

Wprowadzenie do teorii transportu elektronowego w układach nanoskopowych

Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie

Plan wykładu

Wstęp do teorii transportu elektronowego w układach nanoskopowych

- 1. Transport balistyczny i dyfuzyjny
- 2. Formuła Landauera
- 3. Układy wieloterminalowe formuła Landauera-Büttikera
- 4. Kwantyzacja konduktancji w kwantowym kontakcie punktowym (QPC)
- 5. Eksperymenty QPC, SGM, i inne

Transport dyfuzyjny vs. transport balistyczny

Rozważmy ruch elektronu pod wpływem działania stałego pola elektrycznego \mathcal{E} .

$$m^* \frac{d\mathbf{V}_q}{dt} = q\mathbf{\mathcal{E}} \quad \Longrightarrow \quad \mathbf{V}_q(t) = \frac{q\mathbf{\mathcal{E}}}{m^*}t$$

Prędkość unoszenia (dryftu) dla nośnika o ładunku q

$$\langle \mathbf{V}_q \rangle = \frac{q \boldsymbol{\mathcal{E}} \tau}{m^*} = \pm \mu_q \boldsymbol{\mathcal{E}}$$

A zatem

$$\mathbf{V}_{drf|q} = \pm \mu_q \boldsymbol{\mathcal{E}}$$
$$\mu_q = \left| \frac{q\tau}{m^*} \right|$$

Prąd unoszenia

$$\mathbf{j}_{drf|q} = qn_q \mathbf{V}_q = \pm qn_q \mu_q \boldsymbol{\mathcal{E}}$$

Prędkość unoszenia jest wprost proporcjonalna do przyłożonego pola elektrycznego, zaś współczynnikiem proporcjonalności jest wielkość zwana **ruchliwością (mobilnością) nośników**

	elektrony (cm^2/Vs)	dziury (<i>cm²/Vs</i>)
Si	1350	480
GaAs	8500	400
Ge	3900	1900

Transport dyfuzyjny vs. transport balistyczny

Co się stanie gdy rozmiar układu będzie mniejszy od średniej drogi pomiędzy rozproszeniami

Transport dyfuzyjny Ruchliwość jako wielkość fizyczna ma uzasadnienie jedynie w przypadku transportu dyfuzyjnego

Obszar transportu kwazi-klasycznego (kwazi-balistycznego), obszar przejściowy.

Zakres transporty zależy od skali długości:

- długość koherencji ξ
- średnia długość rozpraszania λ

Transport balistyczny

W przypadku transportu kwantowego wielkością, która determinuje transport jest współczynnik transmisji

Transport balistyczny – czyli co się stanie gdy długość układu staje się mniejsza niż długość rozpraszania

Pytania na które należy odpowiedzieć:

- 1. Czy taki układ wykazuje opór?
- 2. Jeśli tak, jakie jest pochodzenie tego oporu?
- 3. Gdzie odkłada się spadek napięcia związany z istnieniem oporu, aby spełnione były prawa Kirchoffa ?

Intuicyjnie, transport powinien być określony przez **współczynnik transmisji** – czyli prawdopodobieństwo tego, że elektron przejdzie z kontaktu 1 do kontaktu 2, generując prąd.

Transport balistyczny – czyli co się stanie gdy długość układu staje się mniejsza niż długość rozpraszania

Pytania na które należy odpowiedzieć:

Struktura elektronowa – uproszczony model 2D

Uproszczony model nanodrutu

Potencjał uwięzienia:

- 1. w kierunku osi x cząstka swobodna,
- 2. w kierunku osi y nieskończona studnia potencjału lub oscylator harmoniczny

$$\begin{array}{ccc}
\mathsf{V} & \mathsf{V}_{conf} \\
\mathfrak{m} &= 0 \\
\mathsf{n=2} \\
\mathsf{n=1} \\
\mathsf{m=1} \\
\mathsf{m} &\mathsf{m} \\
\mathsf{m=1} \\
\mathsf{m=1} \\
\mathsf{m} \\$$

Struktura elektronowa – uproszczony model 2D

Uproszczony model nanodrutu

$$\psi_n(x,y) = \frac{1}{\sqrt{L}}\chi_n(y)e^{ikx} = \frac{1}{\sqrt{L}}\sqrt{\frac{2}{W}}\sin\left(\frac{n\pi y}{W}\right)e^{ikx}$$

Stąd energie

$$E_n(k) = \varepsilon_n + \frac{\hbar^2 k^2}{2m^*} = \frac{\hbar^2 \pi^2 n^2}{2m^* W^2} + \frac{\hbar^2 k^2}{2m^*}$$

k

Ważne założenie - kontakty "bezodbiciowe":

- Elektrony wypływające z przewodnika do kontaktu nie ulegają odbiciu – dobre przybliżenie
- Elektrony wypływające z kontaktu do przewodnika również nie ulegają odbiciu – słabe przybliżenie
- Elektrony wypływające z kontaktu 1 obsadzają stany +k, a zatem ich kwazi-poziom Fermiego jest równy μ₁
- Elektrony wypływające z kontaktu 2 obsadzają stany
 -k a zatem ich kwazi-poziom Fermiego jest równy μ₂
- Przy niezerowym napięciu prąd niesiony jest przez stany +k pomiędzy μ₁ oraz μ₂

Dno pasma przewodnictwa

 $\varepsilon_N = E(N, k = 0)$

Liczba pasm o energii E

$$M(E) = \sum_{N} \theta(E - \varepsilon_N)$$

Prąd w kierunku osi x od jednego pasma

$$I^{+} = \frac{e}{L} \sum_{k} Vf^{+}(E) = \frac{e}{L} \sum_{k} \frac{1}{\hbar} \frac{\partial E}{\partial k} f^{+}(E)$$

Zamieniając sumowanie po k na całkowanie

$$\sum_k \to 2 \times \frac{L}{2\pi} \int dk$$

Stąd, prąd
$$I^+ = \frac{2e}{h} \int_{\varepsilon}^{\infty} f^+(E) dE$$

Uwzględniając wszystkie pasma

 $I^{+} = \frac{2e}{h} \int_{-\infty}^{\infty} f^{+}(E)M(E)dE$

Prąd jest sumą prądów płynących w lewo i prawo

$$I = I^{+} - I^{-} = \frac{2e}{h} \int_{-\infty}^{\infty} (f^{+} - f^{-})M(E)dE$$

Zakładając stałą liczbę pasm w zakresie energii oraz współczynnik transmisjiT=1

$$I = \frac{2e^2}{h}M\frac{\mu_1 - \mu_2}{e}$$

Oszacowanie liczby modów *M.* Zakładając uwięzienie w postaci nieskończonej studni

$$k_{y,n} = \frac{n\pi}{W}$$

Przy założeniu parabolicznej relacji dyspersji

$$E_n(k) = \frac{\hbar^2 k^2}{2m}$$

Ponieważ

$$M = Int\left[\frac{k_F W}{\pi}\right] = Int\left[\frac{2W}{\lambda_F}\right]$$

 λ_F w metalach rzędu 1-2 nm w półprzewodnikach ok. 30 nm

Konduktancja

$$G_c = \frac{2e^2}{h}M$$

Rezystancja

$$G_c^{-1} = \frac{(\mu_1 - \mu_2)/e}{I} = \frac{h}{2e^2M} = \frac{12.9k\Omega}{M}$$

Kwant konduktancji

$$G_0 = \frac{2e^2}{h}$$

Kwantyzacja konduktancji

Kwantowy kontakt punktowy, QPC

B. J. van wees, H. van Houten, C. w. J. Beenakker, J. G Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988)

Policzmy całkowity prąd przepływający przez dwie płaszczyzny (i) i (ii).

Policzmy całkowity prąd przepływający przez dwie płaszczyzny (i) i (ii).

Przypadek dla temperatury T=0, przy stałej liczbie modów poprzecznych oraz współczynniku transmisji T, który nie zależy od energii.

FORMUŁA LANDAUERA $G = \frac{2e^2}{MT}$ Rezystancja kontaktów Rezystancja centrum $G^{-1} = \frac{h}{2e^2M} \frac{1}{T} = \frac{h}{2e^2M} + \frac{h}{2e^2M} \frac{1-T}{T} = G_C^{-1} + G_{scat}^{-1}$ rozpraszania

Formuła Landauera dla niezerowych T i napięcia

Formuła Landauera zakłada, że

$$I = \frac{2e}{h} \int_{-\infty}^{\infty} M(E) T(E) (f_1(E, \mu_1) - f_2(E, \mu_2)) dE$$

Załóżmy, że temperatura T jest mała oraz do układu przyłożono niewielkie napięcie $\mu_1 - \mu_2$. Rozwijając f_1 w szereg Taylora wokół μ_2

$$I = \frac{2e}{h} \int_{-\infty}^{\infty} M(E)T(E) \left(f_1(E,\mu_2) + \frac{\partial f_1}{\partial \mu} d\mu - f_2(E,\mu_2) \right) dE$$
$$I = \frac{2e}{h} \int_{-\infty}^{\infty} M(E)T(E) \left(-\frac{\partial f}{\partial E} \right) (\mu_1 - \mu_2) dE$$
$$G = \frac{I}{(\mu_1 - \mu_2)/e} = \frac{2e^2}{h} \int_{-\infty}^{\infty} M(E)T(E) \left(-\frac{\partial f}{\partial E} \right) dE$$
Przybliżenie liniowej odpowiedzi

Dla małych temperatur dąży do delty Diraca

$$G = \frac{2e^2}{h}M(E_F)T(E_F)$$

Formuła Landauera a prawo Ohma

Dla układu makroskopowego (wiele pasm) wiemy, że zachodzi prawo Ohma

A zatem w granicy dużych rozmiarów próbki (dużej ilości centrów rozpraszania) powinniśmy z formuły Landauera móc otrzymać prawo Ohma.

Dla uproszczenia rozważmy dwa centra rozpraszania

Ile wynosi prawdopodobieństwo przejścia przez dwa centra ?

$$T_{12} = T_1 T_2$$

Formuła Landauera a prawo Ohma

Dla układu makroskopowego (wiele pasm) wiemy, że zachodzi prawo Ohma

A zatem w granicy dużych rozmiarów próbki (dużej ilości centrów rozpraszania) powinniśmy z formuły Landauera móc otrzymać prawo Ohma.

Dla uproszczenia rozważmy dwa centra rozpraszania

Ile wynosi prawdopodobieństwo przejścia przez dwa centra?

Formuła Landauera a prawo Ohma

Dla układu makroskopowego (wiele pasm) wiemy, że zachodzi prawo Ohma

A zatem w granicy dużych rozmiarów próbki (dużej ilości centrów rozpraszania) powinniśmy z formuły Landauera móc otrzymać prawo Ohma.

Dla uproszczenia rozważmy dwa centra rozpraszania

Ile wynosi prawdopodobieństwo przejścia przez dwa centra ?

Sumowanie daje szereg geometryczny

$$T_{12} = T_1 T_2 + T_1 T_2 R_1 R_2 + T_1 T_2 R_1^2 R_2^2 + \ldots = \frac{T_1 T_2}{1 - R_1 R_2}$$

Samo *T* nie jest wielkością addytywną, ale wielkością taką jest

$$\frac{1 - T_{12}}{T_{12}} = \frac{1 - T_1}{T_1} + \frac{1 - T_2}{T_2}$$

Stąd dla N centrów rozpraszania

$$\frac{1-T(N)}{T(N)} = N\frac{1-T}{T}$$

Formuła Landauera a prawo Ohma

A zatem współczynnik transmisji dla N centrów rozpraszania

$$T(N) = \frac{T}{N(1-T) + T}$$

Zakładając stałą gęstość linową centów rozpraszania

Długość charakterystyczna odpowiadającej średniej długości rozpraszania

/

$$T(N) = \frac{T}{n_{scat}L(1-T) + T} = \frac{\frac{T}{n_{scat}(1-T)}}{L + \frac{T}{n_{scat}(1-T)}} = \frac{L_0}{L + L_0}$$

Ponieważ liczba modów

$$G = \frac{2e^2}{h} \frac{k_F W}{\pi} T = \frac{2e^2}{h} \frac{k_F W}{\pi} \frac{L_0}{L + L_0}$$

Ponieważ zazwyczaj $L \gg L_0$

$$G = rac{2e^2}{h} rac{k_F L_0}{\pi} rac{W}{L} = \sigma rac{W}{L}$$
 Prawo Ohma

Formuła Landauera – mody poprzeczne

Do tej pory wszędzie zakładaliśmy, że liczba modów poprzecznych w każdym kanale jest taka sama (kanały są takie same) i nie ma rozpraszania między poszczególnymi modami poprzecznymi

$$\bar{T}_{pq} = M(E)T_{pq}$$

Fizyka samego kontaktu jest jednak znacznie bardziej skomplikowana. Każdy z nich składa się z wielu modów (stanów) poprzecznych, pomiędzy którymi może zachodzić transport, tzn. elektron z leadu 1 w stanie 1 może odbić się do leadu 1 w stanie 2 (przejście międzypasmowe), zmieniając swój wektor falowy (energia stała).

Formuła Landauera – mody poprzeczne

Uproszczony model leadu

Równanie Schrödingera

 T_{pq}^{nm} - prawdopodobieństwo, że elektron z kontaktu q i stanu m przejdzie do kontaktu p i modu n.

stąd

$$\bar{T}_{pq} = \sum_{m \in q} \sum_{n \in p} T_{pq}^{nm}$$

Formuła Landauera – mody poprzeczne

Powinniśmy rozpatrzeć, że elektron wchodzi do układu z każdego możliwego modu w lewym kontakcie. Ale dla tego szczególnego przypadku , w którym elektron wchodzi do układu z lewego kontaktu z n=1

$$R_{11}^{n1} = |r_n|^2$$
$$T_{21}^{n1} = |t_n|^2$$

Macierz rozpraszania

Macierz rozpraszania - macierz łącząca amplitudy fal wychodzących z układu z amplitudami fal wchodzącymi do układu.

W zapisie macierzowym

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

Każda amplituda wyjściowa jest wynikiem transmisji do tego modu elektronów z wszystkich możliwych modów wchodzących do układu.

$$T^{nm} = |s_{nm}|^2$$

Współczynnik transmisji z modu m do modu n. Oba mody mogą znajdować się w różnych kontaktach.

Własności macierzy rozpraszania

W zapisie macierzowym

$$\begin{pmatrix} b_{1} \\ b_{2} \\ b_{3} \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix}$$

$$Wektor amplitud Wektor amplitud wchodzących Macierz rozpraszania$$

Z zasady zachowania prądu suma gęstości prądu wchodzącego musi być równa gęstości prądu wychodzącego

$$\sum_{m}|a_{m}|^{2}=\sum_{m}|b_{m}|^{2}$$
 $a^{\dagger}a=b^{\dagger}b$
 $a^{\dagger}a=[Sa]^{\dagger}Sa=a^{\dagger}S^{\dagger}Sa$
 $S^{\dagger}S=1=SS^{\dagger}$ Matrix

Macierz rozpraszania jest macierzą unitarną

Własności macierzy rozpraszania

Z unitarności macierzy rozpraszania

$$S^{\dagger}S = 1 = SS^{\dagger} \longrightarrow \sum_{m} |s_{mn}|^2 = 1 = \sum_{m} |s_{nm}|^2$$

Pierwsza z równości mówi o tym, że suma prawdopodobieństw transmisji do jakiegokolwiek modu dla elektronu wstrzykniętego z modu n jest równe 1. Druga równość nie jest już tak oczywista i mówi, że suma po wszystkich modach wejściowych zakładając jeden mod wyjściowy, który obserwujemy również jest równa 1.

Wracając do wcześniejszych oznaczeń

$$\sum_{q} \bar{T}_{qp} = \sum_{n \in p} \sum_{m} T_{qp}^{mn} = \sum_{n \in p} 1 = M_P$$
$$\sum_{q} \bar{T}_{pq} = \sum_{n \in p} \sum_{m} T_{qp}^{nm} = \sum_{n \in p} 1 = M_P$$

Własności macierzy rozpraszania

Dla układu dwuterminalowego

$$\begin{array}{lll} \bar{T}_{pq}(E) & q=1 & q=2 \\ p=1 & xx & xx & SUM=M_1 \\ p=2 & xx & xx & SUM=M_2 \\ SUM= & M_1 & M_2 \end{array}$$

A to oznacza, że

$$\bar{T}_{11} + \bar{T}_{12} = \bar{T}_{11} + \bar{T}_{21}$$

$$\bar{T}_{12} = \bar{T}_{21}$$

Formuła Büttikera

Układ wieloterminalowy - w roku 1985 Buttiker uogólnił formułę Landauera na układy wieloterminalowe.

Schematyczny rozkład prądów od poszczególnych kontaktów oznaczone kolorami odpowiadającymi kolorom kontaktów. Komputerowe symulacje urządzeń nano- i mezoskopowych

Formuła Büttikera

W roku 1985 Büttiker uogólnił formułę Landauera na układy wieloterminalowe

Konwencja zapisu w teorii transportu

$$T_{pq} = T_{p \leftarrow q}$$

Formuła Büttikera

Otrzymujemy

$$I_1 = \frac{2e}{h} \int_{-\infty}^{\infty} M(E) \left[(T_{21}(E) + T_{31}(E)) f_1(E, \mu_1) - T_{12}(E) f_2(E, \mu_2) - T_{13}(E) f_3(E, \mu_3) \right] dE$$

Wprowadzając oznaczenie

$$\bar{T}_{pq} = M(E)T_{pq}$$

i uogólniając na układ n-terminalowy

$$I_p = \frac{2e}{h} \sum_q \int_{-\infty}^{\infty} \left[\bar{T}_{qp}(E) f_p(E, \mu_p) - \bar{T}_{pq}(E) f_q(E, \mu_q) \right] dE$$

Ponieważ potencjał w kontakcie μ/e , to dla *T=0 K*

$$I_p = \sum_{q} \left[G_{qp} V_p - G_{pq} V_q \right]$$
$$G_{pq} = \frac{2e^2}{h} \bar{T}_{pq}$$

gdzie

Ponieważ

$$[G_{pq}]_{+B} = [G_{qp}]_{-B}$$
$$I_p = \sum_q G_{pq} [V_p - V_q]$$

Mamy

Formuła Büttikera

Dla układu trójterminalowego

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} G_{12} + G_{13} & -G_{12} & -G_{13} \\ -G_{21} & G_{21} + G_{23} & -G_{23} \\ -G_{31} & -G_{32} & G_{31} + G_{32} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix}$$

Ponieważ zachodzi prawo Kirchhoffa , a potencjały mierzy względem jednego z kontaktów, tzn. możemy założyć, że

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} G_{12} + G_{13} & -G_{12} \\ -G_{21} & G_{21} + G_{23} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

Odwracając to równanie

$$\left[\begin{array}{c} V_1\\ V_2 \end{array}\right] = \left[\begin{array}{cc} R_{11} & R_{12}\\ R_{21} & R_{22} \end{array}\right] \left[\begin{array}{c} I_1\\ I_2 \end{array}\right]$$

Macierz rezystancji

$$R = \begin{bmatrix} G_{12} + G_{13} & -G_{12} \\ -G_{21} & G_{21} + G_{23} \end{bmatrix}^{-1}$$

KWANT - laboratorium

ora/doc/

https://kwant-project.org/doc/

Quantum transport simulations made easy

20

40

C. W. Groth, M. Wimmer, A. R. Akhmerov, X. Waintal, *Kwant: a software package for quantum transport*, <u>New</u> <u>J. Phys. 16, 063065 (2014)</u>.

SGM – scaning gate microscopy – przykład

no SO

Eksperyment

PRB, 90, 035301 (2014)

Dziękuję za uwagę !!!

Dziękuję za uwagę !!! Jutro przejdziemy do praktyki