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Motivation

Standard Model Physics beyond SM must exist

very successful theory
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68,3%
Dark energy

European Strategy for Particle Physics
“Europe's top priority should be the exploitation of the full potential of the LHC"
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Motivation - Monte Carlo Event Generators (MCEQ)

Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory
Standard Model Lagrangian
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Experiment
LHC event

Data makes you smarter

It doesn't matter how
beautiful your theory is,
it doesn't matter how
smart you are. If it
doesn't agree with
experiment, it's wrong.

Richard P. Feynman
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Motivation - Monte Carlo Event Generators (MCEQ)
Standard Model

There is a huge gap between a one-line formula of a fundamental theory, like

the Lagrangian of the SM, and the experimental reality that it implies

Theory Experiment
Standard Model Lagrangian LHC event

-

e MC event generators are designed to bridge that gap
e “Virtual collider” = Direct comparison with data

U

Almost all HEP measurements and discoveries in the modern era have relied on MCEG, most
notably the discovery of the Higgs boson.

Published papers by ATLAS, CMS, LHCb: 2252
Citing at least 1 of 3 existing MCEG: 1888 (84%)
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Current Situation

No BSM physics —> Look for much Very precise MC — Limited by our
at the LHC more subtle effects predictions understanding of QCD

Complex structure of Quantum Chromodynamics (QCD)

QCD correctly describes strong interactions in each energy range but its complex mathematical structure
makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Imagine that the BSM physics signal is at the LHC but due to lack of QCD understanding we missed it

We need: SIMPLIFICATIONS in NEW IDEAS of treatment

perturbative QCD techniques non-perturbative QCD

N NARODOWE

CENTRUM .

AN N AUKI QCD ex-Machina
NCN: 2019/34/E/ST2/00457
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Motivation - Monte Carlo Event Generators (MCEQ)

QCD correctly describes strong interactions in each energy range but its complex mathematical structure
makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke ™
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Motivation - Monte Carlo Event Generators (MCEQ)

QCD correctly describes strong interactions in each energy range but its complex mathematical structure
makes it very difficult to obtain precise predictions (Millennium Prize Problem $1,000,000)

High energy Low energy
e perturbative QCD e non-perturbative QCD
e in theory we know what to do e we don't know what to do
e in practice very difficult e phenomenological models

(with many free parameters)

Stefan Gieseke'\Y

Hadronization;
one of the least understood elements of MCEG
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Non-perturbative QCD

Hadronization:

STRING Hadronization CLUSTER Hadronization
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- Increased control of perturbative corrections = more often the precision of LHC

measurements is limited by MCEG's non-perturbative components, such as hadronization.
-> Hadronization (phenomenological models with many free parameters ~ 30 parameters)
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Non-perturbative QCD

Hadronization:

Early 1980’s Early 2020's
(since then very little development) (lot of progress in ML)
STRING Hadronization CLUSTER Hadronization
0

</ S

0

ML

Increased control of perturbative corrections = more often the precision of LHC
measurements is limited by MCEG's non-perturbative components, such as hadronization
Hadronization (phenomenological models with many free parameters ~ 30 parameters)
Hadronization is a fitting problem ML is proved to be well suited for such a problems.

v i

Idea of using Machine Learning (ML) to improve hadronization.
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

A.Siédmok - BIALASOWKA, 20.05.2022



Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

o . Q=35GeV
0.8 I Q=091.2GeV ] e Colour-singlet pair end up close in phase space and
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0.5 - - e Pre-confinement states that the spectra of clusters
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons
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Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD pre-confinement discovered by Amati & Veneziano:

e QCD provide pre-confinement of colour

e Colour-singlet pair end up close in phase space and
form highly excited hadronic states, the clusters

e Pre-confinement states that the spectra of clusters
are independent of the hard process and energy of
the collision

e Peaked at low mass (1-10 GeV) typically decay into 2
hadrons

e ML hadronization
1st step: generate kinematics of a cluster decay:

e How?
Use Generative Adversarial Networks (GAN)
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Generative Adversarial Network (GAN)

[Goodfellow et al. “Generative adversarial nets”. arxiv:1406.2661]
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Generative Adversarial Network (GAN)

thispersondoesnotexist.com
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Adversarial Networks

Arthur Lee Samuel (1959) wrote a program that learnt to play checkers well enough to beat him.
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He popularized the term "machine learning" in 1959.

The program chose its move based on a minimax strategy, meaning it made the move assuming
that the opponent was trying to optimize the value of the same function from its point of view.
He also had it play thousands of games against itself as another way of learning.
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Adversarial Networks

|

DeepMind  @DeepMind - Dec 6, 2018 W

@ The full peer-reviewed @sciencemagazine evaluation of #AlphaZero
is here - a single algorithm that creatively masters chess, shogi and
Go through self-play deepmind.com/blog/alphazero...

Demis Hassabis
CBE FRS FRENng FRSA

By playing games against itself, AlphaGo Zero surpassed the strength of AlphaGo [vs Lee Sedol 4:1] in three days by winning 100
games to O.
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https://en.wikipedia.org/wiki/AlphaGo_Lee

Adversarial Networks

11 You Retweeted

OpenAl @
@OpenAl

We trained a neural network that S——
solved two problems from the Skl ki
International Math Olympiad.
openai.com/blog/formal-ma...

(a* b+b*xc+c * a)r*3 =
(a"2 + a * b + b"2) % (b”"2 + b %
(cr2 & ¢ x a + ar2)

let u : euclidean_space R (fin 2) := ![a, bl,
let v : euclidean_space R (fin 2) := ![b, cl,

have he := real inner_mul _inner_self le u v,

19:47 - 02 Feb 22 - Twitter Web App

99 Retweets 32 Quote Tweets 564 Likes
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Wasserstein GAN (WGAN)

[Martin Arjovsky, Soumith Chintala, and Leon Bottou, arxiv:1701.07875, Dec 2017]

How do you capture the difference between two distributions in GAN loss functions?
This question is an area of active research.

e GAN: minimax loss
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Wasserstein GAN (WGAN)

[Martin Arjovsky, Soumith Chintala, and Leon Bottou, arxiv:1701.07875, Dec 2017]

How do you capture the difference between two distributions in GAN loss functions?
This question is an area of active research.

e WGAN: Wasserstein loss
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Wasserstein GAN (WGAN)

The Wasserstein distance

For discrete probability distributions, the Wasserstein distance is called the earth mover’s distance (EMD):
EMD is the minimal total amount of work it takes to transform one heap into the other.

W(P,Q) = minB(y)
YEIl
Work is defined as the amount of earth in a chunk times the distance it was moved.

B(y) = Z V(xp'xq)”xp - xq”

XpXq

B = [

Best “moving plans” of this example
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Wasserstein GAN (WGAN)

WGAN: Wasserstein loss

e Critic training just tries to make the
output bigger for real instances than for
fake instances:

C: outputs a score

Critic Loss: D(x) - D(G(z)) Samplss that is higher for real
The Critic tries to maximize this function. sample than for fake
e The generator tries to maximize the Letont
discriminator's output for its fake = - C =
instances "l <, Correct?
critic
Generator Loss: D(G(z)) —— + G J
A Generator
SaFni;?es
j — 5 i Fine Tulj‘e Training
In these functions: Noise
e D(x) is the critic's output for a real instance.
e G(z) isthe generator's output when given noise z.
e D(G(z)) is the critic's output for a fake instance.
e The output of critic D does not have to be between 1and O.
e The formulas derive from the EMD between the real and generated distributions.
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https://wikipedia.org/wiki/Earth_mover%27s_distance

Towards a Deep Learning Model for Hadronization

ML hadronization

1st step: generate kinematics of a cluster decay to 2 hadrons

How? Wasserstein Generative Adversarial
- Network
rmnJsy

Samples
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Conditional

Parameters
e C Is D
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r o ! g
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- @

Generated
Fake
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Noise

Training data:

ris

eTe™ collisions at T(E, Puy Pys De)
V5 = 91.2 GeV

"’TO(E’ pl‘t py- pZ)

Cluster (E, pz, py, D=)

Pert = O/1 memory of quarks direction
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Architecture: conditional GAN

Generator and the Discriminator are composed of two-layer perceptron
(each a fully connected, hidden size 256, a batch normalization layer, LeakyRelLU activation function)

W,,b,

Input layer -+ Output layer

Generator

Hidden layer 1 Hidden layer 2

Input

Cluster (E, pz, py, p-) and 10 noise features sampled from a Gaussian distribution

Output (in the cluster frame)

¢ ) pglar angle we reconstruct the four vectors of
¢ - azimuthalangle the two outgoing hadrons
Discriminator
Input

d) and @ labeled as signal (generated by Herwig) or background (generated by Generator)

Output

Score that is higher for events from Herwig and lower for events from the Generator
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e Data normalization:
cluster’s four vector and angular variables are scaled to be between -1 and 1
(tanh activation function as the last layer of the Generator)

e Discriminator and the Generator are trained separately and alternately by two
independent Adam optimizers with a learning rate of 1074, for 1000 epochs

—— Discriminator Loss /2 [0.6

Generator Loss
0.9 A

F0.5

0.8 1
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Losses
o
w
Best Wasserstein Dis

0.7 4

T
o
N

0.6 1
POz

r x r . . — 0.0
0 200 400 600 800 1000
Epochs

e The best model for events with partons of Pert = O, is found at the epoch
849 with a total Wasserstein distance of 0.0228.
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Integration into Herwig

Training Event generation
s N N

@ python

C

ONNX
RUNTIME
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Low-level Validation o
(similar to training data) m
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Pert = 0 (no memory of quark kinematics)
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Low-level Validation
(similar to training data)
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Low-level Validation

o)
(beyond training data different energy) m
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Low-level Validation
(beyond training data different hadrons)

ete™ collisions at
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Full-event Validation
(Full events using HADML integrated into Herwig 7)
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Summary and Outlook

Summary
e We presented first step on the path towards a neural network-based hadronization model

e We emulated cluster hadronization model from Herwig with a GAN (HADML) 0

T
e HADML is designed to reproduce the two-body decay of clusters into pions
e The kinematic properties of other hadrons are emulated using

the pion model and conservation of energy. e

e HADML is able to reproduce Herwig’s light cluster decays

e Integrated with the full Herwig simulation is able to reproduce results from LEP data

Outlook

e The ultimate goal of is to train the ML model directly on data to improve hadronization models
e Number of technical and methodological step needed:

Directly accommodate multiple hadron species with their relative probabilities

Heavy cluster decays

Hyperparameter optimization, including the investigation of alternative generative models
Methodological innovation is required to explore how to tune the model to data

Early 1980's Early 2020's

STRING Hadronization CLUSTER Hadronization

2 2 2

. v ’

| .
- .
) — : i
7 A P
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Advertisement

2 postdoc in ML/HEP positions openings

UCZELNIA
BADAWGZA

JAGIELLONIAN UNIVERSITY
IN KRAKOW

Nicolaus Copernicus
XVI w. - w zbiorach Collegium Maiu

If you are interested in positions or joint ML projects please contact
me:
andrzej@cern.ch
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Advertisement

|, —— MCnet Summer School and Cracow School of Theoretical
—MCnet Physics

Jun 19 - 25, 2022
Zakopane, Poland Q

verviev
Timetable
Registration

Cracow School of
Theoretical Physics

MCnet Schools

Accommodation

Travel ‘ ; 3 ¥ e 4 a 3
Local Organisers .
The 15th MCnet school and 62nd Cracow School of Theoretical Physics will be held in Zakopane, near
B zakopane@thf.uj.edu.pl Cracow, in Poland

The school provides a five day course of training in the physics and techniques used in modern Monte
Carlo event generators via a series of lectures, practical sessions, and discussions with event-generator
authors. The school is aimed at advanced doctoral students and early-career postdocs

Our core sessions comprise a series of introd /sics of event generators, further
lectures on a wider range of associated topics, a series of hands-on tutorials using all of the MCnet
event generators for LHC physics, and evening discussion se ns with Monte Carlo authors

ictory lectures on the ph

The full list of lectures is

Introduction to Event Generators - Leif LONNBLAD (Lund University)

Parton Shower, Matching and Merging - Simon PLATZER (University of Graz)
The future and challenges of HEP - Michelangelo MANGANO (CERN)
Aspects of the EW Standard Model - Jonas LINDERT (The University of Sussex)

Monte Carlo simulation of FCCee physics - Staszek JADACH (IFJ PAN Krakow)
Model-independent measurements - Jon BUTTERWORTH (University College London)
Highlights from Run 2 of the LHC - Pawel BRUCKMAN DE RENSTROM (IFJ PAN Krakow)
Machine Learning in HEP - Ramon WINTERHALDER (CP3, Louvain-la-Neuve)

Industrial applications - Albrecht KYRIELEIS, (Jacobs Manchester)

Tutorial:
« Tutorial coordinator - Christian GUTSCHOW (University College London)
Organised by:

-7\\ ’/MC// (\o’ YCH"“O“ S‘th’od ‘\‘:
= = eoredical Pysics\ /
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AlphaGo

AlphaGo's victory against Lee Sedol was a major milestone in artificial intelligence research.

Go had previously been regarded as a hard problem in machine learning that was expected to be out of
reach for the technology of the time.

Most experts thought a Go program as powerful as AlphaGo was at least five years away;some experts
thought that it would take at least another decade before computers would beat Go champions. Most

observers at the beginning of the 2016 matches expected Lee to beat AlphaGo.
Netflix document
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Wasserstein distance

Q Xq A “moving plan” is a matrix

| 1

The value of the element is the
amount of earth from one
position to another.

Average distance of a plan y:

BO) = D ¥(pxg) 1% —

XpXq

Earth Mover’s Distance:
W(P,Q) = minB(y)
y€Ell

moving plan y The best plan
All possible plan I1

Iulh__fji
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Minimax Loss

In the paper that introduced GANs, the generator tries to minimize the following function while the discriminator tries to
maximize it:

E, [log(D(x))] + E.[log(1 — D(G(2)))]

In this function:

D(x) is the discriminator's estimate of the probability that real data instance x is real.

Ey is the expected value over all real data instances.

G(z) is the generator's output when given noise z.

D(G(z)) isthe discriminator's estimate of the probability that a fake instance is real.

E, is the expected value over all random inputs to the generator (in effect, the expected value over all generated

fake instances G(z)).

» The formula derives from the cross-entropy between the real and generated distributions.

The generator can't directly affect the log(D(x)) term in the function, so, for the generator, minimizing the loss is
equivalent to minimizing log(1 - D(G(z))) .
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Perceptron

A perceptron is a simple binary classification algorithm, proposed by Cornell scientist
Frank Rosenblatt. It helps to divide a set of input signals into two parts—"yes” and

“no”. But unlike many other classification algorithms, the perceptron was modeled
after the essential unit of the human brain—the neuron.

Perceptron Input And Output
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Figure : A mathematical model of the neuron in a neural network
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Activation functions

Sigmoid Tanh RelLU Leaky ReLU
1 e’ —e* g(z) = max(ez, z)
g2 =" — )= 9(2) = max(0, z) o1
1 + o 1+ 1+ 1+
l, L;}’II i L ' . 1 .
2 4 0 &> 0 P = 0 e
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Multilayer Perceptron

A multilayer perceptron (MLP) is a perceptron that teams up with additional
perceptrons, stacked in several layers, to solve complex problems.

input layer
hidden layer 1 hidden layer 2

One difference between an MLP and a neural network is that in the classic perceptron, the

decision function is a step function and the output is binary. In neural networks that evolved from

MLPs, other activation functions can be used which result in outputs of real values, usually
pbetween O and 1 or between -1and 1.
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Backpropagation

Back-propagation

. receive new observation x = [x,...x,] and target y

OO

2. feed forward: for each unit g; in each layer 1...L

compute g; based on units f; from previous layer: g; =0 (u o+ E 7 fA)
3. get prediction y and error (y-y”)
4. back-propagate error: for each unit g; in each layer L...1

(a) compute error on g; (b) for each u, that affects g;
%) 2 y IE (1) compute error on Ujy (11) update the weight
LM ey PpHe ~
dg, 4 " oh, OE  JE OF
o iy !  S— N P = P O (g].)fk U< U )7 =
should g, how h, will was h; too B 055, ; k

be higher change as highor

do we wantg;to  how g; will change
or lower? g;changes too low?

be higher/lower if ujkis higher/lower
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