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General introduction

▶ DIS has been central to the study of proton structure.
▶ The knowledge of the structure of protons is vital for

measurements of processes such as the p-p collision.
▶ With Electron Ion Collider (EIC) on horizon, DIS remains to

be of great interest.
▶ Factorization allows long-distance effects to be encoded inside

process-independent parton distribution functions (PDFs).
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kt-factorization
The inclusive DIS process ep → γ∗(q)p(p) → X .

x , κ

x/z , k
Proton Proton

with q′ ≡ q + xp,

κ = αp − βq′ + κt and k = ap − bq′ + kt .
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The structure function can be expressed in terms of the dipole
gluon density F [Kimber, 2001, Kwiecinski et al., 1997]:

F2T (x , Q2) =
∑

e2
f

Q2

4π

∫
dΠ̃ αs(µ2)F(x/z , k2

t )

×
[[

β2 + (1 − β)2
] (κt

D1
− κt − kt

D2

)2
+ m2

f

( 1
D1

− 1
D2

)2
]

,

F2L(x , Q2) =
∑

e2
f

Q2

4π

∫
dΠ̃ αs(µ2)F(x/z , k2

t )

×
[
4Q2β2(1 − β)2

( 1
D1

− 1
D2

)2
]

,

where ∫
dΠ̃ =

∫
dk2

t

k2
t

∫ 1

0
dβ

∫
dκ2

t
dϕ

2π
Θ(1 − x/z)

D1 = κ2
t + β(1 − β)Q2 + m2

f , D2 = (κt − kt)2 + β(1 − β)Q2 + m2
f

1
z = 1+ κ′2

t + m2
f

β(1 − β)Q2 + k2
t

Q2 .
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Dipole factorization
The formula can also be written in the impact parameter
space [Nikolaev & Zakharov, 1991]:

F2T (x , Q2) = 6
∑

e2
f

Q2

4π2

∫
dΠ σdipole(x/z , r)

×
[[

β2 + (1 − β)2
]

K 2
0 (ϵr) + m2

f K 2
1 (ϵr)

]
,

F2L(x , Q2) = 6
∑

e2
f

Q2

4π2

∫
dΠ σdipole(x/z , r)

×
[
4Q2β2(1 − β)2K 2

1 (ϵr)
]
,

where

∫
dΠ =

∫ 1

0
dβ

∫
d2r

(2π)2 Θ(1 − x/z)

ϵ2 = β(1 − β)Q2 + m2
f
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Dipole factorization
The above formula is factorized in the
form [Nikolaev & Zakharov, 1991]

F2
(
x , Q2

)
∼
∫ 1

0
dβ

∫
d2r

∣∣∣Ψ (β, r , Q2
)∣∣∣2 σdipole (x , r) .

This form has a nice interpretation:
▶ Ψ. . . describes fluctuation of γ∗ into qq pair with momentum

fractions β and 1 − β,
▶ σdipole. . . describes interaction of the qq pair of a size r with

the target proton.

β

1 − β
r

p
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Dipole cross section

The dipole cross section is related to the gluon density by the
relation

σdipole(x , r) = 4π

CA

∫ d2kt
k2

t

(
1 − e−ir·kt

)
αsF(x , k2

t ).

When the dipole size r is small

σdipole(x , r) ≈ r2 4π2αsxg(x , 1/r)
CA

.

→ Colour transparency.
( When the dipole is small, it looks colourless.)

But what happens when r increases? Do we have unlimited
growth?

Saturation!
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Saturation and non-linear evolution

▶ Balitsky–Fadin–Kuraev–Lipatov (BFKL)
[Balitsky & Lipatov, 1978, Kuraev et al., 1977] which resums
large logarithms, log(1/x), predicts sharp rise of cross section
∼ x−λ.

▶ Froissart bound limits the growth to be ≲ log2(1/x)
[Froissart, 1961].

▶ Saturation is described by nonlinear equations.
e.g.
Balitsky–Kovchegov (BK) [Balitsky, 1996, Kovchegov, 1999],
Gribov–Levin–Ryskin (GLR) [Gribov et al., 1983]
etc.

But it is often useful to have a simple model to
describe the phenomenon!
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GBW and BGK models
GBW model is in the form [Golec-Biernat & Wusthoff, 1998]

σGBW(x , r) = σ0

(
1 − e− r2Q2

s
4

)
,

where
Q2

s (x) = 1
4

(x0
x

)λ

is the saturation scale, which separates the scaling region (∼ r2),
and the saturated region (∼ σ0).

The DGLAP-improved BGK [Bartels et al., 2002] model reads:

σBGK(x , r) = σ0

(
1 − exp

[
− r24π2αs(µ2)xg(x , µ2)

3σ0

])
,

where

µ2 = C/r2 + µ2
0 and xg(x , Q2

0) = Agx−λg (1 − x)5.6
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Sudakov Form Facor
arXiv:2210.16084
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Sudakov form factor

▶ Sudakov form factor resumms logarithms of two vastly
different scales, such as log(qt/Q) [Collins et al., 1985].

▶ It was shown by Xiao et al. [Xiao et al., 2017], that large
logarithms of type log(1/x) and the Sudakov logarithms can
be resummed consistently and simultaneously.

▶ Hard scale dependence is subleading in the leading log(1/x)
approximation [Kimber et al., 2000].
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We use Xiao et al.’s formula for the dipole gluon density and
introduce a new, hard-scale-dependent dipole cross section Σdipole:

Σdipole(x , r , Q2) =
∫ d2kt

(2π)2k2
t

(
1 − eikt ·r

)
×
∫

d2r′eikt ·r′e−S(r ′,Q2)∇2
r′σdipole(x , r ′)

=
∫ r

0
dr ′r ′ log

( r
r ′

)
e−S(r ′,Q2)∇2

r ′σdipole(x , r ′).

This new object Σdipole is hard scale, Q2, dependent, and does not
converge to a constant at large r .
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In the present study, we focus on the leading-order, perturbative
Sudakov factor [Xiao et al., 2017],

S(1)
pert(r , Q2) = CA

2π

∫ Q2

µ2
b

α(µ2)dµ2

µ2 log
(

Q2

µ2

)
.

For the case of the running coupling αs(µ2) = 1/(b0 log µ2

Λ2
QCD

),

S(1)
pert(r , Q2) = CA

2πb0

[
− log

(
Q2

µ2
b

)

+

1 + α(µ2
b)b0 log

(
Q2

µ2
b

)
α(µ2

b)b0

 log
(

1 + α(µ2
b)b0 log

(
Q2

µ2
b

))]
,

where

b0 = 11CA − 2nf
12 µb = CS/r CS = 2e−γE

and γE ≈ 0.577 is the Euler-Mascheroni constant.
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▶ We consider S(r , Q2) = 0 for µ2
b > Q2.

▶ For the large-r region, te Sudakov factor is frozen with
modified b∗-prescription of [Golec-Biernat & Sapeta, 2006]:

µ2
b = µ2

0

1 − e−r2 µ2
0

C

,

where µ2
0 = C/r2

max.

→ No modification for Q2r2 ≲ 1
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Set-up

▶ The models are fitted to Inclusive DIS data from
HERA [Abt et al., 2017].

▶ The data are selected to be in the range

x ≤ 0.01 0.045 GeV2 ≤ Q2 ≤ 650 GeV2.

▶ Light quarks are taken massless. c and b quark masses are
mc = 1.3 GeV and mb = 4.6 GeV.

▶ Minuit package [James & Roos, 1975] was used to fit the
model.
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GBW + Sudakov
σ0 [mb] x0(10−4) λ χ2/dof

GBW 19.1 2.58 0.322 4.44
GBW + Sud 18.6 3.11 0.299 2.66

▶ Considerable improvement in the fit quality for moderate
change in the parameters.

▶ Milder dependence on x .
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Saturation scale

In terms of the gluon density, the saturation scale can ge thought
of as a typical k2

t of gluons where F peaks. For the GBW model,

∂F(x , k2
t )

∂k2
t

= Q−4
s (Q2

s − k2
t )e−k2

t /Q2
s = 0
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Comparison with data at selected Q2.
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BGK + Sudakov
σ0 [mb] Ag λg C µ2

0 [GeV2] χ2/dof
BGK 23.3 1.18 0.0832 0.329 1.87 1.56

BGK + Sud 22.2 8.67 -0.500 0.670 3.83 1.21

▶ λg < 0 → small-x rise comes from DGLAP evolution.
▶ The gluon density shifts to the higher kt region.

19 / 37



Saturation scale
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Comparison with data at selected Q2.

21 / 37



Q2 dependence

For data in the range 0.045 ≤ Q2 ≤ Qup:

Q2
up [GeV2] GBW GBW+Sud

5 1.55 1.55
25 1.46 1.41
50 1.97 1.83
100 2.36 2.15
650 4.44 2.66

Q2
up [GeV2] BGK BGK+Sud

5 1.63 1.59
25 1.42 1.30
50 1.52 1.23
100 1.55 1.25
650 1.56 1.21

▶ Introduction of the hard scale by the Sudakov factor accounts
for the Q2 dependence better.

▶ No more deterioration with increased range of Q2 for the BGK
model.
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Non-perturbaive Sudakov factor
Non-perturbative Sudakov factor
[Collins et al., 1985, Prokudin et al., 2015]:

S(r , Q2) = Spert(r , Q2) + Snp(r , Q2),

where [Prokudin et al., 2015]

Snp(r , Q2) = g1r2 + g2 log
( r

r∗

)
log
( Q

Q0

)
.

µ2
0S [GeV2] GBW + Sudpert GBW + Sudpert+np

1 2.71 2.72
2 2.66 2.67
3 2.64 2.65
4 2.64 2.64
5 2.64 2.65

µ2
0S [GeV2] BGK + Sudpert BGK + Sudpert+np

1 1.18 1.17
2 1.21 1.17
3 1.25 1.21
4 1.29 1.21
5 1.32 1.22

▶ The non-perturbative Sudakov factor is relevant in the large-r
region, where the photon wave function strongly suppresses.

▶ For a small value (∼ 2 GeV2), effects of the non-perturbative
Sudakov factor is negligible.
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Summary so far

▶ The Sudakov form factor can be incorporated in the dipole
cross section.

▶ The Sudakov form factor introduces the hard scale
dependence.

▶ Better description of data over a wide range of Q2, for both
the GBW and BGK models.

▶ Improvement at the moderate-x region ∼ 0.01.
▶ For the process studied, effects of non-perturbative Sudakov

factor is negligible.
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Exact Gluon Kinematics
(in progress)
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x/z vs x

As we saw earlier, the derivation of the dipole factorization involves
with the dipole cross section σdipole(x/z , r), while the GBW
formula uses σdipole(x , r).

1/z enters implicitly as the modified variable

x̃ ≡ x
(

1 + 4m2
f

Q2

)
.

The derivation of dipole factorization requires that 1/z do not
depend on kt nor κ′

t . However in the kt factorization,

1
z = 1 + κ′2

t + m2
f

β(1 − β)Q2 + k2
t

Q2 ≥
(

1 + 4m2
f

Q2

)
.
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▶ Massive light quarks partially simulate non-zero kt and κt .
▶ Larger value of 1/z suppresses the cross section.
▶ Dipole factorization assumes that the dipole does not change

its size throughout the interaction.
▶ Argument of the running coupling can depend of kt and κt .

What are the effects of these points?
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Factorization Formula
Using κ′

t ≡ κt − (1 − β)kt , angle ϕ can be
integrated [Kimber, 2001, Kwiecinski et al., 1997]:

F2(x , Q2) =
∑

f
e2

f
Q2

2π

∫
Π̃′ αsF(x/z , k2

t )Θ(1 − x/z)

×
[ (

β2 + (1 − β)2
)( I1

2π
− I2

2π

)
+
(
m2

f + 4Q2β2(1 − β)2
)( I3

2π
− I4

2π

) ]
,

where
I1
2π

=
N1N2 + N2

3(
N2

1 + 2N1N2 + N2
3
)3/2

I2
2π

=
N3 − (1 − 2β)N1

(N1 + N4)
√

N2
1 + 2N1N2 + N2

3

I3
2π

=
N1 + N2(

N2
1 + 2N1N2 + N2

3
)3/2

I4
2π

=
(1 − β)

(N1 + N4)
√

N2
1 + 2N1N2 + N2

3

for

N1 ≡ β(1 − β)Q2 + m2
f N2 ≡ κ′2

t + (1 − β)2k2
t

N3 ≡ κ′2
t − (1 − β)2k2

t N4 ≡ κ′2
t + β(1 − β)k2

t .
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Set-up

The same configuration as the previous fit.
▶ massless light quarks
▶ mc = 1.3 GeV & mb = 4.6 GeV
▶ HERA F2 data.
▶ 0.045 ≤ Q2 ≤ 650 GeV2 & x < 0.01

For the GBW model we additionally investigate the kt-factorization
with running coupling, assuming

αs(µ2)F(x , k2
t ) = αs(µ2)

0.2
Nc
4π

∫ d2r
(2π)2 eikt ·r∇2

r σdipole(x , r),

where µ2 = k2
t + κ′2

t + m2
f [Kwiecinski et al., 1997].
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GBW
- σ0 [mb] x0

(
10−4) λ χ2/dof

r -GBW 1.907e+01 2.582e+00 3.219e-01 4.438e+00
r -GBW-massive 2.384e+01 1.117e+00 3.082e-01 5.274e+00

kt -GBW 3.344e+01 1.333e+00 3.258e-01 4.396e+00
rc-kt -GBW 5.613e+01 2.639e+00 3.213e-01 2.448e+00

▶ The fit qualities of dipole factorization and kt-factorization
are comparable.

▶ Fit parameters are similar too, except for σ0.
▶ Considerable improvement from the running coupling.
▶ x0 of kt-GBW and r -GBW-massive are similar.
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Saturation scale
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Comparison with data at selected Q2.
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BGK
- σ0 [mb] Ag λg C µ2

0
[
GeV2] χ2/dof

r -BGK 2.328e+01 1.229e+00 7.311e-02 3.420e-01 1.928e+00 1.564e+00
kt -BGK 3.470e+01 1.048e+00 2.205e-01 2.391e-01 9.954e-01 1.527e+00

▶ The fit qualities of dipole factorization and kt-factorization
are comparable.

▶ Some difference in the second peak of the gluon density.
▶ Difference is more visible at the small-x region.
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Saturation scale
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Comparison with data at selected Q2.
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Summary & Next step

▶ The exact gluon kinematics suppresses the cross section.
▶ For inclusive DIS, the fit qualities are comparable for the

dipole factorization and kt-factorization.
▶ The effect shows predominantly in the normalization σ0.
▶ Running coupling is important in the description of the

large-Q2 region.

As a next step we will investigate less inclusive processes:
▶ Dijets in DIS relevant for EIC
▶ Single Inclusive jet production in p-p collision.
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