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Heavy-ion Collisions :

◦ Signatures of Quark-Gluon Plasma phase found in collider experiments.

Figure 1: Relativistic Heavy-Ion Collider, BNL. [U.S. Department of Science.]

Figure 2: Large Hadron Collider, CERN. [FORBES, 2016.] 2/47



Features of Non-central Collisions :

Figure 3: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

◦ General properties of the matter produced :
– Behaves like a fluid (Hydrodynamics applicable).
– The viscosity (η/s) is lowest (Dissipative hydrodynamics required).
– The vorticity is highest (for non-central collisions).

[P. Kovtun, D. T. Son and, A. Starients, PRL 94, 111601 (2005); STAR Collaboration, Nature 548, 62 (2017)]
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Features of Non-central Collisions :

Figure 3: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

◦ Non-central collisions (b ̸= 0) are more common.

◦ Special feature of Non-Central Collisions :
– Large Angular Momentum.
– Large Magnetic Field. [A. Bzdak and, V. Skokov, PLB 710 (2012) 171–174]
– Finite particle polarization at small energies.
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Generation of Angular Momentum :

Figure 4: Generation of angular momentum in non-central collisions. [B. Mohanty, ICHEP 2020]
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Generation of Angular Momentum :

Figure 5: Angular momentum vs impact parameter. [Becattini, Piccinini and, Rizzo, PRC 77 (2008) 204906]
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Generation of Magnetic Field :

Figure 6: Generation of magnetic field in non-central collisions. [D. E. Kharzeev, PPNP 75 (2014) 133–151]
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Generation of Magnetic Field :

Figure 7: Time evolution of magnetic field. [K. Tuchin, IJMPE 23, No. 1 (2014) 1430001]
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Particle Polarization :

Figure 8: Origin of particle polarization. [W. Florkowski et al, PPNP 108 (2019) 103709]

◦ Large angular momentum → Local vorticities → spin alignment.
[Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005); Phys. Lett. B 629, 20 (2005)]
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Particle Polarization :

Figure 9: First observation of Λ-hyperon polarization. [F. Becattini - ‘Subatomic Vortices’.]

◦ STAR collaboration of RHIC provided the first experimental evidence.
[STAR Collaboration, Nature 548, 62 (2017), Phys. Rev. Lett. 123, 132301 (2019), Phys. Rev. Lett. 126, 162301 (2021)]

◦ Theoretical models assuming equilibration of spin d.o.f. explains the data.
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Particle Polarization :

Figure 10: Observation (L) and prediction (R) of longitudinal polarization.
[Left: PRL 123 132301 (2019); Right: PRL 120 012302 (2018)]

◦ Theoretical models assuming equilibration of spin d.o.f. predict the opposite sign.

◦ Not enough time to thermalize. Dissipative forces at play?
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Spin-polarization in Heavy-ion Collisions :

◦ Spin-polarization of two kinds have been studied -
1. The Global Spin-Polarization (GSP). [STAR Collaboration, Nature 548, 62 (2017)]

2. The Longitudinal Spin-Polarization (LSP). [STAR Collaboration, PRL 123, 132301 (2019)]

◦ Explanation of these two effects?
— Theoretical models developed assuming equilibration of spin d.o.f.
→ Explains the GSP aptly.
→ Doesn’t explain the LSP. (Both quantitative and qualitative mismatch)

[I. Karpenko and F. Becattini, EPJC 77 (2017) 4, 213, PRL 120, 012302 (2018)]

◦ The two processes differ.

◦ Let’s look at the plausible origin of these processes.
— GSP is due to the large vorticities about Ĵ leading to spin-alignment.
— LSP is due to the elliptic flow in the transverse plane.

◦ Global angular momentum produced early, giving time to thermalize → GSP.
◦ Elliptic flow requires some time to generate, no time to thermalize → LSP.

◦ Probable resolution → Let go of the notion of spin equilibration.
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Einstein-de Haas effect :

Figure 11: Einstein-de Haas effect. [Amaresh Jaiswal - Excited QCD 2022]

Magnetic field aligns electron spins → Matter rotates to conserve angular momentum.
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Barnett effect :

Figure 12: Barnett effect. [Amaresh Jaiswal - Excited QCD 2022]

Non-zero angular momentum → Generation of magnetic field.
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Gist of the Problems :

The two problems we wish to address are :

◦ To search for a resolution of the ‘spin sign puzzle’ in longitudinal polarization.
→ Dissipative Spin-hydrodynamics.

◦ To understand the origin of EdH and Barnett effects in relativistic fluids.
→ Dissipative Spin-magnetohydrodynamics.
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Relativistic Hydrodynamics :

◦ Recall fluid-like properties of the matter produced in heavy-ion collisions.

◦ First formulation of relativistic hydrodynamics was for an ideal fluid.

◦ Later extended to dissipative cases.
[P. Romatschke, IJMPE 19 (2010) 1-53, J. Y. Ollitrault EJP 29 (2008) 275-302, Jaiswal and Roy AHEP 2016 (2016) 9623034]
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Relativistic Hydrodynamics :

Figure 13: Elliptic flow. [P. Romatschke, PRL 99 (2007) 172301]

◦ Initial formulations of dissipative theories - acausal and unstable.

◦ Several of causal theories exist - MIS, BRSSS, DNMR, BDNK etc.

17/47



Ideal Relativistic Hydrodynamics :

◦ The framework of hydrodynamics is built on the conservation laws.

◦ For a non-polarizable relativistic charged fluid, the conservation laws are:

∂µN
µ
(0) = 0, ∂µT

µν
(0) = 0.

◦ These two conserved currents can be tensor decomposed in terms of available
hydrodynamic variables → uµand the metric tensor → gµν as,

Nµ
(0) = n0u

µ, Tµν
(0) = E0u

µuν − P∆µν

where, ∆µν = gµν − uµuν is a projection operator, uµuµ = 1 and, uµ∆µν = 0.

◦ Available equations → 1 + 4 = 5.
The number of unknown variables → 1+2+3=6.
The system of equations can be closed if we provide an Equation of State (EoS)
i.e. P = P(E0)
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Ideal Relativistic Hydrodynamics :

◦ The conservation laws lead to the ideal hydro equations as,

Ė0 + (E0 + P) θ = 0

(E0 + P) u̇α −∇αP = 0

ṅ0 + n0θ = 0

where, θ = ∂µuµ is the scalar expansion.
The differential operator is decomposed as, ∂µ ≡ uµD +∇µ.
For any quantity, A, we define, Ȧ = DA = (u · ∂)A.

◦ These equations of ideal hydrodynamics describe a fluid at local equilibrium.
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Dissipative Relativistic Hydrodynamics :

◦ Inclusion of dissipation is carried out through modification of Nµ and Tµν as,

Nµ = n0u
µ + nµ, Tµν = E0u

µuν − (P +Π)∆µν + πµν

where, uµnµ = 0, uµπµν = 0 and, πµ
µ = 0.

◦ We have chosen the Landau frame uµTµν = Euν and Landau matching
conditions E = E0, n = n0.

◦ Thus the number of unknown variables are increased as, 4 + 8 + 3 = 15.

◦ However, the number of conservation laws remain the same i.e. 5.

◦ So, apart from EoS, 9 more equations needed to close the system of equations.
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Dissipative Relativistic Hydrodynamics :

◦ The conservation laws lead to the following dissipative hydro equations,

Ė0 + (E0 + P +Π) θ − πµνσµν = 0

(E0 + P +Π) u̇α −∇α (P +Π) +∆α
ν ∂µπ

µν = 0

ṅ0 + n0θ + ∂µn
µ = 0

where, σµν = (∇µuν +∇νuµ) /2 −∆µνθ/3 is the shear stress tensor.

◦ These equations are exact up to all order in gradients.

◦ Next we incorporate the order-by-order gradient corrections :

Nµ = Nµ
(0) +Nµ

(1) +Nµ
(2) + · · ·

Tµν = Tµν
(0) + Tµν

(1) + Tµν
(2) + · · ·
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Dissipative Relativistic Hydrodynamics up to O(∂) :

◦ Truncating terms up to first order in spacetime gradients, we get the
Navier-Stokes equations within Landau-Lifshitz frame and matching
conditions as,

πµν = 2 η σµν ,

Π = −ζ θ,

nµ = κ (∇µξ) .

where, ξ = µ/T , η, ζ and κ are the O(∂) transport coefficients.

◦ The details of the transport coefficients can only be obtained from a
microscopic theory.
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Dissipative Relativistic Hydrodynamics up to O(∂2) :

◦ Truncating terms up to second order in spacetime gradients, we get the
evolution equations of the dissipative currents as,

π̇⟨µν⟩ +
πµν

τπ
= 2 βπ σµν + λ1π

⟨µ
γ σν⟩γ + λ2π

µνθ + λ3π
⟨µ
γ ων⟩γ + λ4Πσ

µν ,

Π̇ +
Π

τΠ
= βΠ σµν + δ1Πθ + δ2π

µνσµν ,

ṅµ +
nµ

τn
= βn (∇µξ) + ψ1nνω

νµ + ψ2n
µθ + ψ3nνσνµ + ψ4π

µν (∇νξ).

◦ The dissipative currents can no longer be completely determined from other
hydrodynamic variables and have to be promoted to independent variables.

◦ Higher order evolution equations can also be obtained. However, to completely
specify the theory a microscopic theory is required → Kinetic Theory.
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Kinetic Theory

◦ The central object withing relativistic kinetic theory is the phase-space
distribution function, f(x, p).

◦ Different moments of f(x, p) correspond to different hydrodynamical variables,

Nµ =

∫
dp pµ

(
f − f̄

)
Tµν =

∫
dp pµpν

(
f + f̄

)
where, dp = d3 |⃗p|/(2π)3p0 and p0 is the particle energy.

◦ Equilibrium quantities are given by,

n0 = uµN
µ =

∫
dp (u · p)

(
feq − f̄eq

)
,

E0 = uµuνT
µν =

∫
dp (u · p)

2(
feq + f̄eq

)
,

P = −
1
3
∆µνT

µν = −
1
3

∫
dp (p ·∆ · p)

(
feq + f̄eq

)
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Kinetic Theory

◦ The equilibrium distribution function can be found to be given by,

feq =
1

eβ(u·p)−ξ + a

where, β = 1/T , ξ = µ/T and, a can take the values 0,+1, and −1.

◦ Dissipative hydrodynamics describes a fluid that is out-of-equilibrium.

◦ From Chapman-Enskog like expansion we have, f(x, p) = feq(x, p) + δf(x, p).

◦ Thus, the dissipative quantities are expressed as,

nµ = ∆µ
αN

α = ∆µ
α

∫
dp pα

(
δf − δf̄

)
,

πµν = ∆µν
αβT

αβ = ∆µν
αβ

∫
dp pαpβ

(
δf + δf̄

)
,

Π = −
1
3
∆αβT

αβ = −
1
3

∫
dp (p ·∆ · p)

(
δf + δf̄

)
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Boltzmann Equation and Relaxation Time Approximation

◦ Expression of δf(x, p) is required and can be obtained from the Boltzmann
equation,

pµ∂µf = C[f ]

where, C[f ] is the collision kernel, that controls the interaction process.

◦ Under relaxation time approximation (RTA) we get,

pµ∂µf = −
(u · p)
τR

δf

where, τR is the relaxation time.

◦ We can solve for δf in an iterative manner to get the correction up to the
required order and obtain the expressions for the transport coefficients.
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Relativistic Spin-hydrodynamics :

◦ Inspired by the success of Relativistic Hydrodynamics (RH) in explaining the
multitude of properties of QGP evolution, development of a framework of RH
with spin was started.
[F. Becattini et al, Annals Phys. 338 (2013) 32-49, PRC 95 (2017) 5, 054902, EPJC 77 (2017) 4, 213]

[W. Florkowski et al, PRC 97 (2018) 4, 041901, PRD 97 (2018) 11, 116017]

[D. Montenegro et al, PRD 96 (2017) 5, 056012, PRD 96 (2017) 7, 076016]

How to include internal degrees of freedom in a macroscopic theory?

[J. Weyssenhoff, A. Raabe, Acta Phys. Pool. 9 (1947) 7]
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Relativistic Spin-hydrodynamics :

◦ Origin of spin is purely quantum mechanical.

◦ Any theory with spin should be built up from Quantum Field Theory (QFT).

◦ To derive a hydrodynamical description of a spin-polarized fluid starting from
QFT, it was proved that a spin-polarization tensor (ωµν ) must be introduced.
[F. Becattini et al, PLB 789 (2019) 419-425]

◦ It has been argued that, at global equilibrium, the spin-polarization tensor
should be same as the thermal vorticity.
[F. Becattini et al, Annals Phys. 338 (2013) 32-49, PRC 95 (2017) 5, 054902, EPJC 77 (2017) 4, 213]

[N. Weickgenannt et al, PRL 127 (2021) 5, 052301]

ωµν |geq ∝ ϖµν = (∂µβν − ∂νβµ) /2

βµ = uµ/T is the inverse temperature four-vector.
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Relativistic Spin-hydrodynamics :

◦ A theory of ideal spin-hydrodynamics was formulated for fluids in equilibrium.
[W. Florkowski et al, PRC 97 (2018) 4, 041901, PRD 97 (2018) 11, 116017]

[D. Montenegro et al, PRD 96 (2017) 5, 056012, PRD 96 (2017) 7, 076016]

◦ But, we want description of fluid with non-thermalized spin, where the
relation, ωµν |geq ∝ ϖµν may not hold.

◦ Thus, we need to understand, how the out-of-equilibrium system and hence
ωµν evolves.

◦ We develop a theory of dissipative spin-hydrodynamics.
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Relativistic Spin-hydrodynamics :

◦ We first note that, spin-polarization originates from rotation of fluid.

◦ Thus, apart from the number current and stress-energy tensor conservation,
we need to allow conservation of angular momentum. Thus the conservation
laws are :

∂µN
µ = 0, ∂µT

µν = 0, ∂λJ
λ,µν = 0

where, J = L+ S. Also, Lλ,µν = xµTλν − xνTλµ.

◦ For symmetric Tµν we have, ∂λS
λ,µν = 0

◦ Introduction of Sλ,µν increases the number of unknown variables. More
equations are required. Hence a relativistic kinetic theory with spin is
necessary.
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Kinetic Theory with Spin :

◦ To import spin in kinetic theory (KT), we start from the Wigner function
(Wαβ ), that bridges the gap between QFT and KT.

◦ For spin-1/2 particles we set up kinetic equation of Wαβ using Dirac equation,[
γ ·

(
p+

i

2
∂

)
−m

]
Wαβ = C

[
Wαβ

]
[Xin-Li Sheng, PhD Thesis (2019), N. Weickgenannt et al, PRL 127 (2021) 5, 052301, PRD 100, 056018 (2019).]

◦ The Wigner function can be decomposed as,

Wαβ =
1
4

(
F + iγ5P + γµVµ + γ5γµAµ +

1
2
ΣµνSµν

)
αβ

F → scalar component,
P → pseudoscalar component,
Vµ → vector component,
Aµ → axial vector component,
Sµν → tensor component.

where, the γ-matrices are the 4 × 4 Dirac γ-matrices and, Σµν = iγ[µγν].
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Kinetic Theory with Spin :

◦ For spin-hydrodynamics it suffices to consider only F and Aµ components.
[Xin-Li Sheng, PhD Thesis (2019)]

Scalar Component Axial Component

Kin. Eq. kµ∂µF(x, k) = CF kµ∂µAν(x, k) = Cν
A

RTA CF = (k·u)
τeq

[
Feq(x, k)−F(x, k)

]
Cν

A= (k·u)
τeq

[
Aν

eq(x, k)−Aν(x, k)
]

Dist. fn. F±(x, k) = 2m
∫
p,s

f±(x, p, s) δ(4)(k ∓ p) Aµ
±(x, k) = 2m

∫
p,s

sµf±(x, p, s) δ(4)(k ∓ p)

[S.B., W. Florkowski, A. Jaiswal, A. Kumar and, R. Ryblewski, PLB 814 (2021) 136096, PRD 103 (2021) 1, 014030]

Momentum measure →
∫
p(· · · ) →

∫
dP(· · · ),

∫
dP = d3p/ (2π)3 p0.

Spin measure →
∫

dS = (m/πs)
∫
d4sδ(s · s+ s2).
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Relativistic Kinetic Equation :

◦ We take the equilibrium phase-space distribution function to be :

f±eq(x, p, s) = e−β(u·p)±ξ

(
1+

1
2
ωµνs

µν

)
+O(ω2)

[F. Becatinni et al., Annals Phys. 338 (2013) 32-49, W. Florkowski et al., PRD 97 (2018) 11, 116017]

◦ Near local equilibrium f(x, p, s) can be expanded in Chapman-Enskog like
expansion as,

f±(x, p, s) = f±eq(x, p, s) + δf±(x, p, s).

◦ δf is the non-equilibrium correction and is obtained solving the kinetic
equation of ‘f ’ i,e, the Boltzmann equation,

pµ∂µf
±(x, p, s) = −

(u · p)
τeq

δf±(x, p, s)
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Conserved Currents (In and Out-of-Equilibrium) :

◦ The conserved currents are expressed in kinetic theory as,

Nµ =

∫
dPdS pµ

(
f+ − f−

)
,

Tµν =

∫
dPdS pµpν

(
f+ + f−

)
,

Sλ,µν =

∫
dPdS pλsµν

(
f+ + f−

)
◦ The non-equilibrium parts give the transport coefficients:

δNµ = τeqβn(∇µξ),

δTµν = τeq
[
− βΠ ∆µν θ+2βπ σµν

]
,

δSλ,µν =τeq
[
Bλ,µν

Π θ+Bϕλ,µν
n (∇ϕξ)+B

αβλ,µν
π σαβ+B

ργϕλ,µν
Σ (∇ρωγϕ)

]
[S.B., W. Florkowski, A. Jaiswal, A. Kumar and, R. Ryblewski, PLB 814 (2021) 136096, PRD 103, 014030 (2021)]
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Time Evolution of Thermodynamic Variables :

◦ By choosing the Landau frame and matching conditions we found the following
relations:

ξ̇ = ξθ θ, β̇ = βθ θ, βu̇µ = −∇µβ +
n0 tanh ξ

(E + P)
(∇µξ)

ω̇µν = Dµν
Π θ +Dµνα

n (∇αξ) +Dµναβ
π σαβ +Dλµναβγ

Σ

(
∇αωβγ

)
,

◦ Thus, the non-equilibrium parts of Nµ and Tµν remain same as in the case of
un-polarized fluid.

◦ Non-equilibrium part of spin tensor depends on gradients of multiple
hydrodynamics variables.

◦ The evolution of spin-polarization tensor depend on scalar expansion, shear
stress, particle and spin diffusion but not on vorticity.
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Covariant Theory of Non-resistive Electrodynamics :

◦ In the limit of infinite conductivity, field strength tensor is,

Fµν → Bµν = ϵµναβ uαBβ

◦ Bµ is orthogonal to uµ and spacelike i.e. uµBµ = 0 and, BµBµ ≤ 0.
[G. S. Denicol et al. Phys.Rev.D 98 (2018) 7, 076009; A. K. Panda et al., JHEP 03 (2021) 216]

◦ If the medium if magnetizable, then the Maxwell’s equations are given by,

∂µH
µν = Jν , ∂µF̃

µν = 0,(
F̃µν =

1
2
ϵµναβ Fαβ

)
where, Hµν = Fµν +Mµν is the induction tensor and Mµν is the
magnetization tensor, Jν is the charged four-current.
[Balakin, Grav.Cosmol. 13 (2007) 163-177; Hehl and, Obukhov, Phys. Lett. A 311, 277 (2003)]
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Current Sources :

◦ The charged four-current may have two different origins -

Jµ = Jµ
f + Jµ

ext

◦ In case of HICs, one may identify Jµ
f with the charged 4-current within the

fluid and Jµ
ext with the charged 4-current of the spectators.

Figure 14: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]
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Current Sources :

◦ The charged four-current may have two different origins -

Jµ = Jµ
f + Jµ

ext

◦ In case of HICs, one may identify Jµ
f with the charged 4-current within the

fluid and Jµ
ext with the charged 4-current of the spectators.

◦ Consequently, the field strength will have two parts,

Fµν = Fµν
f + Fµν

ext

◦ Jµ can be related to particle four-current as, Jµ = qNµ.
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Conserved Currents (Particle Current and Stress-Energy Tensor) :

◦ The net particle current within the system remains conserved. Hence we have,

∂µN
µ
f = 0

◦ Total stress-energy tensor is, Tµν = Tµν
f + Tµν

int + Tµν
B +Tµν

ext

◦ The first three stress-energy tensors are given by,

Tµν
f = E uµuν − (P +Π)∆µν + πµν

Tµν
int = −Fµ

αM
να

Tµν
B = −FµαF ν

α +
1

4
gµνFαβFαβ

◦ Due to the external field, stress-energy tensor is not conserved

∂νT
µν = −fµext , ∂νT

µν
f = Fµ

αJ
α
f +

1

2
(∂µF να)Mνα , fµext = Fµ

αJ
α
ext
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Conserved Currents (Angular Momentum Tensor) :

◦ Similar to stress-energy tensor, the total angular momentum is not conserved
in presence of external field and we have,

∂λJ
λ,µν = ∂λL

λ,µν + ∂λS
λ,µν = −τµνext ,

where, τµνext = xµfνext − xνfµext is the torque exerted by Jext on the system.

◦ However, since ∂λLλ,µν = −τµνext , we get a conserved spin angular momentum
tensor i.e.

∂λS
λ,µν = 0
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Boltzmann Equation :

◦ In presence of electromagnetic fields, the Boltzmann equation under RTA is,

pµ∂
(x)
µ f± + Fµ∂

(p)
µ f± + Sµν∂

(s)
µνf

± = −
(u · p)
τR

δf±

where, [Suttorp, de Groot, Nuovo Cimento A (1965-1970), van Weert Thesis (1970)]

∂
(x)
µ ≡

∂

∂xµ
, ∂

(p)
µ ≡

∂

∂pµ
, ∂

(s)
µν ≡

∂

∂sµν
,

◦ We can obtain a simplified expression for the equation of motion as,
[Suttorp, de Groot, Nuovo Cimento A (1965-1970), van Weert Thesis (1970), Nora W. et al. PRD 100 (2019) 5, 056018]

Fα = qFαβpβ +
m

2

(
∂αFβγ

)
mβγ

where, mαβ = χ sαβ is dipole moment tensor, m is the mass of the particle.

◦ We can use the dipole moment tensor to provide a definition of Mαβ as,

Mαβ = m

∫
dPdSmαβ

(
f+ − f−

)
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Solving Boltzmann Equation :

◦ Using RTA in Boltzmann equation we can write the 1st order gradient
correction as,

δf±
(1)

= −Df±eq ,

where,

D =
τR

(u · p)

(
pα

∂

∂xα
+ Fα ∂

∂pα

)
[A. K. Panda et al., JHEP 03 (2021) 216]

◦ For equilibrium distribution function, we use,

f±eq(x, p, s) =

(
1 +

1
2
ωαβ s

αβ f̃
±
0

)
f±0

with, f±0 =
[
eβ·p∓ξ + 1

]−1
and, f̃±0 = 1− f±0

[F. Becattini et. al., Annals Phys. 338 (2013); W. Florkowski et. al., Phys.Rev.D 97 (2018)]
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Dissipative Currents in Spin-magnetohydrodynamics:

◦ The dissipative quantities are defined as,

Π = −
∆αβ

3

∫
dP

∫
dS pαpβ

(
δf+ + δf−

)
πµν = ∆µν

αβ

∫
dP

∫
dS pαpβ

(
δf+ + δf−

)
nµ = ∆µ

α

∫
dP

∫
dS pα

(
δf+ − δf−

)
δSλ,µν =

∫
dP

∫
dS pλsµν

(
δf+ + δf−

)

where, ∆µν
αβ = (1/2)(∆µ

α∆
ν
β +∆ν

β∆
µ
α)− (1/3)∆µν∆αβ is a traceless

symmetric projection operator.
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Dissipative Currents in Spin-magnetohydrodynamics:

◦ So, the dissipative currents are :

X = τeq
[
βXΠ θ + βα

Xn (∇αξ) + βα
Xau̇α + βαβ

Xπσαβ

+ βαβ
XΩΩαβ + βαβ

XF

(
∇αBβ

)
+ βαβγ

XΣ

(
∇αωβγ

)]
,

where, X ≡ nµ, Π, πµν , δSλ,µν

◦ Evolution of spin-polarization tensor is given by,

ω̇µν =Dµν
Π θ+Dµνγ

n (∇γξ)+Dµνγ
a u̇γ+Dµνρκ

π σρκ+Dµνρκ
Ω Ωρκ+Dµνϕρκ

Σ

(
∇ϕωρκ

)

◦ Equilibrium magnetization tensor is given by,

Mµν
eq = a1(T, µ)ω

µν + a2(T, µ)u
[µuγω

ν]γ

[S.B., W. Florkowski, A. Jaiswal, A. Kumar and, R. Ryblewski, PRL 129, 192301 (2022)]
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Summary and Outlook :

◦ Summary :
1. Viscous effects may be necessary for explanation of LSP.
2. We found the dissipative currents depend on multiple hydrodynamic variables.
3. Vorticity may affect the evolution of spin-polarization tensor.
4. Magnetomechanical effects exists in a spin-polarizable and magnetizable fluid.

◦ Outlook :
1. Formulation of a causal spin-hydrodynamics is required.
2. A spin-hydrodynamics with non-local collisions is necessary.
3. A spin-hydrodynamics for spin-1 particles needs to be formulated.
4. Need to study phenomenological consequences of the theory.

Thank you.
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