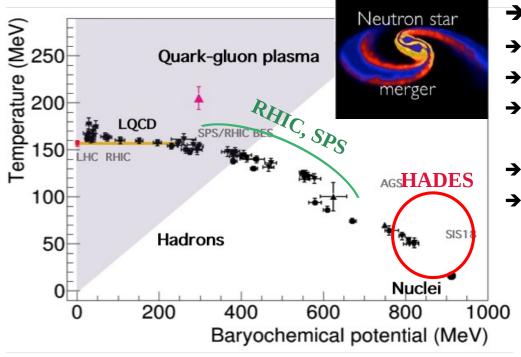


Studies of pion-induced reactions with HADES

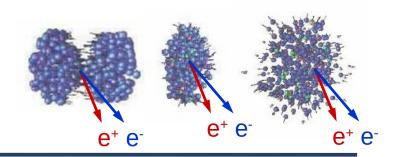
OUTLINE:

- 1) Motivations of the HADES experiment,
- 2) HADES detector,
- 3) Pion-induced reactions at p_{π} = 0.7 GeV/c:
 - I. Studies of baryon structure with pion beam,
 - II. Studies of pion and proton emission channels with C target (INCL, SMASH, GiBUU, RQMD),
- 4) Conclusions and outlook.



Izabela Ciepał 24. 03. 2023

HADES: exploring dense QCD matter


- Equation-of-State: First order transition?
- → Search for a critical point
- → Chiral symmetry restoration
- → Microscopic structure of baryon dominated matter
- → Role of baryonic resonances, hyperons
- → Complementary to SPS, RHIC,...

A+A: 1-3A GeV

√s=2-2.4 GeV

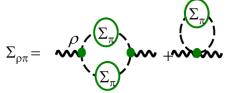
Observables:

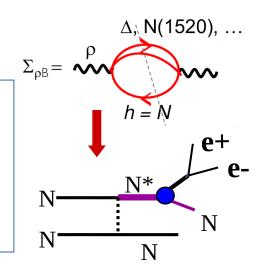
- Correlations and fluctuations
- ✓ Collective effects
- ✓ Strangeness
- **✓ Dileptons**

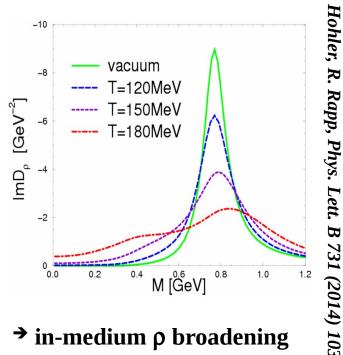
HI and elementary collisions

- → baryon-dominated matter
- → role of vector mesons

$$D_{\rho}(M,q,T,\mu_B) = \frac{1}{\left[M^2 - m_{\rho}^2 - \Sigma_{\rho\pi\pi} - \Sigma_{\rho B} - \Sigma_{\rho M}\right]}$$

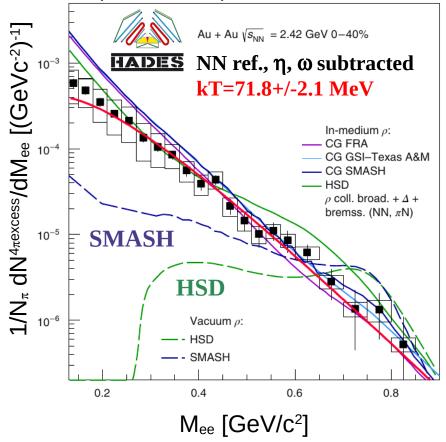

p-meson


Vacuum:

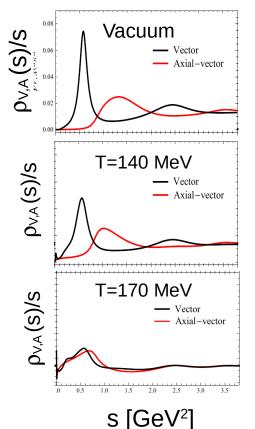

in-medium **spectral function** depends on **pNN* coupling** $(N(1520), \Delta(1720), N(1910), \ldots)$ studied in NN, π N collisions via $N^*(\Delta) \rightarrow Ne^+e^-$ Dalitz decays

Nuclear matter: additional terms

pion loop: πN interactions



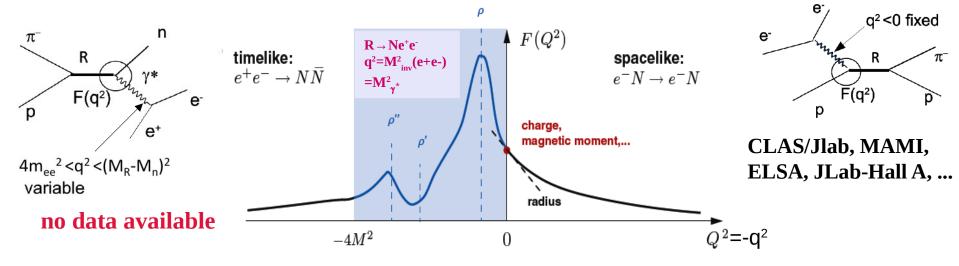
- → in-medium ρ broadening
- → chiral symmetry restoration


HI and elementary collisions

 in-medium ρ broadening (NA60, DLS)

HADES: Nature Phys. 15 (2019) 10, 1040

- chiral symmetry restoration
- vector and axial-vector spectral functions

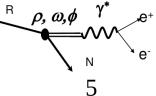


chiral parity partners $\rho(760)/a_1(1260)$ become degenerate at $T \sim T_c$, $\mu_b = 0$ $(\rho-a_1 \text{ mixing})$

P. M. Hohler and R. Rapp Nuclear Physics B Proceedings Supplement 00 (2021) 1

Electromagnetic structure of baryons

Rezonans → Nucleon Transition Form Factor — **baryon Dalitz decay**

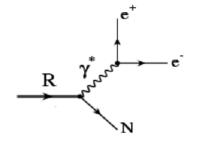

$$\frac{d\Gamma(\Delta \to Ne^+e^-)}{dq^2} = f(m_{\Delta}, q^2) \left(|G_{M}^{2}(q^2)| + 3|G_{E}^{2}(q^2)| + \frac{q^2}{2m_{\Delta}^{2}} |G_{C}^{2}(q^2)| \right)$$

QED

transition of point-like particles

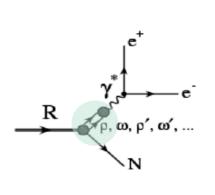
G_{M/E/C}: Form-Factors internal structure of hadrons (various models)

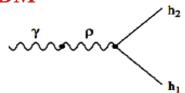
Important role of vector mesons: $J^{PC} = 1^{--} (=\gamma)$



Dalitz decays of baryon resonances

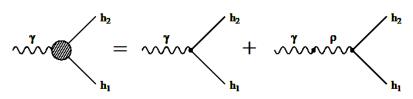
QED "point-like"


 $R-\gamma^*$ vertex



M. Zetenyi et al., PRC 67, 044002 (2003)

Vector Meson Dominance Model (VDM)

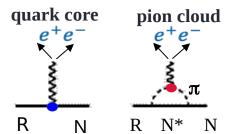


Sakurai, Phys. Rev 22 (1969) 981 M. I. Krivoruchenko et al., Ann. Phys. 296, 299 (2002)

→ 2-component VDM

Kroll, Lee & Zuminio Phys. Rev. 157, 1376 (1967)

Implementation of VDMs

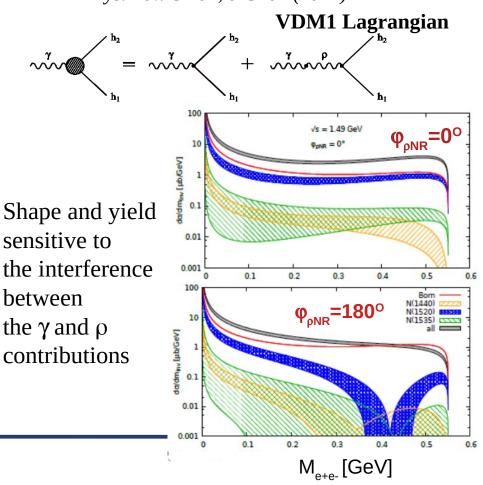

Covariant quark model +VMD

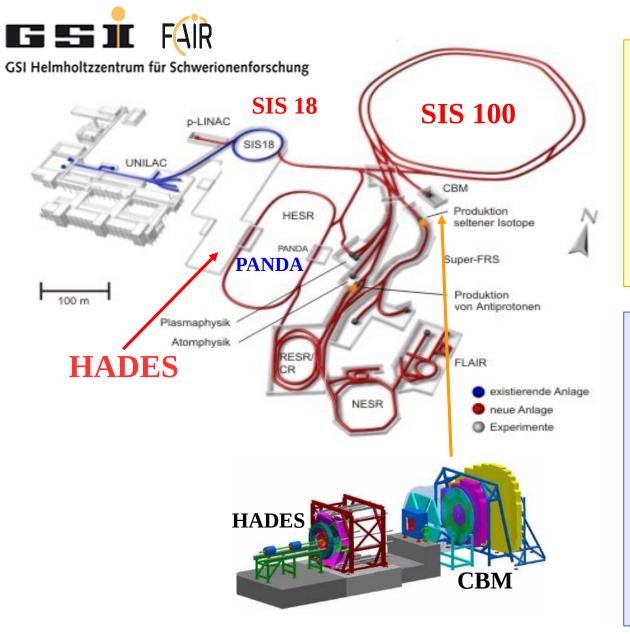
T. Pena & G. Ramalho

N-Δ(1232): *Phys.Rev.* D85 (2012) 113014 N-N(1520): *Phys. Rev.* D95, (2017) 014003

N-N(1535): Phys.Rev. D101 (2020)114008

VDM: quark FF pion FF





Two-component Lagrangian model

M. Zetenyi & G. Wolf

Phys. ReV. C 86, 065209 (2012) Phys. Rev. C 104, 015201 (2021)

SIS 18

18Tm (**1.8 T magnets**)

 U^{73+} : 1.0 GeV/u, 10⁹ ions/s

 Ni^{26+} : 2.0 GeV/u, 10^{10}

Protons: 4.5 GeV, 2.8x10¹³/s

Secondary beams

Pions: 0.5-2 GeV/c

SIS 100

2T (4T/s) magnets

Au: up to 8-10 GeV/u

 10^{12} ions/s

Protons: up to 30 GeV

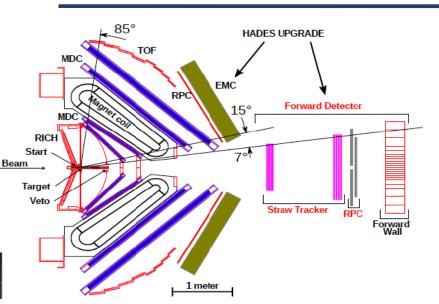
 2.8×10^{13} ions/s

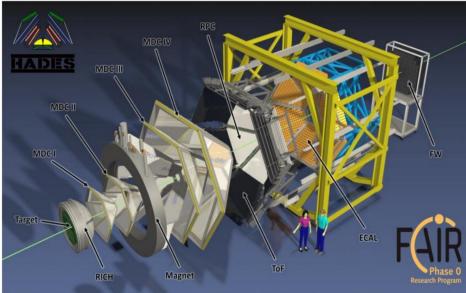
Secondary beams

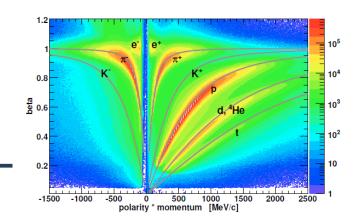
Radioctive beams 1.5 GeV/u

Anty-protons 30 GeV

HADES - first detector of FAIR Phase0 (2018-2022)

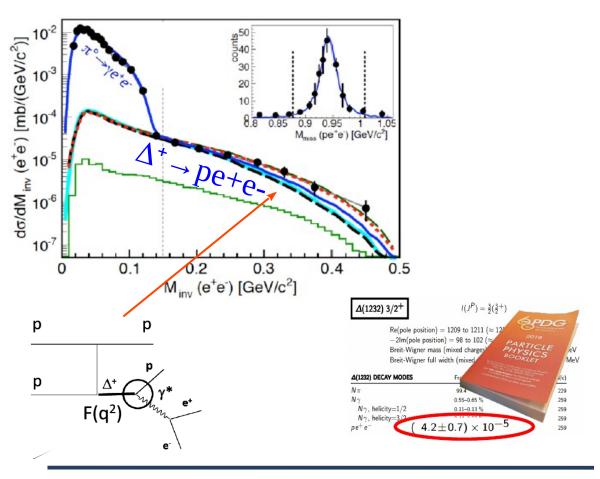


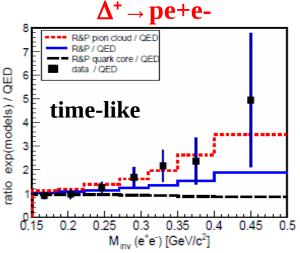


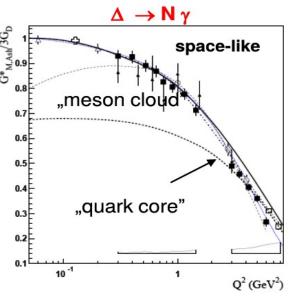


High Acceptance DiEelectron Spectrometer

- ✓ SIS18 beams: protons (1-4.5GeV), nuclei (1-2AGeV), pions (0.4-2 GeV) secondary beam
- ✓ Spectrometer with $\Delta M/M \sim 2\%$ at ρ/ω
- ✓ PID (π /p/K): ToF (TOF/RPC, T0 detector), tracking (dE/dx)
- ✓ momenta, angles: MDC+ magnetic field
- ✓ e+,e-: RICH
- ✓ neutral particles: ECAL
- ✓ full azimuthal, polar angles 18° 85°
- ✓ e+e- pair acceptance ~0.35

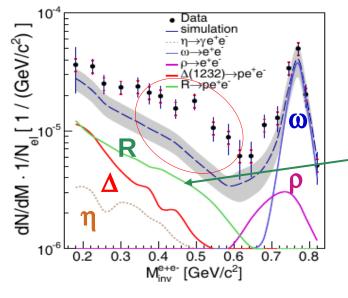



Δ (1232) resonance - exclusive pe+e- analysis

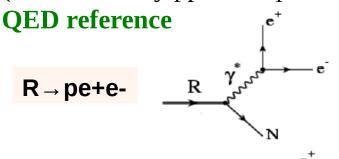

HADES: Phys. Rev. C 95, 065205 (2017)

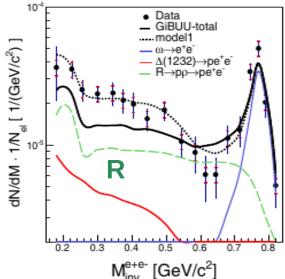
$pp \rightarrow ppe+e-@1.25 GeV$

 \rightarrow cross sections for pn π^+ , pp π^0 using PWA



I. G. Aznauryan and V. D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)


Dalitz decay studies of heavier baryons


HADES: EPJ A50, 82 (2014)

$pp \rightarrow ppe^+e^- @3.5 GeV$

Dalitz decays of **point-like** baryonic resonances (constrained by $pp\pi^0$ and $pn\pi^+$ channels)

effect of electromagnetic transition Form Factors $R \rightarrow p\rho \rightarrow pe+e-$

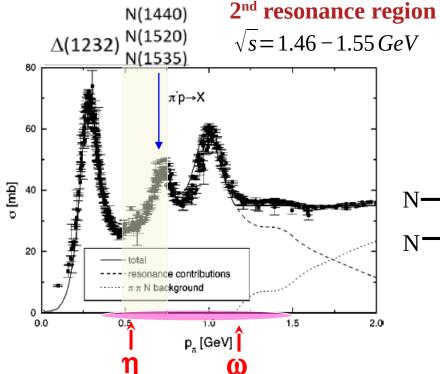
model 1 = GiBUU, but with modified cross sections (HADES simul.)

 $R = \Delta^+(1232)$

N*(1440)

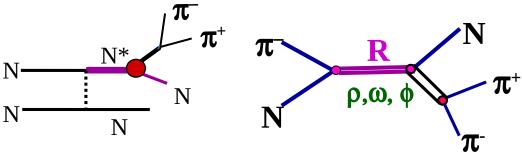
N*(1520)

N*(1535)


N*(1680)

 $\Delta^{+}(1700)$

 $\Delta^+(1910)$

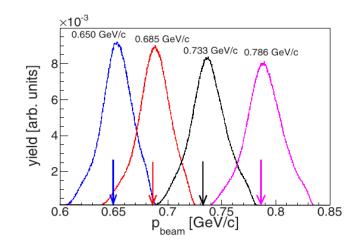


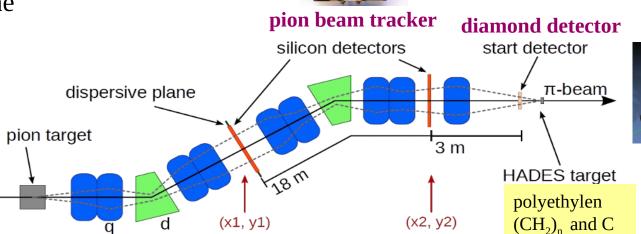
Motivations for pion beam experiments with HADES

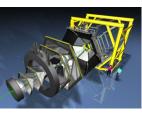
selectivity:

producion of resonance with given mass in s-channel

HADES + GSI pion beam is an ideal (unique in world) tool to:

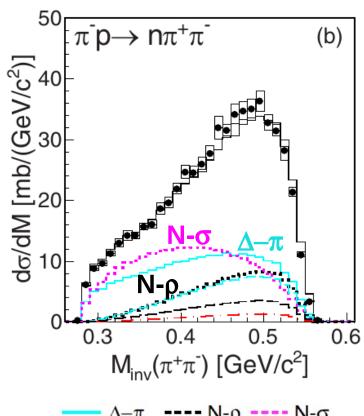

- Study the time-like electromagnetic structure of baryons
- Complete the very scarce pion beam data base for hadronic couplings
- ightharpoonup **Dilepton channel** R \rightarrow Ne+e-, **never** measured in pion induced reactions


Pion beam facility @ GSI

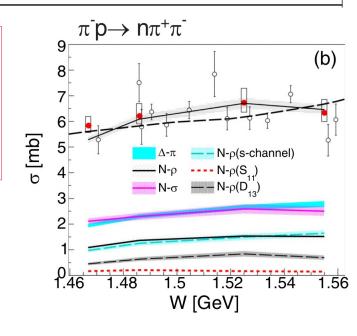

Eur. Phys. J. A 53, 188 (2017)

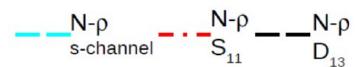
- reaction N+Be, 8-10*10¹⁰ N₂ ions/spill (4s)
- righthapproximation secondary π with $I \sim 2-3 \ 10^5/s$
- ▶p = 650, **685**, 733, 786 (+/- 1) MeV/c
- \triangleright **PE** (CH₂)_n and C targets

- \rightarrow pion momentum $\Delta p/p = 2.2\%$ (σ)
- ~50% acceptance of pion beam line



2-pion production in π -p

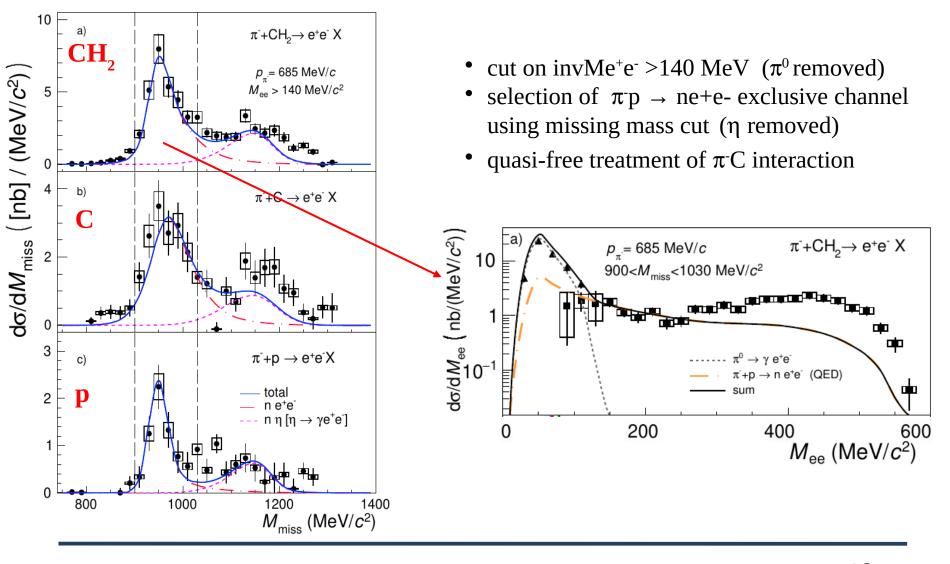

HADES: Phys. Rev. C 102, 024001, (2020)


HADES data $(\pi^-p \rightarrow n\pi^+\pi^-)$ and $\pi^-p \rightarrow p\pi^0\pi^-$ at 4 energies) + photon (CB-ELSA, MAMI) and pion (Crystal Ball) data base included in Bonn-Gatchina Partial Wave Analysis

s-channel N(1520) 3/2⁻ dominant contribution BR=11.8 +/- 1.9 % in **p** production

crucial for e+e- analysis

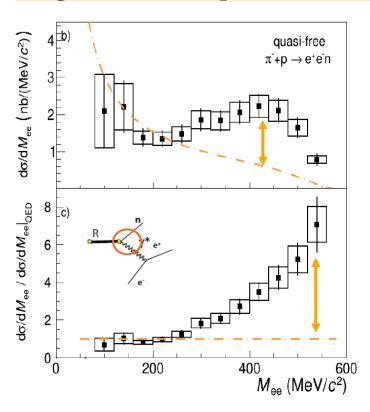
---- N-ρ ---- N-σ

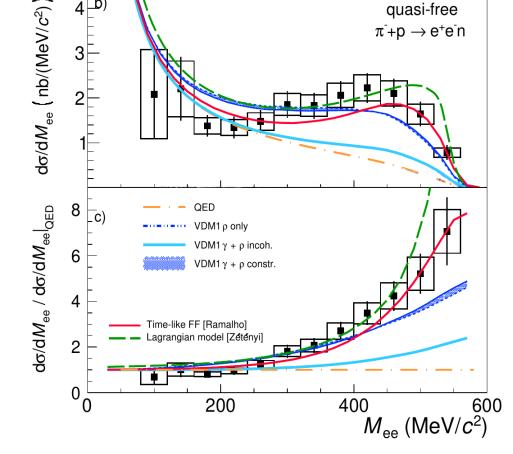


Branching ratios of N(1440), N(1535), N(1520) to 2π channels ($\Delta \pi$, σ N, ρ N) \rightarrow 8 new entries (4 first + 4 additional entries)

Selection of quasi-free $\pi^-p \rightarrow ne+e-$

HADES Coll. arXiv:2205.15914 [nucl-ex]

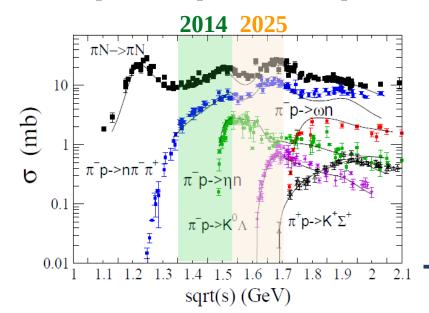




Effective time-like transition form factor $R_{OED} = (d\sigma/dM)/(d\sigma/dM)_{OED}$

HADES Coll. arXiv:2205.15914 [nucl-ex]

huge excess over point-like QED

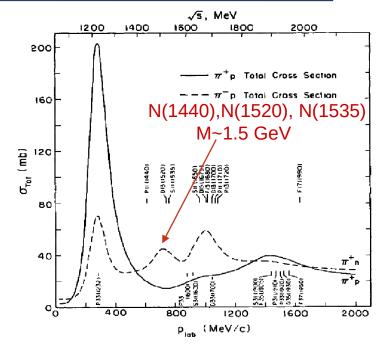

- M_{ee} < 200 MeV/c² consistency with QED reference
- Strong excess at larger M_{ee} (up to a factor 5)

VDM1 - gives reasonable description Lagrangian model – very promising Time-like FF - dominant pion cloud contribution (pion emFF)

Summary

- HADES & **pion beam** is an unique tool to understand in details baryon-ρ couplings:
 - \rightarrow significant off-shell contribution originating from N(1520)D₁₃ shown by combined PWA,
 - → $D_{13}(1520)$ coupling to ρ -N: 12+/-2 %,
 - → very new information on electromagnetic baryon transitions in the time-like region,
- Proposal for pion beam experiment in 2025 in the third resonance region.

Investigate heavier resonances N(1620), N(1720), ... in e+e- channels and many hadronic channels, e.g. $\pi\pi N$, ωn , ηn , $K^0\Lambda$, $K^0\Sigma$,

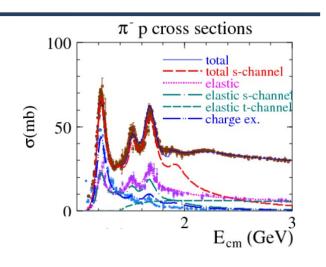


Studies of pion and proton emission channels with C target

Main goal: microscopic structure of baryon dominated matter and role of baryonic resonances in the 2^{nd} resonace region.

- **test of transport models** used as a tool to identify medium effects (study of various reaction mechanisms) in heavy-ion collisions at a few AGeV,
- **pion dynamics** crucial to describe the evolution of the collision:
 - → real pions copiously produced

Previous investigations with pion beam:


- P_{π} <**250 MeV/c:** Δ (1232) resonance region well-known.
- **300**< P_{π} <**500 MeV/c**: few measurements (π , πx) or (π , $\pi \pi x$) (LAMPF, TRIUMF, KEK).
- P_{π} >500 MeV/c: only total cross sections (Saturne-1, NIMROD, BNL) and differential elastic cross sections (KEK).

Transport models

- Nucleon Fermi gas,
- Binary interactions: inelastic collisions through resonance/string excitation and decay,
- All **baryonic resonances** included ($\Delta(1232)$, N(1440), N(1520), ... up to M=2 GeV/c²),
- Elementary cross-sections adjusted to data.

$$\pi N \rightarrow R(string), R \rightarrow \pi N, \pi \pi N$$

pp $\rightarrow pR, R \rightarrow \pi N$

BUU (Boltzmann-Uehling-Uhlenbeck transport equation)		QMD (Quantum Molecular Dynamics)		
GiBUU	SMASH	RQMD.rmf	UrQMD	
https://gibuu.hepforge.org	https://smash-transport.github.io		http://urqmd.org	
momentum-dependent mean field potential	mean field potential	potential: sum of potentials from surrounding particles (wave packets)		
		momdep.	non momdep.	
only field-type (continuous) interaction via the mean field, no N-N int. (except for collisions)		particle moves in the potential + collides with neighbours		
		N-N interaction		

Open issues

HI collisions with HADES

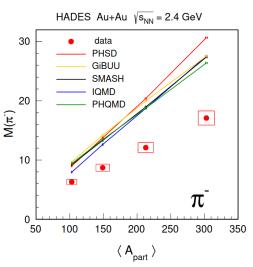
overestimation of pion production

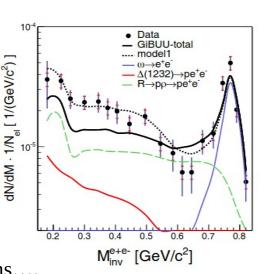
HADES: Eur. Phys. J. A 56, 259 (2020)

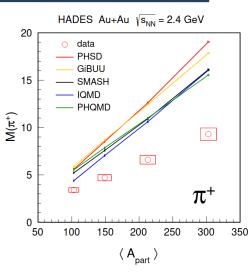
• pp \rightarrow ppe+e-@3.5 GeV

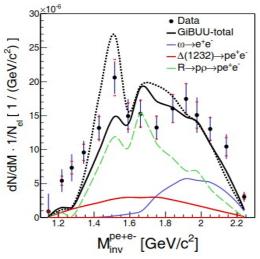
HADES: EPJ A48, 64 (2012)

model 1 = GiBUU, but with modified cross sections (HADES simul.)

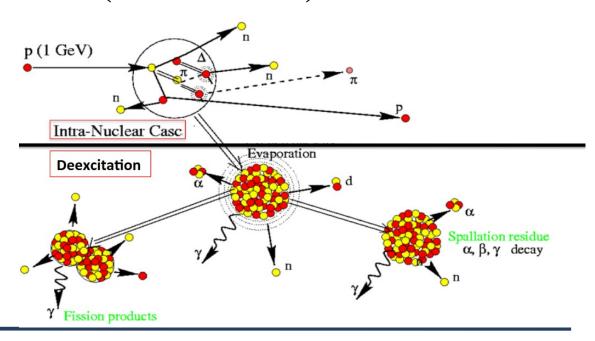

R= N*(1520) - 38%


N*(1720) - 22%


 $\Delta^{+}(1620)$ - 15%


 Δ ⁺(1905) - 7%

INCL++ cascade model


https://irfu.cea.fr/dphn/Spallation/incl.html

- → Based on transport equations, but constant potentials are applied.
- → Baryon spectrum: only $\Delta(1232)$ resonance is included.
- Dynamic creation of composity nuclear products (surface coalescence).

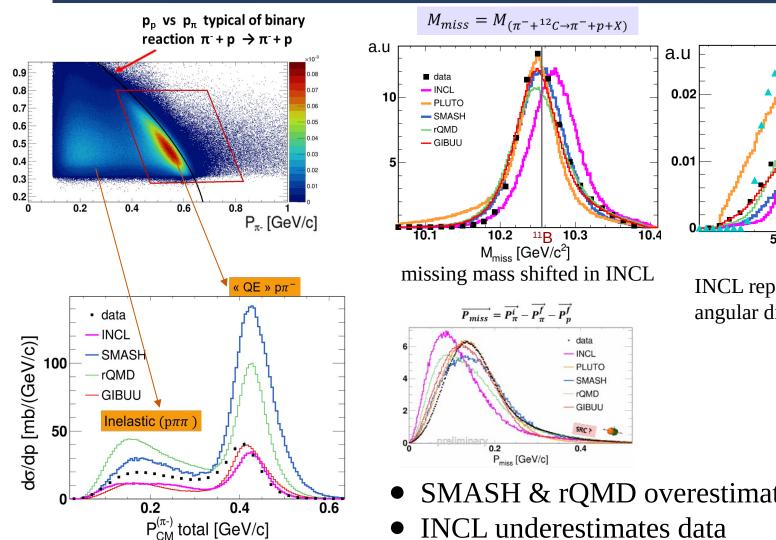
Applications:

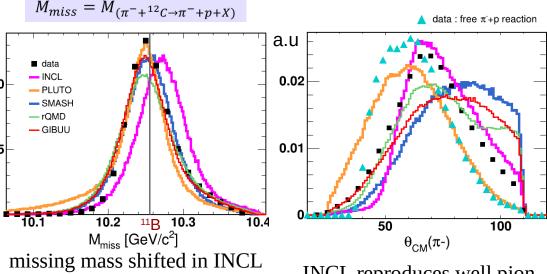
- GEANT4
- Interaction of pions in detectors (e/ π discrimination)
- Neutrino physics.

 $p/\pi/light ions + A$

$\pi^{-}+{}^{12}C$ @ 685 MeV/c

Our strategy:

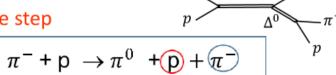

- \succ Test transport models and INCL++: investigate various exit channels of π^- + 12 C to constrain the description of various processes: quasi-elastic, rescattering, pion absorption,...
- > Events are generated based on different models,
- > Events processed through detector material (GEANT),
- Reconstruction of simulated events same as data events.
- "inclusive": p, π^+ , π^- , d, t (TOF/RPC Mult2 trigger)
- quasi-elastic: $\pi^-+ {}^{12}C \rightarrow p^+\pi^-+X$ (SRC, rescattering)
- 2-particle: $\pi^-\pi^-$, $\pi^-\pi^+$, pp, $p\pi^+$, $p\pi^-$
- 3-particle: $p\pi^{-}\pi^{-}$, $p\pi^{+}\pi^{-}$, $pp\pi^{-}$, $pp\pi^{-}$


Models:

- INCL
- RQMD.rmf
- SMASH
- GiBUU

$\pi^{-}+ {}^{12}C \rightarrow \pi^{-}+p+X$ quasi elastic

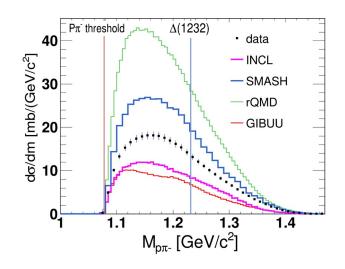
INCL reproduces well pion angular distribution


- SMASH & rQMD overestimate data
- INCL underestimates data

$\pi^{-}+{}^{12}C$ @ 685 MeV/c

$p\pi^-$: Inelastic

Single step

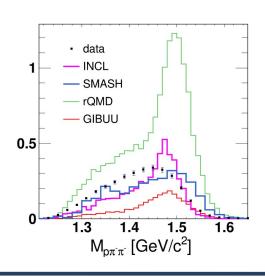

Multi step

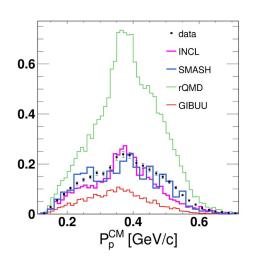
$$\pi^{-} + p \rightarrow \pi^{-} + p$$

$$\pi^{-} + p \rightarrow n + \pi^{-} + \pi^{+}$$

$$\pi^- + p \rightarrow \pi^0 + n$$

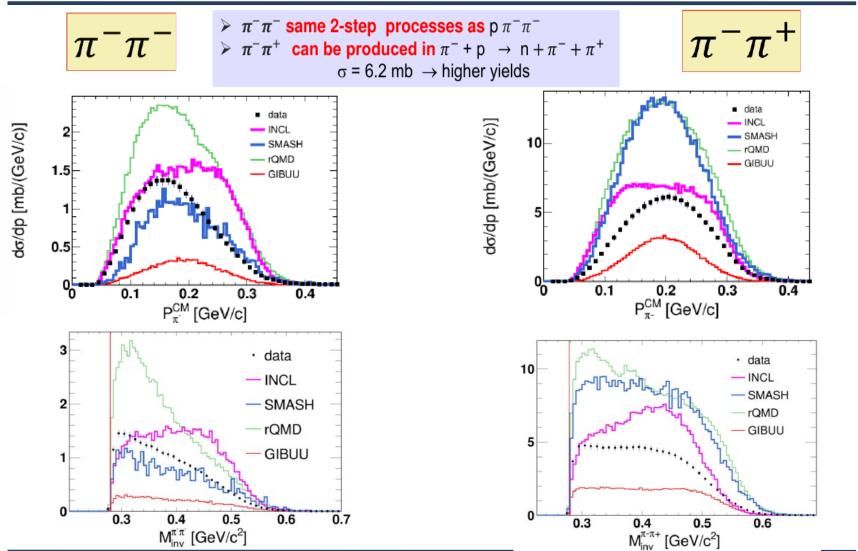
$$\pi^0 + p \rightarrow p + \pi^- + \pi^+$$


$p\pi^-\pi^-$


Single step production:

$$\pi^- + n \rightarrow p + \pi^- + \pi^-$$
; recoiling 11C

Two step production:

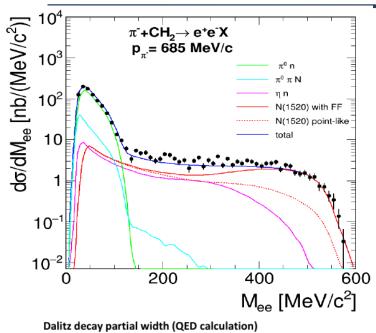

$$\pi^- + p \rightarrow \pi^- + p$$

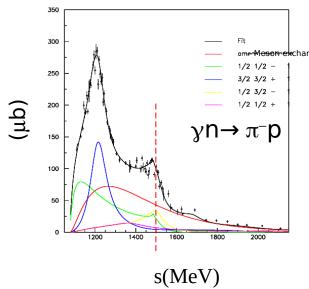
 $\pi^- + n \rightarrow p + \pi^- + \pi^-$

$\pi^{-}+{}^{12}C$ @ 685 MeV/c

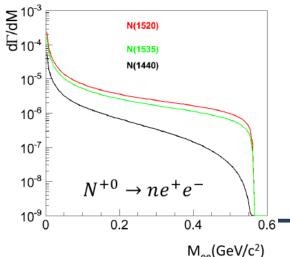
Summary and outlook

- Pion on carbon reactions are under investigation:
 - → comprehensive analysis of inclusive, quasi-free and 2-3-particle correlations,
 - → comparison to various transport models (SMASH, GIBUU, RQMD) and cascade INCL model large dispersion of the predictions (
 - → INCL++ does a **rather** good job for channels with detected pion $p\pi^+$, $p\pi^-$.


- HADES and GSI pion beam facility is very unique tool to study electromagnetic structure of baryons via Dalitz decays.
- Cold nuclear matter studies with C target: important for the interpretation of in-medium hadron properties studied in HI collisions.


Thank You for Your Attention

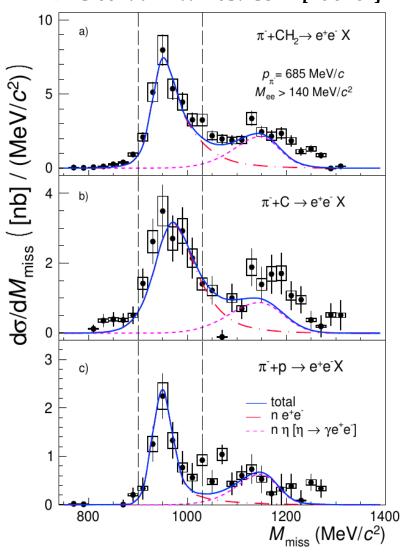
Inclusive e+e- cocktail Fixing cocktail ingredients



Bonn-Gatchina PWA

N(1520) to $\pi^-p \rightarrow \gamma n$: 21% N(1535) to $\pi^{-}p$ → γ n: 15%

 $\sigma(\pi^- p \rightarrow ne^+e^-) \sim$ $1.35 \alpha \sigma(\pi^- p \rightarrow n \gamma) = 2 \mu b$

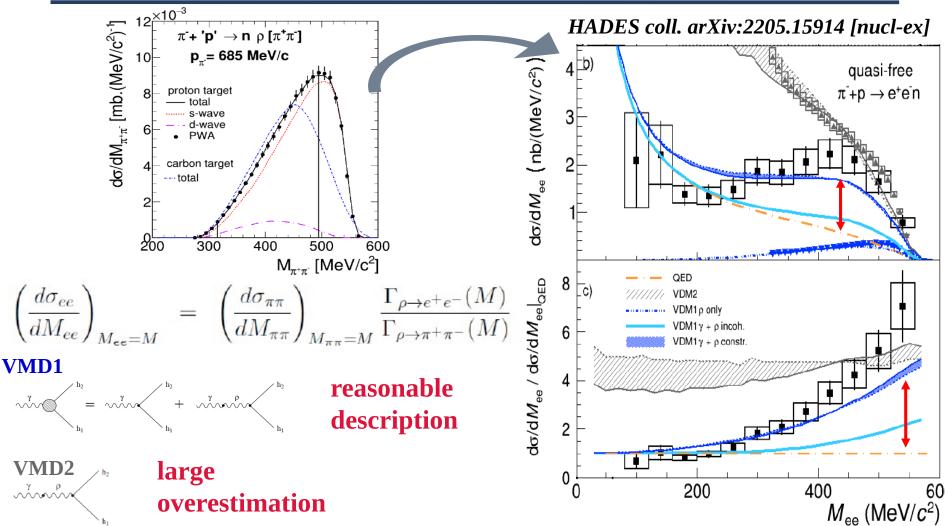

N(1520)

input for $\pi^-p \rightarrow \gamma^*(e^+e^-)n$ QED Dalitz decay contribution

Selection of quasi-free $\pi^- p \rightarrow ne+e-$

HADES coll. arXiv:2205.15914 [nucl-ex]

- cut on **invMe**+**e**->140 MeV (above π^0 mass)
- missing mass cut on $\mathbf{M}_{\text{miss}}(\eta \text{ removed})$


- π C simulations using Pluto (qfs participant-spectator model)
- production cross sec. on C for: π^0 , η , ρ , γ deduced from the scaling: $R_{C/H} = \sigma_C/\sigma_H$
- **CH**, target:

$$\left(\frac{d\sigma}{dM_{ee}}\right)_{CH_2} = \left(\frac{d\sigma}{dM_{ee}}\right)_C + 2\left(\frac{d\sigma}{dM_{ee}}\right)_H$$

Exclusive e+e- cocktail

comparison to VMD1 and VDM2

• Characteristics of main properties of selected ("currently on market") transport models

Property	GiBUU	IQMD	UrQMD	RQMD.RMF	SMASH	PHSD
Relativistic Kinematics	optionally	n,p : no K : yes	yes	yes	yes	yes
Potential = Mean field	yes	n,p : no K : yes	no	optionally	yes	yes
Potential = sum of nucleon pots.	no	yes	yes	optionally	no	no
Electromagnetic potential	yes	yes	yes for baryons no for π	optionally	no	no
Momentum- dependent potential	yes	yes	no	yes	no	yes
Creation of LCP (clusters)	at end of simulation	at end of simulation	no	at end of simulation	at end of simulation	no
modifications of hadron mass in the medium	yes	yes	no	baryons: yes K, π: no	no	yes
quark-gluon phase described by "strings"	yes	no	yes	yes	yes	yes

Bonn-Gatchina Partial Wave Analysis

Address: Nussallee 14-16, D-53115 Bonn

Fax: 228 / 73-2505

Data Base

Meson Spectroscopy

Baryon Spectroscopy

NN-interaction

Formalism

Data: 2016-2018

130 datasets

solutions: A. Sarantsev

event-by-event

cross sec. calculated for every fitted data event

$$f = -\sum_{j}^{N(data)} ln rac{\sigma_{j}(PWA)^{data}}{\sum\limits_{m}^{N(rec\,M\,C)} \sigma_{m}(PWA)}$$

HADES unique data sets

$$A = \sum_{IJ\xi,\alpha} \bar{u}(q_1) A^{IJ\xi,\alpha}_{\gamma_1...\gamma_n} F^{\gamma_1...\gamma_n}_{\mu_1...\mu_n}(p) N^{\xi}_{\mu_1...\mu_n}(k^{\perp}) u(k_1)$$

2π data included in the fit

Reaction	Observable	W (GeV)	
$\gamma p o \pi^0 \pi^0 p$	DCS, Tot	1.2-1.9	MAMI
$\gamma p o \pi^0 \pi^0 p$	\mathbf{E}	1.2-1.9	MAMI
$\gamma p o \pi^0 \pi^0 p$	DCS,Tot	1.4-2.38	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	P, H	1.45-1.65	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	T, P_x, P_y	1.45 - 2.28	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	P_x, P_x^c, P_x^s (4D)	1.45-1.8	CB-ELSA
$\gamma p o \pi^0 \pi^0 p$	P_y, P_y^c, P_y^s (4D)	1.45-1.8	CB-ELSA
$\gamma p ightarrow \pi^+\pi^- p$	DCS	1.7-2.3	CLAS
$\gamma p o \pi^+\pi^- p$	I^c, I^s	1.74-2.08	CLAS
$\pi^- p o \pi^0 \pi^0 n$	DCS	1.29 - 1.55	Crystal Ball
$\pi^- p \to \pi^+ \pi^- n$	DCS	1.45-1.55	HADES
$\pi^- p o \pi^0 \pi^- p$	DCS	1.45 - 1.55	HADES