SU(3) flavor symmetry breaking in $B \rightarrow D\bar{D}$ decays

Rupam Samanta

AGH University of Science and Technology, Krakow, Poland

...in collaboration with Soumitra Nandi, Aritra Biswas, Sunando Kumar Patra, Jaydeep Mandal

XIV INTERNATIONAL CONFERENCE ON BEAUTY, CHARM AND HYPERON HADRONS

AGH

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

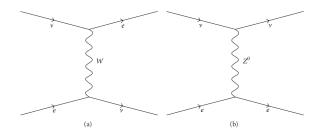
(AGH UST)

R. Samanta

June 10, 2022

The Weak Interaction in Standard Model (SM)

- Mediated by W^{\pm} , Z_0 bosons
- Two type of vertices :
 - Charged-Current (CC): (W[±])
 - Neutral-Current (NC): (Z₀)

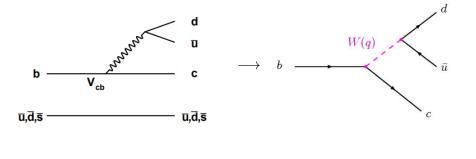


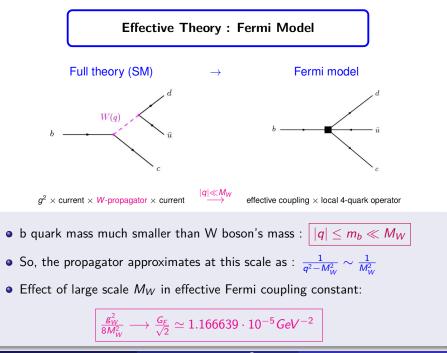
Vertex :~
$$\frac{-ig_W}{2\sqrt{2}}\gamma^{\mu}(1-\gamma^5)$$
 Weak-propagator: ~ $\frac{1}{q^2-M_\chi^2}$ (X= W,Z)

B meson decay as weak interaction

depends on the energy/length scale.

- for weak b-decays : length scale $\delta x \sim \frac{1}{M_W}$: large M_W and small x
- e.g. for $B^- \to D^0 \pi^-$ decay, at the quark level : $(b\bar{u}) \to (c\bar{u})(d\bar{u}) \Longrightarrow b \to cd\bar{u}$





Effective Hamiltonian for $b \rightarrow c d \bar{u}$

After the Operator Product Expansion(OPE) at short distance,

$$H_{eff} = \frac{G_F}{\sqrt{2}} \quad V_{cb}V_{ud}^* \quad \sum_{i=1,2} C_i(\mu)\mathcal{O}_i + h.c \quad (b \to cd\bar{u})$$

$$Eff. \ Coupl. \times \ CKM \times \qquad OPE$$

$$\iota) \longrightarrow Wilson's \ coefficients \qquad \mathcal{O}_i \longrightarrow Effective \ operator$$

• Current-Current Operators: $(b \rightarrow cd\bar{u}, \text{ analogously for } b \rightarrow qq'q'')$

$$\mathcal{O}_1 = (\bar{d}_L^a \gamma_\alpha u_L^b) (\bar{c}_L^b \gamma^\alpha b_L^a)$$
$$\mathcal{O}_2 = (\bar{d}_L^a \gamma_\alpha u_L^a) (\bar{c}_L^b \gamma^\alpha b_L^b)$$

• The Wilson Coefficients $C_i(\mu)$ contains all information about Short-Distance Physics \equiv Dynamics above a Scale μ

R. Samanta (AGH UST)

 $C_i(I$

SU(3) breaking in $B \rightarrow D\bar{D}$ decays

The Cabibbo-Kobayashi-Maskawa (CKM) Matrix

Weak interaction of quarks are different from weak interaction of leptons !

The CKM matrix transforms mass-eigenstates to flavor or weak-eigenstates :

$$\begin{pmatrix} d' \ s' \ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \ s \ b \end{pmatrix}$$

Weak Eigenstates

CKM matrix

Mass Eigenstates

► The Wolfenstein parametrization

$$V_{CKM} = egin{pmatrix} 1 - rac{1}{2}\lambda^2 & \lambda & A\lambda^3(
ho - \iota\eta) \ -\lambda & 1 - rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3(1 -
ho - \iota\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

R. Samanta (AGH UST)

SU(3) breaking in $B \rightarrow D\bar{D}$ decays

$B\to D\bar{D}$ decay

- Quark content : $B \equiv (B^+, B^0, B_s^0) = (\bar{b}u, \bar{b}d, \bar{b}s)$ $D \equiv (D^0, D^+, D_s^-) = (c\bar{u}, c\bar{d}, c\bar{s})$ • $B \rightarrow D\bar{D}$ decay at quark level: $(\bar{b}q) \rightarrow (c\bar{q})(\bar{c}q) \equiv b \rightarrow c\bar{c}\bar{q}$ where q = (d, s)
- Under Effective Field Theory (EFT), the quark level Effective Hamiltonian :

$$H_{eff}^{q} = \frac{G_{F}}{\sqrt{2}} \{ V_{cb} V_{cq}^{*} (C_{1} O_{1}^{q,c} + C_{2} O_{2}^{q,c}) + V_{ub} V_{uq}^{*} (C_{1} O_{1}^{q,u} + C_{2} O_{2}^{q,u}) - V_{tb} V_{tq}^{*} \sum_{i=3}^{6} C_{1} O_{i}^{q} \}$$

where, by the unitarity of CKM matrix elements, $V_{ub}V_{uq}^* + V_{cb}V_{cq}^* + V_{tb}V_{tq}^* = 0$ and the operators are given by,

$$\begin{aligned} O_1^{q,c} &= (\bar{c}_j b_i)_{V-A}(\bar{q}_i c_j)_{V-A}, & O_2^{q,c} &= (\bar{c}b)_{V-A}(\bar{q}c)_{V-A}, \\ O_1^{q,u} &= (\bar{u}_j b_i)_{V-A}(\bar{q}_i u_j)_{V-A}, & O_2^{q,u} &= (\bar{u}b)_{V-A}(\bar{q}u)_{V-A}, \\ O_3^q &= (\bar{q}b)_{V-A} \sum_{q'} (\bar{q'}q')_{V-A}, & O_4^q &= (\bar{q}_i b_j)_{V-A} \sum_{q'} (\bar{q'}_j q_i')_{V-A}, \end{aligned}$$

• Operators are generated from all the diagrams (or processes) that contribute to the decay channel by renormalization in effective field theoretical approach

R. Samanta (AGH UST)

- The decay amplitude for $B o Dar{D}$ decays : $A(q) = \left< Dar{D} \right| H^q_{eff} \ket{B}$
- Inserting H_{eff}^{q} , and using the unitarity of CKM elements,

$$A(q) = \frac{G_F}{\sqrt{2}} (V_{cb} V_{cq}^* T(q) + V_{tb} V_{tq}^* P(q))$$

Where, T(q) = Tree level amplitudes from all the Tree level diagrams and P(q) = Penguin amplitudes from all the Penguin diagrams

- Calculation of *T(q)* and *P(q)* → matrix elements of those operators in different models: Lattice QCD !
- four-quark level interaction \longrightarrow Hadronic interaction : Calculation of Form Factors! $f(q^2)$
- Alternative : SU(3) flavor symmetry approach !

SU(3) flavor symmetry

- Symmetry between the 3 lightest quarks of Standard Model : u ,d and s
- Symmetry transformation belongs to Special Unitary group of dimension 3; SU(3):

$$\begin{pmatrix} u'\\d'\\s' \end{pmatrix} = \hat{U} \begin{pmatrix} u\\d\\s \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} & U_{13}\\U_{21} & U_{22} & U_{23}\\U_{31} & U_{32} & U_{33} \end{pmatrix} \begin{pmatrix} u\\d\\s \end{pmatrix}$$

- Now in Lie group theory , $\hat{U} = e^{\iota \vec{\alpha} \cdot \vec{T}}$ where, α = infinitesimal transformation and \vec{T} is the generator of the group ; $\vec{T} = \frac{1}{2}\vec{\lambda}$
- ► For a group of **N** dimension there are N^2 -1 number of generators: -there are **8** $\lambda' s \longrightarrow$ **8** Gell-Mann matrices

Generators of SU(3) : Gell-Mann matrices

$$\begin{split} \lambda_1 &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \lambda_4 &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \\ \lambda_6 &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \lambda_7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{split}$$

Tensor decomposition under flavor SU(3)

• Under flavor SU(3) u, d, s transforms as a triplet (3), denoted by ,

$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ s = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

- all other quarks c, t, b transforms as singlet (1)
- For $B \to D\bar{D} \ (\bar{b} \to c\bar{c}\bar{q})$ decays:

$$egin{array}{cccc} ar{b} & \longrightarrow & c & ar{c} & ar{q} \ ar{1} & \longrightarrow & 1 & ar{1} & ar{3} \end{array}$$

• So, the quark level interaction Hamiltonian transform as:

 $\overline{1} \otimes 1 \otimes \overline{1} \otimes \overline{3} = \overline{3}$ Tensor product

 \longrightarrow we get $H(\bar{3})^q$ with q = d and s

SU(3) reduced amplitude for $B \rightarrow D\bar{D}$ decays

• Under SU(3) flavor symmetry the decay amplitude becomes : $A(q) = \left\langle D\bar{D} \right| H_{eff}^{q} |B\rangle = \frac{G_{F}}{\sqrt{2}} (V_{cb} V_{cq}^{*} T(q) + V_{tb} V_{tq}^{*} P(q))$ with $T(q) = A_{DD}^{T} (B_{i} H^{q^{i}}) (D_{i} \bar{D}^{j}) + B_{DD}^{T} (B_{i} \bar{D}^{i}) (D_{i} H^{q^{j}})$

and

$$P(q) = A_{DD}^{P}(B_{i}H^{q^{i}})(D_{j}\bar{D}^{j}) + B_{DD}^{P}(B_{i}\bar{D}^{j})(D_{j}H^{q^{j}})$$

• q=d correspond to the $\Delta S = 0$ Cabibbo-suppressed decays and q=s correspond to the $\Delta S = 1$ Cabibbo-favored decays with,

$$H(\overline{3})^d = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$
, and $H(\overline{3})^s = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$

• The coefficients A_{DD}^{T} , B_{DD}^{T} , A_{DD}^{P} and B_{DD}^{P} are the SU(3) invariant complex amplitudes. given by:

$$X_{DD}^{T,P} = \operatorname{Re}(x_{DD}^{T,P}) + \iota \operatorname{Im}(x_{DD}^{T,P}), \text{ with } X = (A,B) \text{ and } x = (a,b)$$

Breaking of SU(3) flavor symmetry

The flavor SU(3) symmetry between u,d and s quark is not exact ! because of their mass difference !

 $m_u \sim 2$ MeV, $m_d \sim 4$ MeV, and $m_s \sim 100$ MeV !!

 $m_s \gg m_u, m_d$

- ► In reality SU(3) flavor symmetry is **badly broken** in nature
- ► To include this breaking we add a ss in our interaction: Hamiltonian

$$s\overline{s} = 3 \otimes \overline{3} = 8 \oplus 1$$

We contract the octet part with the unbroken Hamiltonian, given by W:

$$W(8)=egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & -2 \end{pmatrix}$$

Amplitudes under SU(3) breaking in $B \rightarrow D\bar{D}$ decays

• After symmetry breaking decay amplitude becomes :

$$A(q) = \left\langle D\bar{D} \right| H_{eff}^{q} \left| B \right\rangle = \frac{G_{F}}{\sqrt{2}} \left(V_{cb} V_{cq}^{*} \{ T(q) + \Delta T(q) \} + V_{tb} V_{tq}^{*} \{ P(q) + \Delta P(q) \} \right)$$

- $\Delta T(q)$ and $\Delta P(q)$ correspond to the inclusion of breaking!
- Approximations :
 - Breaking associated to the Tree and Penguin amplitudes are of the same order.
 - Broken amplitudes having same origin from unbroken contraction are assigned same parameters
- With this we have : $\Delta T(q) \simeq \Delta P(q) = \Delta_{DD}(q)$

$$\begin{split} \Delta_{DD}(q) &= C_{DD}(B_{i}H^{q^{i}})(D_{j}W_{k}^{j}\bar{D}^{k}) + D_{DD}(B_{i}\bar{D}^{i})(D_{j}W_{k}^{j}H^{q^{k}}) \\ &+ C_{DD}(B_{i}W_{j}^{i}H^{q^{i}})(D_{k}\bar{D}^{k}) + D_{DD}(B_{i}W_{j}^{i}\bar{D}^{j})(D_{k}H^{q^{k}}) \end{split}$$

• The broken coefficients, C_{DD} and D_{DD} have similar complex form as unbroken ones

• Branching Ratio :

$$BR(B_i o D_j D_k) = rac{\Gamma(B_i o D_j D_k)}{\Gamma(B_i)}, \quad \Gamma = Deacy \ width$$

Decay width: $\Gamma(B_i \rightarrow D_j D_k) = \frac{p^*}{32\pi^2 m_{B_i}^2} \int |A(B_i \rightarrow D_j D_k)|^2 d\Omega$

• Ratio of the BR's: $\frac{BR(B_i)}{BR(B_i)}$

$$\frac{BR(B_i \rightarrow D_j D_k)}{R(B_l \rightarrow D_m D_n)}$$

- CP violating observables : $\Gamma(B \to f) \neq \Gamma(\bar{B} \to \bar{f})$
 - Direct CP violation:

$$A_{CP} = \frac{\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f})}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})}$$

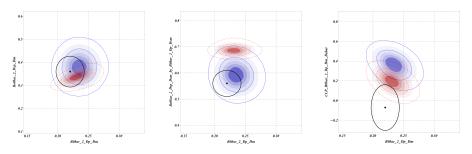
• CP violation in mixing: $\bar{B^0} \to f \leftrightarrow B^0 \to f$

$$C_{CP} = rac{1-|\lambda|^2}{1+|\lambda|^2}$$
 $S_{CP} = rac{2Im\lambda}{1+|\lambda|^2}, \ \lambda = rac{q}{p} \; rac{ar{A_f}}{A_f}$

Fit results : Frequentist analysis

- The observables are calculated with the SU(3) reduced amplitude for both the exact and broken SU(3).
- As a fit to the experimental data of these observables (HFLAV, Belle, BaBar, LHCb), frequentist analysis has been performed
- Exact SU(3):
 - No. of SU(3) parameters : 7
 - $\chi^2 = 12.42$
 - P value = 0.332
- Broken SU(3):
 - No. of SU(3) parameters : 11
 - $\chi^2 = 5.49$
 - P value = 0.599
- The P value is significantly improved with the broken SU(3) symmetry description of the decay
- χ^2 analysis \rightarrow still inconclusive! due to the lack of enough data

Bayesian Analysis : Preliminary!



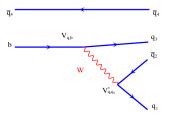
Fit results : Bayesian analysis

- The correlation between the observables approach to the data after SU(3) breaking!
- This analysis also tells the trend of the future data : Prediction for more precise measurements !
- More data required for more sophisticated and concrete analysis !

SU(3) breaking in $B \rightarrow D\bar{D}$ decays

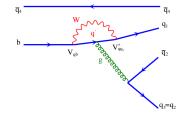
SU(3) Topology of $B \rightarrow D\bar{D}$ decays

There are mainly two types of diagrams that contribute to B decays topology: Tree level diagram and Penguin or Loop level diagram



Tree level diagram

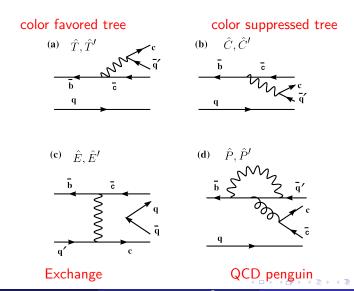
John Ellis (1977)



Penguin(QCD) diagram

BEACH 2022: June 10 18 / 24

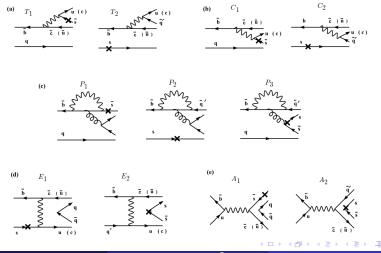
Topological diagrams with exact SU(3) symmetry



BEACH 2022: June 10 19 / 24

Diagrams with broken SU(3) symmetry

To include SU(3) breaking effect in the topological diagram a "X" mark has been introduce on the s- quark line.



SU(3) breaking in $B \rightarrow D\bar{D}$ decays

BEACH 2022: June 10 20 / 24

Topological amplitude with unbroken and broken SU(3) symmetry for $B \rightarrow D\bar{D}$ decays

Decay Modes	Unbroken	Broken
$\mathcal{A}(B^- \to D^0 D_s^-)$	$\hat{T}' + \hat{P}'$	$\hat{\textbf{T}}' + \hat{\textbf{P}}' + \textbf{T}_1' + \textbf{P}_1'$
$\mathcal{A}(\bar{B}_s \to D_s^+ D_s^-)$	$\hat{T}' + \hat{P}' + \hat{E}'$	$\hat{T}' + \hat{P}' + \hat{E}' + T_1' + T_2' + P_1' + P_2' + E_1' + E_2'$
$\mathcal{A}(\bar{B}_s \to D^+ D^-)$	$\hat{\mathrm{E}}'$	$\hat{ ext{E}}' + ext{E}_1'$
$\mathcal{A}(\bar{B}_s \to D^+ D_s^-)$	$\hat{T}' + \hat{P}'$	$\hat{\textbf{T}}' + \hat{\textbf{P}}' + \textbf{T}_1' + \textbf{P}_1'$
$\mathcal{A}(\bar{B}_s \to D^0 \bar{D}^0)$	$\hat{\mathbf{E}}'$	$(\hat{E}' + E_1')$
$\mathcal{A}(\bar{B}^0 \to D^+ D^-)$	$\hat{T} + \hat{P} + \hat{E}$	$\hat{\mathrm{T}}+\hat{\mathrm{P}}+\hat{\mathrm{E}}$
$\mathcal{A}(\bar{B}^0 \to D^0 \bar{D}^0)$	-Ê	$-\hat{\mathbf{E}}$
$\mathcal{A}(\bar{B}_s \to D_s^+ D^-)$	$\hat{T}' + \hat{P}'$	$\mathbf{T}' + \hat{\mathbf{P}}' + \mathbf{T}_2' + \mathbf{P}_2'$
$\mathcal{A}(\bar{B}^0 \to D_s^+ D_s^-)$	$\hat{\mathrm{E}}'$	$\hat{ ext{E}}' + ext{E}_2'$
$\mathcal{A}(B^- \to D^0 D^-)$	$\hat{T} + \hat{P}$	$\hat{\mathrm{T}}+\hat{\mathrm{P}}^{-}$

- The inclusion of breaking modify the topological amplitudes
- Apparent confusion: some decay modes remain unaffected even after breaking ! → This is not the case ! The SU(3) and topology amplitudes are in different basis

R. Samanta (AGH UST)

SU(3) breaking in $B \rightarrow D\bar{D}$ decays

Summary and Outlook

- $(B \rightarrow D\bar{D}) \Longrightarrow$ weak interaction.
- The decay amplitude \implies Heavy Flavor Effective Field Theory \implies Form factor calculation
- Alternative approach: Flavor SU(3) symmetry between u,d and s.
- The breaking of SU(3) gives more accurate description to the observables than exact SU(3) !
- SU(3) breaking effects can also be studied in terms of topological amplitudes
- Future :
 - Run 3 of LHCb, new measurement in Belle and BaBar; More statistics
 - More precise statistical analysis !
- Manuscript under preparation! soon on arXiv: Stay tuned.....

 □
 ↓
 ▲
 ■
 ↓
 ▲
 ■
 ↓
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

ELE NOR

22 / 24

References

- M. J. Savage and M. B. Wise, "SU(3) Predictions for Nonleptonic B Meson Decays," *Phys. Rev. D*, vol. 39, p. 3346, 1989.
 [Erratum: Phys.Rev.D 40, 3127 (1989)].
- G. Buchalla, A. J. Buras, and M. E. Lautenbacher, "Weak decays beyond leading logarithms," *Rev. Mod. Phys.*, vol. 68, pp. 1125–1144, 1996.
- D. Zeppenfeld, "SU(3) Relations for B Meson Decays," Z. Phys. C, vol. 8, p. 77, 1981.
- B. Grinstein and R. F. Lebed, "SU(3) decomposition of two-body B decay amplitudes," *Phys. Rev. D*, vol. 53, pp. 6344–6360, 1996.
- F
- X.-G. He, G.-N. Li, and D. Xu, "SU(3) and isospin breaking effects on $B \rightarrow PPP$ amplitudes," *Phys. Rev. D*, vol. 91, no. 1, p. 014029, 2015.
- P. A. Zyla *et al.*, "Review of Particle Physics," *PTEP*, vol. 2020, no. 8, p. 083C01, 2020.
- R. Aaij *et al.*, "Measurement of *CP* violation in $B^0 \rightarrow D^+D^-$ decays," *Phys. Rev. Lett.*, vol. 117, no. 26, p. 261801, 2016.

Thank you !

BEACH 2022: June 10 24 / 24

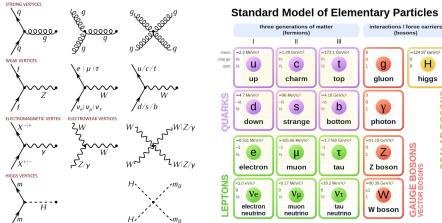
< 行

ELE DOG

Back up

美国 のへの

The Standard Model of Particle Physics



Standard Model of Elementary Particles

< □ > < /□ >

Source : Wikipedia

(bosons)

ν

Z

Ŵ

BOSON

UGE GAUGI VECTOR E

BOSONS

1.5

=124.97 GeV/c2

н

higgs

SCALAR BOSO

Central Notions : Theoretical Jargon

Factorization

— Separation of scales in Pertirbation Theory
 — Simplification of exclusive hadronic matrix elements

Operator Product Expansion(OPE)

Short distance expansion $(x \to 0)$ of time ordered operator products corresponding to $|q^2| \to \infty$ in Fourier transform:

 $\int d^4x \ e^{iq.x} T(\phi(x)\phi(0)) = \sum_i c_i(q^2) \mathcal{O}_i(0)$

"Wilson Coefficients" $c_i(q^2)$ "Effective" Operators $\mathcal{O}_i(0)$

Effective(Quantum) Field Theories

Effective Lagrangian/Hamiltonian :

- Feynman rules \longrightarrow dynamics of low-energy modes
- High-energy(short-distance) information in coefficients/functions

SU(3) amplitudes for decay modes

• Cabbibo-suppressed ($\Delta S = 0$) decay modes:

$$\begin{split} \mathcal{A}(\bar{B}_{s} \rightarrow D^{-}D_{s}^{+}) \rightarrow & \frac{A\lambda^{3}G_{F}((i\eta - \rho + 1)(\operatorname{Re}(b_{DD}^{P}) + i\operatorname{Im}(b_{DD}^{P})) - i\operatorname{Im}(b_{DD}^{T}) - \operatorname{Re}(b_{DD}^{T}))}{\sqrt{2}} \\ \mathcal{A}(\bar{B}^{0} \rightarrow D_{s}^{-}D_{s}^{+}) \rightarrow & \frac{A\lambda^{3}G_{F}((i\eta - \rho + 1)(\operatorname{Re}(a_{DD}^{P}) + i\operatorname{Im}(a_{DD}^{P})) - i\operatorname{Im}(a_{DD}^{T}) - \operatorname{Re}(a_{DD}^{T}))}{\sqrt{2}} \end{split}$$

• Cabbibo-favoured ($\Delta S = 1$) decay modes:

$$\begin{split} \mathcal{A}(\bar{B}_{s} \to D^{-}D^{+}) &\to \frac{A\lambda^{2}G_{F}\left(-i\,\operatorname{Im}(a_{DD}^{P}) + \left(1 - \frac{\lambda^{2}}{2}\right)\left(\operatorname{Re}(a_{DD}^{T}) + i\,\operatorname{Im}(a_{DD}^{T})\right) - \operatorname{Re}(a_{DD}^{P})\right)}{\sqrt{2}} \\ \mathcal{A}(\bar{B}_{s} \to D_{s}^{-}D_{s}^{+}) &\to \frac{G_{F}}{\sqrt{2}}\left(A\lambda^{2}\left(1 - \frac{\lambda^{2}}{2}\right)\left(i\left(\operatorname{Im}(a_{DD}^{T}) + \operatorname{Im}(b_{DD}^{T})\right) + \operatorname{Re}(a_{DD}^{T})\right) + \operatorname{Re}(b_{DD}^{T})\right) - A\lambda^{2}(i\left(\operatorname{Im}(a_{DD}^{P}) + \operatorname{Im}(b_{DD}^{P})\right) + \operatorname{Im}(b_{DD}^{P})) + \operatorname{Re}(b_{DD}^{T})\right) + \operatorname{Re}(b_{DD}^{T}) + \operatorname{Re}(b_{DD}^{T}) + \operatorname{Re}(b_{DD}^{T}) + \operatorname{Re}(b_{DD}^{T})\right) \\ &+ \operatorname{Im}(b_{DD}^{P}) + \operatorname{Re}(a_{DD}^{P}) + \operatorname{Re}(b_{DD}^{P})) \end{split}$$

R. Samanta (AGH UST)

BEACH 2022: June 10 4 / 6

1= 9QC

Image: A math a math

Broken SU(3) amplitudes

• Cabbibo-suppressed ($\Delta S = 0$) decay modes:

$$\begin{split} \mathcal{A}(\bar{B}_{s} \rightarrow D^{-}D_{s}^{+}) \rightarrow & A\lambda^{3}\frac{G_{F}}{\sqrt{2}}((i\eta - \rho + 1)(-i\operatorname{Im}(d_{DD}) + i\operatorname{Im}(b_{DD}^{P}) - \operatorname{Re}(d_{DD}) + \operatorname{Re}(b_{DD}^{P})) + i\operatorname{Im}(d_{DD}) \\ & -i\operatorname{Im}(b_{DD}^{T}) + \operatorname{Re}(d_{DD}) - \operatorname{Re}(b_{DD}^{T})) \\ \mathcal{A}(\bar{B}^{0} \rightarrow D_{s}^{-}D_{s}^{+}) \rightarrow & A\lambda^{3}\frac{G_{F}}{\sqrt{2}}((i\eta - \rho + 1)(-i\operatorname{Im}(c_{DD}) + i\operatorname{Im}(a_{DD}^{P}) - \operatorname{Re}(c_{DD}) + \operatorname{Re}(a_{DD}^{P})) + i\operatorname{Im}(c_{DD}) - i\operatorname{Im}(a_{DD}^{T}) \\ & + \operatorname{Re}(c_{DD}) - \operatorname{Re}(a_{DD}^{T})) \end{split}$$

• Cabbibo-favoured ($\Delta S = 1$) decay modes:

$$\begin{split} \mathcal{A}(\bar{B}_{s} \rightarrow D^{-}D^{+}) \rightarrow & \mathrm{A}\lambda^{2} \frac{G_{F}}{2\sqrt{2}} \left(\lambda^{2} (i \operatorname{Im}(c_{\mathrm{DD}}) - i \operatorname{Im}(a_{\mathrm{DD}}^{T}) + \operatorname{Re}(c_{\mathrm{DD}}) - \operatorname{Re}(a_{\mathrm{DD}}^{T})) - 2i \operatorname{Im}(a_{\mathrm{DD}}^{P}) + 2i \operatorname{Im}(a_{\mathrm{DD}}^{T}) \right) \\ & -2 \operatorname{Re}(a_{\mathrm{DD}}^{P}) + 2 \operatorname{Re}(a_{\mathrm{DD}}^{T}) \right), \\ \mathcal{A}(\bar{B}_{s} \rightarrow D_{s}^{-}D_{s}^{+}) \rightarrow & \mathrm{A}\lambda^{2} \frac{G_{F}}{\sqrt{2}} \left(\left(1 - \frac{\lambda^{2}}{2}\right) \left(-4i(\operatorname{Im}(c_{\mathrm{DD}}) + \operatorname{Im}(d_{\mathrm{DD}})) + i(\operatorname{Im}(a_{\mathrm{DD}}^{T}) + \operatorname{Im}(b_{\mathrm{DD}}^{T})) - 4 \operatorname{Re}(c_{\mathrm{DD}}) \right) \\ & -4 \operatorname{Re}(d_{\mathrm{DD}}) + \operatorname{Re}(a_{\mathrm{DD}}^{T}) + \operatorname{Re}(b_{\mathrm{DD}}^{T}) + 4i(\operatorname{Im}(c_{\mathrm{DD}}) + \operatorname{Im}(d_{\mathrm{DD}})) - i(\operatorname{Im}(a_{\mathrm{DD}}^{P}) + \operatorname{Im}(b_{\mathrm{DD}}^{P})) \\ & +4 \operatorname{Re}(c_{\mathrm{DD}}) + 4 \operatorname{Re}(d_{\mathrm{DD}}) - \operatorname{Re}(a_{\mathrm{DD}}^{P}) - \operatorname{Re}(b_{\mathrm{DD}}^{P}) \right) \end{split}$$

글 🕨 🖌 글

三日 のへの

Decay width Sum Rules

- One can also construct Sum rules between different decay modes at the decay width level
- Under exact SU(3) :

$$\begin{split} |\mathcal{A}(B^{-} \to D^{0}D_{s}^{-})|^{2} &= |\mathcal{A}(\bar{B}^{0} \to D^{+}D_{s}^{-})|^{2}, \\ |\mathcal{A}(\bar{B}_{s} \to D_{s}^{+}D^{-})|^{2} &= |\mathcal{A}(B^{-} \to D^{0}D^{-})|^{2}, \\ |\mathcal{A}(\bar{B}_{s} \to D_{s}^{+}D_{s}^{-})|^{2} &= |\mathcal{A}(\bar{B}^{0} \to D^{+}D^{-})|^{2}, \\ |\mathcal{A}(\bar{B}_{s} \to D^{+}D^{-})|^{2} &= |\mathcal{A}(\bar{B}_{s} \to D^{0}\bar{D}^{0})|^{2}, \\ |\mathcal{A}(\bar{B}^{0} \to D^{0}\bar{D}^{0})|^{2} &= |\mathcal{A}(\bar{B}^{0} \to D_{s}^{+}D_{s}^{-})|^{2}. \end{split}$$

With broken SU(3) symmetry :

$$\begin{split} |\mathcal{A}(B^- \to D^0 D_s^-)|^2 &= |\mathcal{A}(\bar{B}^0 \to D^+ D_s^-)|^2, \\ |\mathcal{A}(\bar{B}_s \to D^+ D^-)|^2 &= |\mathcal{A}(\bar{B}_s \to D^0 \bar{D}^0)|^2, \end{split}$$

Some sum rules are retained after SU(3) symmetry breaking !

SU(3) breaking in $B \rightarrow D\bar{D}$ decays

(0.1)