multi-modules</u>

IEEE TIM 70 (2021) 1-10

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

3-Layer prototype (192 strips) Modular J-PET (24 Modules)

Current version <u>Fundamental symmetries test and</u> <u>Positronium imaging</u>

Acta Phys. Pol. B 47 (2016) 509 Nature comm. 12 (2021) 5658 Science advances 7 (2021) eabh4394

First data campaign (2022) J-PET's Plastic Revolution - CERN COURIER https://cerncourier.com/a/j-pets-plasticrevolution/

- 192 detection modules are arranged in <u>3 concentric cylinders</u> (diameter of innermost is 85 cm).
- Each detection module consist of one plastic scintillator (50 x 1.9 x .7 cm3) read-out at each end by photomultipliers
- Trigger less and reconfigurable DAQ
- Time Over Threshold (TOT) is used, as a measure of energy deposition
- A dedicated J-PET data analysis framework : an open source software platform written in C++, based on ROOT package
 - \rightarrow Signal reconstruction,
 - \rightarrow Calibrations,
 - → filtering procedures,
 - User-level data analysis by accessing the in-built function

Monte Carlo simulations based on Geant4-toolkit, adapted to Simulation Ps decays events

- 192 detection modules are arranged in <u>3 concentric cylinders</u> (diameter of innermost is 85 cm)
- Each detection module consist of one plastic scintillator (50 x 1.9 x .7 cm3) read-out at each end by photomultipliers
- Trigger less and reconfigurable DAQ*
- Time Over Threshold (TOT) is used, as a measure of energy deposition
- A dedicated J-PET data analysis framework : an open source software platform written in C++, based on ROOT package
 - \rightarrow Signal reconstruction,
 - \rightarrow Calibrations,
 - → filtering procedures,
 - → User-level data analysis by accessing the in-built function

Monte Carlo simulations package based on Geant4-toolkit, adapted to simulation of Ps decays events

*IEEE Trans. on med. Imaging 37,11 (2018) 2526

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

- 192 detection modules are arranged in <u>3 concentric cylinders</u> (diameter of innermost is 85 cm)
- Each detection module consist of one plastic scintillator (50 x 1.9 x .7 cm3) read-out at each end by photomultipliers
- Trigger less and reconfigurable DAQ
- Time Over Threshold (TOT) is used, as a measure of energy deposition
- A dedicated J-PET data analysis framework : an open source software platform written in C++, based on ROOT package
 - \rightarrow Signal reconstruction,
 - \rightarrow Calibrations,
 - → filtering procedures,
 - User-level data analysis by accessing the in-built function

Monte Carlo simulations package based on Geant4-toolkit, adapted to simulation of Ps decays events

- 192 detection modules are arranged in <u>3 concentric cylinders</u> (diameter of innermost is 85 cm)
- Each detection module consist of one plastic scintillator (50 x 1.9 x .7 cm3) read-out at each end by photomultipliers
- Trigger less and reconfigurable DAQ
- Time Over Threshold (TOT) is used, as a measure of energy deposition
- A dedicated J-PET data analysis framework : an open source software platform written in C++, based on ROOT package
 - ➡ Signal reconstruction,
 - \rightarrow Calibrations,
 - ➡ filtering procedures,
 - ➡ User-level data analysis by accessing the in-built function

Monte Carlo simulations package based on Geant4-toolkit, adapted to simulation of Ps decays events

- 192 detection modules are arranged in <u>3 concentric cylinders</u> (diameter of innermost is 85 cm)
- Each detection module consist of one plastic scintillator (50 x 1.9 x .7 cm3) read-out at each end by photomultipliers
- Trigger less and reconfigurable DAQ
- Time Over Threshold (TOT) is used, as a measure of energy deposition
- A dedicated J-PET data analysis framework : an open source software platform written in C++, based on ROOT package
 - ➡ Signal reconstruction,
 - \rightarrow Calibrations,
 - ➡ filtering procedures,
 - ➡ User-level data analysis by accessing the in-built function

Monte Carlo simulations package based on Geant4-toolkit, adapted to simulation of Ps decays events

Working Principle

 t_L and t_R refers the time of arrival of light signal at left and right PMT. respectively.

Hit position along the scintillator = $(t_L - t_R) * V_{eff}$ (from center of scintillator)

P. Moskal, patents no. P 388 555 [WIPO ST 10/C PL388555] (2009), PCT/PL2010/00062 (2010), WO2011008119, US2012112079, JP2012533734, EP2454612 Nucl. Inst. and Meth. A 764 (2014) 317-321 ; Nucl. Inst. and Meth. A 775 (2015) 54-62 ;

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow S. Sharma

TOT as measure of Energy deposition : a relationship TOT vs Edep was established

S. Sharma

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

J-PET Geant4 simulation capabilities and annihilation chambers

S. Sharma

Large chambers

Exemplary 2 types events using small chamber

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

Positronium atom, a charge leptonic system for discrete symmetries test

^{*}Hydrogen like atom without nuclei : purely leptonic object, a bound state of particle: e⁻ and anti-particle : e⁺

^{*} Eigenstate of C, P, CP operators

^{*}Formed in two gnd. States

S=0 $\downarrow\uparrow$ - $\uparrow\downarrow$ Para – positronium (**p** - Ps), τ (vac) = 0.125 ns, ${}^{1}S_{0}$ S=1 $\uparrow\uparrow+\downarrow\downarrow$ ortho – positronium (o - Ps), τ (vac) = 142 ns, ${}^{3}S_{1}$

^{*}Undergoes self-annihilation into gamma quanta. Requirement of invariance of charge conjugation, the decays of Ps atoms follow the selection rules:

- p-Ps (S=0, L=0) Decays into $2n\gamma$ where n = 1, 2, 4....; $(-1)^{L+S} = (-1)^n \gamma$ **o-Ps (S=1, L=0)** Decays into $(2n+1)\gamma$ where n = 1, 2....;

^{*}With ability, to register multi photon simultaneously,

J-PET qualifies to perform **test** on **discrete symmetries** in the decays of **o-Ps atoms**

Odd-symmetry operators in decays of o-Ps atoms

Odd-symmetry operators in decays of o-Ps atoms

S. Sharma

 $|K_1| > |K_2| > |K_3|$

$$< \widehat{O} > = \widehat{S} \cdot \frac{(\overrightarrow{k}_1 \times \overrightarrow{k}_2)}{|\overrightarrow{k}_1 \times \overrightarrow{k}_2|} = cos(\theta)$$

Determination of o-Ps annihilation point

Annihilation point can be estimated using the trilateration method, based on GPS

$C^{2}(T_{i} - t)^{2} = (x_{i} - x)^{2} + (y_{i} - y)^{2}$

Where x,y is annihilation point on decay plane and t is decay time

A. Gajos et al. NIM A 819 (2016) 54-59

Spin determination of o-Ps atom

Spin is estimated event-by-event, based on the registration of o-Ps decay

Estimation of effective polarization (spin) depends on the vertex resolution.

S. Sharma

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

$$P_{o-Ps} = \frac{2}{3}P_{e^+}$$

$$P_{e^+} \approx \frac{v}{c} (1 + \cos \alpha)/2$$

A. Gajos et al. NIM A 819 (2016) 54-59

Analysis scheme to select o-Ps events

Analysis scheme to select o-Ps events

S. Sharma

K. Dulski et al., NIM A 1008 (2021) 165452

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

Analysis scheme to select o-Ps events

New operators added utilizing the photon's polarization

Future upgrades : towards modular based J-PET prototype

S. Sharma

Composed of **24 individual** (standalone) detection **modules**

Each module is made of **13 plastic scintillators** (50x24x6 mm³)

Scintillators are read out by matrix of SiPM on each end

Modules can be operated individually enabling to utilize as multi-role detector

Easy to transport (full barrel around 60 kg), can be assembled in a time span of 2-3 hours.

Modular construction (FEE* attached) allows to configure one layer (24) or multiple layer (e.g., 8+16, requirement specific)

FEE* - Front End Electronics

Modular layer in different configuration

Modular layer in different configuration

S. Sharma

Multi-layer configuration

Conclusions and summary

J-PET detector has demonstrated its potentialities to perform the test on discrete symmetries in the Decays of o-Ps atoms. First results are already published. *P. Moskal et al., Nature Communication 12 (2021) 5658*

Test with <u>new odd-symmetry operators</u> utili with the J-PET detector.

First Results from one of mentioned operator will be reported soon

Modular J-PET will <u>enable to achieve</u> the **several time enhanced efficiency** in using along with present 3-layer prototype *as an additional layer* or as of *multiple layers*. *Simulations for the optimized configuration is going on.*

Solution Struction and ability to work as standalone detection modules, new prototype can be useful for performing tests in various labs aiming to study the decays of Ps atoms or other relevant studies.

Test with new odd-symmetry operators utilizing the photon's polarization are currently feasible

XIV International conference on Beauty, Charm And Hyperon Hadrons, AGH-UST, Krakow

S. Sharma on behalf of the the J-PET collaboration

Lifetime of o-Ps atoms

Lifetime of o-Ps atoms

Energy of annihilated gamma quanta from o-Ps decay

D. Kaminska et al., Eur. Phys. J. C 76 (2016) 445

$$-2m_{e}\frac{-\cos\theta_{13}+\cos\theta_{12}\cos\theta_{23}}{(-1+\cos\theta_{12})(1+\cos\theta_{12}-\cos\theta_{13}-\cos\theta_{23})},\\-2m_{e}\frac{\cos\theta_{12}\cos\theta_{13}-\cos\theta_{23}}{(-1+\cos\theta_{12})(1+\cos\theta_{12}-\cos\theta_{13}-\cos\theta_{23})},\\2m_{e}\frac{1+\cos\theta_{12}}{1+\cos\theta_{12}-\cos\theta_{13}-\cos\theta_{23}}.$$

Back-up slides

