Missing beauty of pp interactions

What is this talk about

This work is motivated by Heavy Ion physics, but it is not really about it

We(*) want to show you two measurements

One from ATLAS: ATLAS-CONF-2022-023 One of our own: arXiv:2203.11831

which, as we hope, would let you look differently at the *pp* interaction at high energies.

(*) Iakov Aizenberg, Alexander Milov, Zvi Citron

Stages of HI collisions

When talking about HI, system evolution and QGP are closely related.

Probes of HI collisions

Probes of HI collisions

Yasha Aizenberg

Missing beauty of pp interactions

BIALASOWKA Seminar June 10, 2022

Observables of HI collisions

 $R_{AA} = \frac{1}{T_{AA}} \frac{dN_{AA}/dp_{T}}{d\sigma_{pp}/dp_{T}}$

BIALASOWKA Seminar June 10, 2022

Observables of HI collisions

Signatures of QGP in HI collisions

QGP signatures in small systems

The two QGP signatures observed in *pp* belong to soft probes.

2PC are clearly seen in the hadronic collision system of any size – an elevation at $\Delta \phi = 0$ spans over the $\Delta \eta$ demonstrating the correlation between particle directions even for the particles separated by huge rapidity gaps.

The measurements of strangeness enhancement demonstrates that the evolution of the observed effects in *pp* smoothly matches the magnitude of the effects observed in *p*Pb and PbPb(XeXe) collisions They carry an intrinsic difficulty of distinguishing initial state from system response

Ratio of yields to $(\pi^++\pi)_{-1}$

 10^{-2}

 10^{-3}

ALI-PREL-159143

pPb

ALICE

10

pp

 \bigcirc pp, vs = 7 TeV

 \Diamond p-Pb, $\int s_{NN} = 5.02 \text{ TeV}$

 10^{2}

What about the hard probes?

p+p (×6)

2¢ (×2)

 $\Xi^{-}+\Xi^{+}$ (×3)

 $\Omega^{-}+\overline{\Omega}^{+}$ (×12)

🕮 🕮 🕮 2K_c^0

Λ+Λ

ALICE Preliminary

 10^{3}

PbPb

pp. \s = 13 TeV

 \square Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

■ Xe-Xe, *s*_{NN} = 5.44 TeV

 $\langle \mathrm{d}N_{_{\mathrm{ch}}}/\mathrm{d}\eta
angle$

Hard probe modifications in small systems

CMS experiment showed [JHEP11 (2020) 001] that in pp collisions the yields of excited Y(nS) states diminish w.r.t. lighter states when the event multiplicity grows.

Hard probe modifications in small systems

This observation suggests that the decrease in the ratios is the Underlying Event (UE) effect

Transverse sphericity - momentum space variable, commonly classified as an event shape observable.

 $S_T = 0 - \text{jets}$ $S_T = 1 - \text{Underlying Event}$

Missing beauty of pp interactions

BIALASOWKA Seminar June 10, 2022

 $S_{\mathrm{T}} \equiv \frac{2\lambda_2}{\lambda_1 + \lambda_2}, \ S_{xy}^T = \frac{1}{\sum_i p_{\mathrm{T}i}} \sum_i \frac{1}{p_{\mathrm{T}i}} \begin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{xi}p_{yi} & p_{yi}^2 \end{pmatrix} \quad \lambda_1 > \lambda_2$

for the production of accompanying particles. On the other hand, it is also true that, if we expect a suppression of the excited states at high multiplicity, it would also appear as a shift in the mean number of particles for that state (because events at higher multiplicities would be missing). Furthermore, if we consider only the events with $0 < S_{\rm T} < 0.55$, where

Some experimental practicalities...

One cannot do R_{AA} in *pp*, therefore $\Upsilon(nS)/\Upsilon(1S)$ seems like a good idea One cannot do geometry in *pp* -- we shall stay with $N_{track} \rightarrow n_{ch}$

 $\Upsilon(nS)$ are rare probes We need high statistics High statistics is available, but it was obtained at $\mu < 80$ μ = pileup Pileup doesn't allow to measure n_{ch}

"Okay, Houston, we've had a problem here!"

The pileup story

EPJC 80 (2020) 64

Yasha Aizenberg

Missing beauty of pp interactions

BIALASOWKA Seminar June 10, 2022

14

Analysis in brief

Entire ATLAS Run-2 data: 2015 – 2018, \sqrt{s} = 13 TeV, 139 fb⁻¹

Full luminosity data constrained at μ < 50 (fake production) and then at ν < 20 in 40 intervals

 $\Upsilon(nS)$ are reconstructed as di-muons

6 different di-muon triggers with muon p_{T} from 4 to 11 GeV

 $\Upsilon(nS)$ kinematics |y| < 1.6, $0 < p_T < 70$ GeV where we ran out of statistics

All together after cuts: $\sim 5 \times 10^7 \Upsilon(1S)$, $\sim 10^7 \Upsilon(2S)$, $\sim 7 \times 10^6 \Upsilon(3S)$

Charged hadrons kinematics $|\eta| < 2.5$, $0.5 < p_T < 10$ GeV, fully corrected

Dimuon invariant mass distributions are fitted to functions with 24 parameters

Missing beauty of pp interactions

• Define 3+2 regions

Define 3+2 regions

June 10, 2022

Bkg shapes are similar – interpolate

$$\begin{pmatrix} P(m_0^{\mu\mu}) \\ P(m_1^{\mu\mu}) \\ P(m_2^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_4^{\mu\mu}) \end{pmatrix} = \begin{pmatrix} 1 - f_{01} & f_{01} & 0 & 0 & 0 \\ k_1 (1 - s_1) & s_1 & 0 & 0 & (1 - k_1) (1 - s_1) \\ k_2 (1 - s_2 - f_{21} - f_{23}) & f_{21} & s_2 & f_{23} & (1 - k_2) (1 - s_2 - f_{21} - f_{23}) \\ k_3 (1 - s_3 - f_{32}) & 0 & f_{32} & s_3 & (1 - k_3) (1 - s_3 - f_{32}) \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P(\Upsilon(1S)) \\ P(\Upsilon(2S)) \\ P(\Upsilon(3S)) \\ P_4 \end{pmatrix}$$

- Define 3+2 regions
- Bkg shapes are similar interpolate
 - Bkg subtraction for $\Upsilon(1S)$ and $\Upsilon(3S)$

$$\begin{pmatrix} P(m_0^{\mu\mu}) \\ P(m_1^{\mu\mu}) \\ P(m_2^{\mu\mu}) \\ P(m_3^{\mu\mu}) \\ P(m_4^{\mu\mu}) \end{pmatrix} = \begin{pmatrix} 1 - f_{01} & f_{01} & 0 & 0 & 0 \\ k_1 (1 - s_1) & s_1 & 0 & 0 & (1 - k_1) (1 - s_1) \\ k_2 (1 - s_2 - f_{21} - f_{23}) & f_{21} & s_2 & f_{23} & (1 - k_2) (1 - s_2 - f_{21} - f_{23}) \\ k_3 (1 - s_3 - f_{32}) & 0 & f_{32} & s_3 & (1 - k_3) (1 - s_3 - f_{32}) \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_0 \\ P(\Upsilon(1S)) \\ P(\Upsilon(2S)) \\ P(\Upsilon(3S)) \\ P_4 \end{pmatrix}$$

Yasha Aizenberg

- Define 3+2 regions
- Bkg shapes are similar interpolate
 - Bkg subtraction for $\Upsilon(1S)$ and $\Upsilon(3S)$
- After subtraction *n*_{ch} look different

Triggers are all combined together Pileup is constructed from mixed events and is either directly subtracted or unfolded Non-linear effects are also accounted for

- Define 3+2 regions
- Bkg shapes are similar interpolate
 - Bkg subtraction for $\Upsilon(1S)$ and $\Upsilon(3S)$
 - After subtraction n_{ch} look different
 - Remove pileup, same shape for all $\Upsilon(nS)$

- Define 3+2 regions
- Bkg shapes are similar interpolate
 - Bkg subtraction for $\Upsilon(1S)$ and $\Upsilon(3S)$
 - After subtraction *n*_{ch} look different
 - Remove pileup, same shape for all $\Upsilon(nS)$
 - Direct measurement of n_{ch} dn_{ch}/dp_T dn_{ch}/d∆φ

Yasha Aizenberg

Missing beauty of pp interactions BIALASOWKA Seminar June 10, 2022

- Distributions for $\Upsilon(1S)$
- Pythia does not describe well

Yasha Aizenberg

Missing beauty of pp interactions BIALASOWKA Seminar June 10, 2022

- Distributions for $\Upsilon(1S)$
- Pythia does not describe well
- One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

- Distributions for $\Upsilon(1S)$
- Pythia does not describe well
- One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

- Distributions for $\Upsilon(1S)$
- Pythia does not describe well
- One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$

- Distributions for $\Upsilon(1S)$
- Pythia does not describe well
- One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$
- Subtracted distributions look like UE at rather high $\Upsilon(nS) p_T$. At the highest p_T there are feed-downs

- Distributions for $\Upsilon(1S)$
- Pythia does not describe well
- One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$
- Subtracted distributions look like UE at rather high $\Upsilon(nS) p_T$. At the highest p_T there are feed-downs
- Away from jets there are regions with charged particles

- Distributions for $\Upsilon(1S)$
- Pythia does not describe well
- One cannot measure the UE, but $p_T < 4$ GeV is the closest to it, jet part that is correlated to $\Upsilon(nS)$
- Subtracted distributions look like UE at rather high $\Upsilon(nS) p_T$. At the highest p_T there are feed-downs
- Away from jets there are regions with charged particles
- This suggests that the effect is related to the UE

Yasha Aizenberg

Multiplicity dependence on γ -momentum

Multiplicity is different for different $\Upsilon(nS)$ states The effect is related to the UE, not to the Υ production Can't be explained by feed downs or p_{T} , conservation Pythia mismodels Υ production, and has no effect at all At the lowest p_{T} , where the effect is the strongest: 12% of $\langle n_{\rm ch}^{\Upsilon(1S)} \rangle$ $\Upsilon(1S) - \Upsilon(2S) \Delta \langle n_{ch} \rangle = 3.6 \pm 0.4$ 17% of $\left(n_{ch}^{\Upsilon(1S)}\right)$ $\Upsilon(1S) - \Upsilon(3S) \Delta \langle n_{ch} \rangle = 4.9 \pm 1.1$

It diminishes with p_{T} , but remains visible at 20–30 GeV And actually above that as well

A naïve question

Is the n_{ch} for $\Upsilon(1S)$ larger than for $\Upsilon(nS)$ or is the n_{ch} for $\Upsilon(nS)$ smaller than for $\Upsilon(1S)$?

Inclusive pp collisions: $\langle n_{\rm ch} \rangle \approx 14$ Drell-Yan with 40 GeV < $m < m_Z$ $\langle n_{\rm ch} \rangle = 24 - 28$ Jets with leading particles $m < \frac{1}{2}m_{\Upsilon}$ $\langle n_{\rm ch} \rangle \approx 27$

Looks like $\Upsilon(1S)$ is consistent with these numbers, and $\Upsilon(nS)$ are lower i.e. there is a deficit of higher $\Upsilon(nS)$

Let's find them!

The $m_{\rm T}$ scaling

Proposed by R. Hagedorn [*N.Cim.Sup.*3 (1965) 147-186] and observed by the ISR [PLB **47**, 75 (1973)]

$$P(p_{\rm T}) \propto \frac{1}{(m_{\rm T})^{\lambda}} \exp\left[-\frac{m_{\rm T}}{T_a}\right] \qquad m_T = \sqrt{p_{\rm T}^2 + m_0^2}$$

Today is more commonly used in Tsallis form

 $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{T}}} \propto \left[1 + \frac{m_{\mathrm{T}}}{nT}\right]^{-n}$

 $m_{\rm T}$ scaling is useless to measure cross sections, but it can link spectral shapes of different particles, for example $\Upsilon(nS)$ to $\Upsilon(1S)$

Yasha Aizenbera

for example, ALICE: EPJC81 (2021) 256

Missing beauty of pp interactions

Let's look at the LHC data

Only mesons

4 LHC experiments

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

18 species + iso-partners

72 data samples with 1509 data points

15 quarkonia ratios with 327 data points

Fit to $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mathrm{T}}} \propto \left[1 + \frac{m_{\mathrm{T}}}{nT}\right]^{-n}$

T is fixed to 254 MeV

T is fixed to 254 MeV

Common fit

Common fit is not perfect (small experimental differences across measurements) but works

 $b \| \overline{b}$ is harder than $c \| \overline{c}$

Spike at low p_T of $\Upsilon(nS)$ likely due to non-prompt component from χ_b decays χ_b feed-downs are ~same into all $\Upsilon(nS)$

Lower *n* for $(b\overline{b})^*$ is not a harder spectrum, but a deficit at low and intermediate p_T

Missing beauty of pp interactions

Yasha Aizenberg

Missing beauty of pp interactions

Let's put pieces together

- Two different analysis: -- particle ratios -- n_{ch}
- n_{ch} by two experiments: -- CMS -- ATLAS
- Linking effect to the UE: -- ATLAS by kinematics -- CMS by sphericity
- Show analog features: -- pT dependence -- specie ordering

Two manifestations of the same effect: -- UE suppresses Υ(*nS*)

What does it mean

In *pp* collisions there exists a mechanism by which particles produced in a scattering of two energetic partons are affected by the particles produced in other parton scatterings

Back to heavy ions

Similarity in the suppression of $\Upsilon(1S)$ and other species and the difference to higher $\Upsilon(nS)$ can be an indication of the regime change

Most particles, including $\Upsilon(1S)$ $L \ge \sqrt[3]{N_{part}} \times r_p$ volume emission $\Upsilon(2S), \Upsilon(3S)$ $L \ll \sqrt[3]{N_{part}} \times r_p$ surface emission

It may not be that simple

It would be logical to assume that the effect is related to the $q\bar{q}$ binging energy, but then $\psi(2S)$ must show a lot more suppression.

 $n_{\rm ch}$ for $\psi(2S)$ shall be measured

EPJC (2018) 78:731

Table 1Binding energies of the quarkonia shown in Fig. 3

Quarkonium	$E_{\rm b}({\rm MeV})$	Quarkonium	$E_{\rm b}$ (MeV
$\chi_{b2}(3P)$	36	χ_{c0}	315
$\psi(2S)$	44	$\chi_{b0}(3P)$	326
χ _{b1} (3P)	47	$\Upsilon(2S)$	536
$\chi_{b0}(3P)$	62	$(\mathrm{J}/\psi$	633
χ_{c2}	174	$\chi_{b2}(1P)$	647
$\Upsilon(3S)$	204	$\chi_{b1}(1P)$	666
χ_{c1}	219	$\chi_{b0}(1P)$	700
$\chi_{b2}(2P)$	290	$\Upsilon(1S)$	1099
$\chi_{b1}(3P)$	304		

What's next?

 $n_{\rm ch}$ for $\psi(2S)$ to J/ψ – what is going on?

Does it hold at lower energies? Strong \sqrt{s} dependence isn't anticipated, but... In principle CDF data shall be sufficient to measure $\Upsilon(nS)$ at 1.96 TeV RHIC data is probably too small, but RICH-II and the detectors are coming up SPS may do $\psi(2S)$

EIC as a very different (and smaller) system shall be interesting

Above all, we need theoretical support for understanding the nature of the effect

Instead of a summary

In *pp* collisions there exists a mechanism by which particles produced in a scattering of two energetic partons are affected by the particles produced in other parton scatterings

Thank you for your attention!!!