Jet and charged hadron production in heavy-ion collisions in the ATLAS detector

Petr Balek

16 December 2022

introduction

- in collisions of heavy ions, quark-gluon plasma is created
- interacts strongly
- consist of free quarks and gluons
- somewhat distinguishable from hadron gas
- has cross-over at lower μ_B , second order critical end point
- we would like to study it

arXiv:1504.05274

interaction in vacuum

- in order not to be surprised by the result of a *pp* collision, we should know:
 - ▶ parton distribution functions $(f_{a/A}, f_{b/B})$
 - cross section (σ)
 - ▶ fragmentation functions (D_{h/cd}, ...)

this a similar cartoons by Martin Rybář

hard interaction in QGP

- in order not to be surprised by the result of a heavy-ion collision, we should know:
 - ▶ parton distribution functions in a nuclei $(f_{a/A}, f_{b/B})$
 - cross section (σ)
 - ▶ fragmentation functions in QGP (D_{h/cd}, ...) and interactions in QGP in general

- in order not to be surprised by the result of a heavy-ion collision, we should *in addition* know:
 - ▶ all the parton interactions, fragmentation functions, ...

- in order not to be surprised by the result of a heavy-ion collision, we should *in addition* know:
 - all the parton interactions, fragmentation functions, ...
 - how the medium expands and cool down
 - how the partons lose their energy in the medium
 - what are the global properties of the outcome, as such v_2 , v_3 , ...

quark-gluon plasma

• a typical life experience of a heavy-ion collision consist of:

- initial collision of ions large enough to create QGP
- deconfined quarks and gluons create film czeski
- termal equilibrium
- creation of hadrons
- freeze-out
- a curious physicist poking its nose uncomfortably close to it

centrality in HI collisions

Central collision

- small impact factor \Rightarrow central collision
 - large overlap
 - large number of interacting nucleons ("participants")
 - large deposited energy in forward calorimeter

Peripheral collision

- large impact factor \Rightarrow peripheral collision
 - small overlap
 - small number of interacting nucleons ("participants")
 - small deposited energy in forward calorimeter

ATLAS detector

- forward calorimeters: 3.1 $< |\eta| <$ 4.9
- tracker: $|\eta| < 2.5$
- EM and hadronic calorimeters: $|\eta| < 3.2$

centrality in HI collisions

- instead of impact factor, we measure energy deposited in FCal
- it is not exactly one-to-one correspondence but there's a strong correlation
- we don't want observables (hadrons, jets, ...) to bias the centrality measurement

nuclear modification factor R_{AA}

- observables measured in HI collisions are usually compared to the same observables in pp collisions
- modification of various observables is typically studied in ratios
- not specific for jets or hadrons; one can do the same for W, Z, H, ...
- nuclear modification factor R_{AA}:

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{1/N_{evt} d^2 N_{ch}/dp_{T} d\eta}{d\sigma_{pp}^2/dp_{T} d\eta}$$
$$R_{AA} = \frac{1}{\{geometry\}} \frac{\{heavy-ion\ collisions\}}{\{pp\ collisions\}}$$

 $\bullet\,$ we have to account for a larger size of an ion $\to\,$ no free credits out of that

- every hard parton traversing QGP eventually fragments and form a jet
- very similar statement is true for pp collisions
 - "every hard parton ... eventually fragments and form a jet"
- partons also lose energy in QGP
- thus, they create jets with somewhat smaller energy than they would have in a vacuum

arXiv:1805.05635

- what does exactly mean 'somewhat smaller'?
 - very good question but it's not easy to answer

SCET_G

- Soft Collinear Effective Theory
- uses modified splitting functions and generalized DGLAP evolution
- partons lose energy via soft gluon emissions
- g is a coupling between a jet and the medium

- what does exactly mean 'somewhat smaller'?
 - very good question but it's not easy to answer

LBT

- Linear Boltzmann Transport model
- kinetic description of parton propagation
- hydrodynamic description of the medium evolution
- also keeps track of thermal recoil partons from each scattering and their further propagation in the medium

- what does exactly mean 'somewhat smaller'?
 - very good question but it's not easy to answer

EQ

- Effective Quenching
- a semi-empirical parameterisation of jet quenching effect, applies shifts in $p_{\rm T}$ spectrum
- larger for gluon-initiated jet, smaller for quark-initiated jet
- jets fragments as in vacuum
- requires experimental data to extract the parameters of the energy loss

large jet R_{AA}

- the lost energy may be recovered in a larger cone
- partially true for central collisions, not so much for peripheral ones
- unclear what happens at lower p_{T}

arXiv:2102.13080

Petr Balek

grooming of jets & R_{AA}

- one can study energy loss and the radiation in the medium
- it's possible to drop the soft contributions of a jet
- the angle between the first hard splitting is r_g
- at large angles, the medium is able to recognize two partons
- not at small angles

arXiv:2211.11470

nuclear modification & fragmentation functions

• fragmentation of a jet often estimated in term of longitudinal momentum fraction relative to the jet:

$$z = rac{p_{\mathrm{T}}}{p_{\mathrm{T}}^{jet}} \cos \Delta R$$

• fragmentation function:

$$D(p_{\rm T}) = \frac{1}{N_{jet}} \frac{\mathrm{d}N_{ch}}{\mathrm{d}p_{\rm T}} \qquad \qquad D(z) = \frac{1}{N_{jet}} \frac{\mathrm{d}N_{ch}}{\mathrm{d}z}$$

• ratios of fragmentation function:

$$R_D(p_{\rm T}) = \frac{D(p_{\rm T})_{PbPb}}{D(p_{\rm T})_{pp}} \qquad \qquad R_D(z) = \frac{D(z)_{PbPb}}{D(z)_{pp}}$$

per-jet distributions, thus accounting for a larger size of ion by definition → no free credits here either

Petr Balek

fragmentation functions

- we have more particles with low p_{T} and with high p_{T} in jets in heavy ions
- ullet and we have less particles with intermediate p_{T}
- we can same something similar for z as well

arXiv:1805.05424

fragmentation functions

• why is it so?

very good question but it's not easy to answer

Hybrid Model

- uses perturbation for high-Q² processes
- strong coupling for low-q² processes
- R_{res} is a length parameters that distinguishes these two

• nuclear modification factor R_{AA}:

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{1/N_{evt} \, {\rm d}^2 N_{ch} / {\rm d} p_{\rm T} {\rm d} \eta}{{\rm d} \sigma_{pp}^2 / {\rm d} p_{\rm T} {\rm d} \eta}$$

- same definition as for jets
- accounts for a large size of an ion
- $\bullet\,$ at high $p_{\rm T},$ the production of charged hadrons is driven by jets and their fragmentation
- at low p_{T} , the production is driven by bulk production of the medium

analysis overview

- the distributions are always corrected to the particle-level, i.e. independent on the detector
 - easy for theorists to compare with their models
 - easy for experimentalists to compare with other collaborations
 - tricky for experimentalists to work it out
- using several data sets:

• pp,
$$\sqrt{s_{_{NN}}} = 5.02 \,\mathrm{TeV}$$
, $25 \,\mathrm{pb}^{-1}$

• PbPb, $\sqrt{s_{NN}} = 5.02 \text{TeV}$, 0.50 nb⁻¹

• XeXe,
$$\sqrt{s_{_{NN}}} = 5.44$$
TeV, 3μ b⁻¹

- to get particle-level distributions, we correct for:
 - fake and secondary track
 - p_{T} and η resolutions
 - track reconstruction efficiency
 - interpolation to the same $\sqrt{s_{_{NN}}}$

fake and secondary track

- same reconstructed tracks are better than others
- tracks may be linked to:
 - primary particles (our interest, $\tau > 0.3 \times 10^{-10}$ s)
 - secondary particles, from decays of Σ , Ξ , ... (not our interest)
 - no particles, just a spurious combination of hits (not our interest)

arXiv:2211.15257

p_{T} and η resolution correction

- ullet measured $p_{
 m T}$ is not the real $p_{
 m T}$
- $\sigma_{p_{\mathrm{T}}} \approx c_0 + c_1 \cdot p_{\mathrm{T}}$
- migration to other p_{T} bin is very common
- ullet problem more pronounced at higher p_{T}
- corrected for by Bayesian unfolding

ullet analogically for η resolution, although that one is more diagonal

$p_{\rm T}$ resolution

- off-diagonal elements susceptible to the statistical fluctuations
- thus, we first fit distributions of resolution:

$$r=(p_{
m T}/p_{
m T}^{
m rec})-1$$

• the fits are used to fill the migration matrices for the Bayesian unfolding

 \Rightarrow this approach lead to a large reduction of systematic uncertainties

Petr Balek

Jets and charged hadrons in ATLAS

track reconstruction efficiency

- some particles pass through the detector undetected
- the reconstruction efficiency depends on the type of a particle
 - ▶ *π*, K, p
 - * reconstructed from low $p_{\rm T}$; small differences
 - strange baryons (Σ, Ξ, Ω)
 - \star at low p_{T} , decay before reaching the detector ightarrow truly unsportsmanlike
 - \star possible to reconstruct only at $ho_{
 m T}\gtrsim 10{
 m GeV}$
 - simulations reweighted to reflect the particle composition as in data
 - at $p_{\rm T}$ 3-4GeV, there is a "bitter spot" where it hurts the most

extrapolation to the same $\sqrt{s_{_{NN}}}$

- to mitigate differences between samples due to different $\sqrt{s_{_{NN}}}$
- pp cross-section measured only at $\sqrt{s} = 5.02$ TeV
- to use it for comparison of XeXe collision, using Pythia for extrapolation to $\sqrt{s} = 5.44$ TeV

- larger suppression in more central collisions
- milder suppression in more peripheral collisions
- "shouldn't there be no suppression when the collisions are peripheral enough?"
 - good question, uncertain answer
 - problem with ultra-peripheral collisions, not clear what is a collision and what is not

- we can compare suppression in PbPb and XeXe
- both follow the same trend but the magnitude is different
- not only size of the fireball matters but probably something else as well

- all 3 experiments are consistent
- anything else would be worrisome
- all of them use the same definition for primary particles, correct to particle-level, ... etc.

Petr Balek

• Soft Collinear Effective Theory

• Linear Boltzmann Transport model

- VUSHNU is a (2+1)D viscous hydrodynamic model
- CUJET describes high- $p_{\rm T}$ energy loss

- quark-gluon plasma affects partons traversing it
- the energy loss is well documented
- the partons' interactions with QGP is also documented
- all this affect production of jets, hadrons, ...
- there are still many white spots on the map
- with upcoming data-taking during Run 3, we may fill some gaps