Phenomenology of light mesons with J = 2, 3Shahriyar Jafarzade

Jan Kochanowski University of Kielce, Poland

joint works with F.Giacosa, R.D.Pisarski, A.Koenigstein, M.Piotrowska , A.Vereijken

PRD 103(2021)9, 096027 && PRD 106(2022)3, 036008 && arXiv:(2023) 2304.05225

Białasówka seminar, AGH, Kraków, 14.04.2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Introduction

- ▶ The low-energy sector of QCD is rich in experimental data
- Some experiments fo hadron spectroscopy: CLAS12(JLab), GlueX (JLab), BESIII (CHINA), BaBar(SLAC), Belle (JAPAN), CLEO (Syracuse), COMPASS (CERN), LHCb (CERN), PANDA (FAIR) etc.
- ► Experiments to study light mesons: a)BESIII (charmonium decay) M ≤ 2.5 GeV; b)GlueX (photoproduction) M ≤ 2.8 GeV
- Hadrons: i) Mesons (integer spin) and ii) Baryons (half-integer spin)
- Conventional mesons: quark-anti-quark pairs
- Other mesons: glueballs, exotic states, hybrids etc.
- Theoretical methods to study hadrons: LQCD, Effective models of hadrons, QCD sum rules, Functional methods

Quark Model

- "A Schematic Model of Baryons and Mesons" [M. Gell-Mann, Physics Letters.8(3) 214-215 1964]
- "An SU(3) Model for Strong Interaction Symmetry and its Breaking" [G.Zweig, CERN Report 1964]
- Three light quarks {u, d, s} within mesons leads their classification as octets and a singlet because of an SU(3) representation: 3 ⊗ 3̄ = 8 ⊕ 1
- Lightest mesons are so-called the pseudoscalars $\{\pi^+, \pi^0, \pi^-\}$
- Other pseudoscalars: four Kaons (K), η and η'
- ▶ Isoscalar states $\eta \& \eta'$ are mixed
- The quark model fails to explain the larger mass of $\eta'(958)$ than of η

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ つ へ つ

- Conventional mesons are classified according to their quantum numbers such as angular momentum-L, spin-S, total spin-J
- List of light mesons up to J = 3 [R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 083C01 (2022)]

0 - 1 1 -	-DC		. 1		
$n^{2s+1}\ell_J$	J^{PC}	I = 1	$I = \frac{1}{2}$	I = 0	I = 0
		$uar{d},ar{u}d,$	$u\bar{s}, d\bar{s};$	f'	f
		$\frac{1}{\sqrt{2}}(d\bar{d}-u\bar{u})$	$ar{d}s,ar{u}s$		
$1^{1}S_{0}$	0^{-+}	π	K	η	$\eta'(958)$
$1^{3}S_{1}$	$1^{}$	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$
$1^{1}P_{1}$	1^{+-}	$b_1(1235)$	$K_{1B}{}^{\mathrm{a}}$	$h_1(1415)$	$h_1(1170)$
$1^{3}P_{0}$	0^{++}	$a_0(1450)$	$K_{0}^{*}(1430)$	$f_0(1710)$	$f_0(1370)$
$1^{3}P_{1}$	1^{++}	$a_1(1260)$	K_{1A}^{a}	$f_1(1420)$	$f_1(1285)$
$1^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_2'(1525)$	$f_2(1270)$??
$1^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^{\rm a}$	$\eta_2(1870)$	$\eta_2(1645)$??
$1^{3}D_{1}$	1	$\rho(1700)$	K *(1680) ^b	$\phi(2170)^{d}$	$\omega(1650)$
$1^{3}D_{2}$	$2^{}$?	$K_2(1820)^{a}$?	`? ´´
$1^{3}D_{3}^{-}$	$3^{}$	$\rho_3(1690)$	$K_{2}^{(1780)}$	$\phi_3(1850)$	$\omega_3(1670)$??
~ ~		/	av /	, ,	S. /

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

Light mesons with $2 \le J \le 3$

i) Are 3⁻⁻ mesons quark-anti-quark objects? ii) What is the mixing angle in 2⁻⁺ sector? iii) Where are 2⁻⁻ mesons?

イロト イポト イモト イモト

 \blacktriangleright iv) Where is the 2⁺⁺ glueball (meson made of gluons only)?

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

7/33

Symmetries of QCD

▶ QCD Lagrangian: G_{μ} -gluon, q_i -quark, \overline{q}_i -anti-quark fields

 $\mathcal{L}_{QCD} = tr \Big(\bar{q}_i (i \gamma_\mu D^\mu - m_i) q_i - \frac{1}{2} G_{\mu\nu} G^{\mu\nu} \Big), \ G_{\mu\nu} = D_\mu G_\nu - D_\nu G_\mu - ig[G_\mu, G_\nu]$

$$D_{\mu} := \partial_{\mu} - igG_{\mu}, \ G_{\mu} := G^a_{\mu}t^a, \ [t^a, t^b] = if^{abc}t^c$$

- Color symmetry: SU(3)_c → Confinement (we can see hadrons e.g. mesons and glueballs not quark and gluons separately)
- Chiral symmetry (m_i → 0) N_f = 3: U(3)_R × U(3)_L ≡ U(1)_{V=R+L} × SU(3)_V × SU(3)_A × U(1)_{A=R-L} (Hadronic model for 2⁺⁺ and 2^{-−} mesons)
- ▶ Broken: 1) explicitly by $m_i \neq 0$ and 2) spontaneously breaking to $SU(3)_V \times U(1)_V$ (Hadronic model for 3⁻⁻ mesons)
- ▶ Dilitation invariance: $x^{\mu} \rightarrow \lambda^{-1} x^{\mu}$ works in chiral limit and classically
- ▶ Quantum level → Trace anomaly
- U(1)_A: Classical symmetry, broken by quantum effects → Axial anomaly (Hadronic model for 2⁻⁺ mesons)

Mesons within nonets

• Mesons can be grouped into the nonets which transform under the adjoint transformation of the flavour symmetry $U_V(3)$

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_N + \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & K^0 & \eta_S \end{pmatrix}, \ V^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{1,N}^{\mu} + \rho_1^{0,\mu}}{\sqrt{2}} & \rho_1^{+\mu} & K_1^{*+\mu} \\ \rho^{-\mu} & \frac{\omega_N^{\mu} - \rho^{0\mu}}{\sqrt{2}} & K^{*0\mu} \\ K^{*-\mu} & \overline{K}^{*0\mu} & \omega_S^{\mu} \end{pmatrix}$$

Nonets can be extended to the chiral ones based on the chiral symmetry $U_L(3) \times U_R(3)$

$n^{2S+1}L_J$	J ^{PC}	I = 1	$I = \frac{1}{2}$	<i>I</i> = 0	<i>I</i> = 0	Chiral nonet
$1^{1}S_{0}$	0-+	π	К	η (547)	η' (958)	$\frac{\Phi - \Phi^{\dagger}}{2i}$
$1^{3}D_{1}$	$1^{}$	ho(770)	K*(892)	ω (782)	ϕ (1020)	$\frac{L_{\mu}+R_{\mu}}{2}$
$1^{3}P_{1}$	1++	a1(1260)	K _{1A}	f ₁ (1285)	$f_1'(1420)$	$\frac{L_{\mu}-R_{\mu}}{2}$
$1^{3}P_{2}$	2++	a ₂ (1320)	$K_{2}^{\star}(1430)$	f ₂ (1270)	$f_{2}^{\prime}(1525)$	$\frac{\mathbf{L}_{\mu\nu}+\mathbf{R}_{\mu\nu}}{2}$
$1^{3}D_{2}$	2	$\rho_2(?)$	K ₂ (1820)	$\omega_2(?)$	$\phi_2(?)$	$\frac{\mathbf{L}_{\mu\nu}-\mathbf{R}_{\mu\nu}}{2}$
1^1D_2	2 ⁻⁺	$\pi_2(1670)$	$K_2(1770)$	$\eta_{2}(1645)$	$\eta_2(1870)$	$\frac{\Phi_{\mu\nu} - \Phi^{\dagger}_{\mu\nu}}{2i}$
$1^{3}D_{3}$	3	$\rho_3(1690)$	K ₃ (1780)	$\omega_3(1670)$	$\phi_3(1850)$	$\frac{\mathbf{L}_{\mu\nu\rho}+\mathbf{R}_{\mu\nu\rho}}{2}$

Symmetries of chiral nonets

- Chiral nonets under
 - 1. Parity: $P = (-1)^{L+1}$,
 - 2. Charge conjugation: $C = (-1)^{L+S}$
 - 3. Chiral symmetry: $U_L(3) \times U_R(3)$

Nonet	Parity (<i>P</i>)	Charge conjugation (<i>C</i>)	$U_L(3) \times U_R(3)$
$\Phi(t, \vec{x})$	$\Phi^{\dagger}(t,-ec{x})$	$\Phi^t(t, \vec{x})$	$U_L \Phi U_R^\dagger$
$R^{\mu}(t, \vec{x})$	$L_{\mu}(t,-ec{x})$	$-(L^{\mu}(t,ec{x}))^t$	$U_R R^\mu U_R^\dagger$
$L^{\mu}(t, \vec{x})$	$R_{\mu}(t,-ec{x})$	$-(R^{\mu}(t,ec{x}))^t$	$U_L L^\mu U_L^\dagger$
$\mathbf{R}^{\mu u}(t,ec{x})$	$L_{\mu u}(t,-ec{x})$	$(L^{\mu u}(t,ec{x}))^t$	$U_R \mathbf{R}^{\mu u} U_R^\dagger$
$L^{\mu\nu}(t,\vec{x})$	$R_{\mu u}(t,-ec{x})$	$(R^{\mu u}(t,ec{x}))^t$	$U_L \mathbf{L}^{\mu u} U_L^{\dagger}$
$\Phi^{\mu u}(t,\vec{x})$	$\Phi^{\dagger}_{\mu u}(t,-ec{x})$	$(\Phi^{\mu u}(t,ec{x}))^t$	$U_L \Phi^{\mu u} U_R^\dagger$
$\mathbf{R}^{\mu u ho}(t,ec{x})$	$L_{\mu\nu\rho}(t,-\vec{x})$	$-(L^{\mu u ho}(t,ec{x}))^t$	$U_R \mathbf{R}^{\mu u ho} U_R^{\dagger}$

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

イロト 不得 トイヨト イヨト 二日

Sigma Models

- Sigma models used to study the interaction between mesons
- The mathematical structure developed [F. Gürsey Nuovo Cimento 16, 230-240 (1960)]
- A non-linear sigma model: scalar states are integrated out, leaving the pseudoscalar states [J. S. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1957); M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960); S.Weinberg, Phys. Rev. Lett. 18, 188 (1967).]
- A Linear Sigma Model (LSM): keep the scalar and pseudoscalar degrees of freedom [J. S. Schwinger, Phys. Lett. B 24, 473 (1967); S. Weinberg, Phys. Rev. 166, 1568 (1968).]
- Spin-1 eLSM (Frankfurt model) [D.Parganlija, F.Giacosa, and D.H.Rischke PRD 82, 054024 (2010)]

イロト 不得 トイヨト イヨト ヨー ろくつ

eLSM results

(Axial)-vector mesons [D. Parganlija, F. Giacosa, et al. PRD 87 (2013) 014011]

The pseudoscalar glueball [S.Janowski, F. Giacosa, D.H.Rischke PRD 90 (2014) 11, 114005]

Charmed Mesons [W.I. Eshraim, F. Giacosa, D.H. Rischke EPJA 51 (2015) 9, 112]

Baryons [L. Olbrich, F. Giacosa, et.al. PRD 93 (2016) 3, 034021]

Other hadrons, finite temperature effects, exotic mesons ...

Spin-2 eLSM

 "From well-known tensor mesons to yet unknown axial-tensor mesons" [S.Jafarzade, A.Vereijken, M.Piotrowska and F.Giacosa, PRD 106(2022)3, 036008]

Spin-2 eLSM

• Chiral invariant Lagrangian with $\Delta := \text{diag}\{\delta_N, \delta_N, \delta_S\}$

$$\begin{split} \mathcal{L} &= \mathsf{Tr}\Big\{ \Big(\frac{m^2}{2} + \Delta \Big) \big(\mathbf{L}_{\mu\nu}^2 + \mathbf{R}_{\mu\nu}^2 \big) \Big\} + \frac{h_1^{\mathsf{ten}}}{2} \mathsf{Tr} \{ \Phi^{\dagger} \Phi \} \mathsf{Tr} \{ \mathbf{L}^{\mu\nu} \mathbf{L}_{\mu\nu} + \mathbf{R}^{\mu\nu} \mathbf{R}_{\mu\nu} \} + \\ &+ h_2^{\mathsf{ten}} \mathsf{Tr} \{ \Phi^{\dagger} \mathbf{L}^{\mu\nu} \mathbf{L}_{\mu\nu} \Phi + \Phi \mathbf{R}^{\mu\nu} \mathbf{R}_{\mu\nu} \Phi^{\dagger} \} + 2h_3^{\mathsf{ten}} \mathsf{Tr} \{ \Phi \mathbf{R}^{\mu\nu} \Phi^{\dagger} \mathbf{L}_{\mu\nu} \}, \end{split}$$

► Masses of spin-2 mesons in terms of $\phi_N \approx 0.158 \text{ GeV}$ and $\phi_S \approx 0.138 \text{ GeV}$ $m_{\rho_2}^2 - m_{a_2}^2 = -h_3^{\text{ten}}\phi_N^2$, $m_{K_{2A}}^2 - m_{K_2}^2 = -\sqrt{2}h_3^{\text{ten}}\phi_N\phi_S$, $m_{f_{2s}}^2 - m_{\omega_{2,S}}^2 = 2h_3^{\text{ten}}\phi_S^2$ $m_{\rho_2}^2 = m_{\omega_{2,N}}^2$, $m_{a_2}^2 = m_{f_{2n}}^2$

Resonance	Mass (in MeV)	Resonance	Mass (in MeV)
a ₂ (1320)	1317	$\rho_2(?)$	1661
K ₂ *(1430)	1427	$K_{2}^{*}(1820)$	1819
f ₂ (1270)	1315	$\omega_{2,N}(?)$	1663
f ₂ '(1525)	1522	$\omega_{2,S}(?)$	1966

► Mass prediction for missing ρ₂(?) is near to [S. Godfrey and N. Isgur PRD (1985) 32, 189]
Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

14/33

▶ Test of chiral model with three parameters for spin-2 mesons

Decay process	eLSM (MeV)	PDG (MeV)
$a_2(1320) \longrightarrow ar{K} K$	4.06 ± 0.14	$7.0^{+2.0}_{-1.5} \leftrightarrow (4.9 \pm 0.8)\%$
$a_2(1320) \longrightarrow \pi \eta$	25.37 ± 0.87	$18.5\pm3.0 \leftrightarrow (14.5\pm1.2)\%$
$a_2(1320) \longrightarrow \pi \eta'(958)$	1.01 ± 0.03	0.58 ± 0.10 \leftrightarrow $(0.55\pm0.09)\%$
K_2^* (1430) $\longrightarrow \pi \bar{K}$	44.82 ± 1.54	$49.9\pm1.9\leftrightarrow(49.9\pm0.6)\%$
$f_2(1270) \longrightarrow \bar{K} K$	3.54 ± 0.29	$8.5\pm0.8 \leftrightarrow (4.6^{+0.5}_{-0.4})\%$
$f_2(1270) \longrightarrow \pi \pi$	168.82 ± 3.89	$157.2^{+4.0}_{-1.1} \leftrightarrow (84.2^{+2.9}_{-0.9})\%$
$f_2(1270) \longrightarrow \eta \ \eta$	0.67 ± 0.03	$0.75\pm0.14\leftrightarrow(0.4\pm0.08)\%$
$f_2'(1525) \longrightarrow \bar{K} K$	23.72 ± 0.60	$75\pm4 \leftrightarrow (87.6\pm2.2)\%$
$f_2'(1525) \longrightarrow \pi \pi$	0.67 ± 0.14	$0.71\pm0.14\leftrightarrow(0.83\pm0.16)\%$
$f_2^{\prime}(1525) \longrightarrow \eta \eta$	1.81 ± 0.05	$9.9\pm1.9 \leftrightarrow (11.6\pm2.2)\%$
$a_2(1320) \longrightarrow ho(770) \pi$	71.0 ± 2.6	$\textbf{73.61} \pm \textbf{3.35} \leftrightarrow (\textbf{70.1} \pm \textbf{2.7})\%$
$K_2^*(1430) \longrightarrow ar{K}^*(892) \pi$	$\textbf{27.9} \pm \textbf{1.0}$	$26.92\pm2.14\leftrightarrow(24.7\pm1.6)\%$
$K_2^*(1430) \longrightarrow ho(770) K$	10.3 ± 0.4	$9.48\pm0.97\leftrightarrow(8.7\pm0.8)\%$
$K_2^*(1430) \longrightarrow \omega(782) \overline{K}$	3.5 ± 0.1	$3.16\pm0.88\leftrightarrow(2.9\pm\overline{0.8})\%$

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

・ロト・日本・中国・ 日本 しょうくい

15/33

• Chiral Lagrangian $\mathcal{L} = g_2 \Big(\operatorname{Tr} \{ \mathbf{L}_{\mu\nu} L^{\mu} L^{\nu} \} + \operatorname{Tr} \{ \mathbf{R}_{\mu\nu} R^{\mu} R^{\nu} \} \Big)$

- There is an overall agreement between theory and PDG results
- The fit result for the mixing angle agrees well with PDG
- Results can be improved by including further subdominant chiral invariant terms

- Decay rates for missing 2⁻⁻ imply broad resonance even for the lightest member of it p₂(?)
- Using the coupling of chiral model determined from 2⁺⁺ decays leads larger decay rates compared to the fit of LQCD results

Decay process (2^ $ ightarrow 1^{} + 0^{-+})$	eLSM (PDG)	eLSM (LQCD)	LQCD
$ ho_2(?) \longrightarrow ho(770) \eta$	99 ± 50	30	_
$ ho_2(?)\longrightarrow ar{K}^*(892)K+{f c}.{f c}.$	85 ± 43	27	36
$ ho_2(?) \longrightarrow \omega(782) \pi$	419 ± 210	122	125
$ ho_2(?) \longrightarrow \phi(1020) \pi$	0.8	0.3	-

Compared to the well-established 3⁻⁻ meson

Decay process $(3^{} ightarrow 1^{} + 0^{-+})$	PDG	eLSM (PDG)	LQCD
$ ho_3(1690) \longrightarrow ho(770) \eta$	_	3.8 ± 0.8	_
$ ho_3(1690) \longrightarrow ar{K}^*(892) K + \mathbf{c}.\mathrm{c}.$	-	3.4 ± 0.7	2
$ ho_3(1690)\longrightarrow \omega(782)\pi$	25.8 ± 9.8	35.8 ± 7.4	22
$ ho_3(1690) \longrightarrow \phi(1020) \pi$	-	0.036 ± 0.007	-

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

17/33

Spin-3 eLSM

"Phenomenology of J^{PC} = 3⁻⁻ tensor mesons" [S.Jafarzade, A.Koenigstein and F.Giacosa, PRD 103(2021)9, 096027]

Spin-3 eLSM

► Chiral Lagrangian
$$\mathcal{L} = g_3 \Big(\mathbf{tr} \big\{ \mathbf{L}^{\mu\nu\rho} (\partial_\mu L_\nu) L_\rho + \mathbf{R}^{\mu\nu\rho} R_\nu (\partial_\mu R_\rho) + \cdots \big\} \Big)$$

Following terms are reduced from the chiral Lagrangians

Decay Mode	Interaction Lagrangians	$rac{1}{7} imes -i\mathcal{M} ^2$
$3^{} \rightarrow 0^{-+} + 0^{-+}$	$\mathcal{L}_{WPP} = g_{WPP} \operatorname{tr} \left[W^{\mu\nu\rho} \left[P, \left(\partial_{\mu} \partial_{\nu} \partial_{\rho} P \right) \right]_{-} \right]$	$g^2_{WPP} imes rac{2 ec{k}_{P_1,P_2} ^6}{35}$
$3^{} ightarrow 0^{-+} + 1^{}$	$\mathcal{L}_{WVP} = g_{WVP} \varepsilon^{\mu\nu\rho\sigma} \mathrm{tr} \big[W_{\mu\alpha\beta} \big\{ (V_{\nu\rho}) , (\partial^{\alpha}\partial^{\beta}\partial_{\sigma}P) \big\}_{+} \big]$	$g^2_{WVP} imes rac{8 ec{k}_{V,P} ^6 m^2_W}{105}$
Subdominant channels		

• Decay rate with momentum $|\vec{k}_{A,B}| = \frac{1}{2m_W} \sqrt{(m_W^2 - m_A^2 - m_B^2)^2 - 4m_A^2 m_B^2}$

$$\Gamma(W \to A + B) = rac{|\vec{k}_{A,B}|}{8\pi m_W^2} \times |-i\mathcal{M}|^2 \times \kappa_i \times \Theta(m_W - m_A - m_B)$$

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Model predictions using two parameters show qualitative agreement with PDG data

Decay process	eLSM (MeV)	PDG (MeV)
$ ho_3(1690) \longrightarrow \pi \pi$	32.7 ± 2.3	38.0 ± 3.2
$ ho_3(1690)\longrightarrow ar{K}K$	4.0 ± 0.3	2.54 ± 0.45
$ ho_3(1690) ightarrow \omega(782)\pi$	35.8 ± 7.4	25.8 ± 9.8
$K_3^*(1780) o ho(770) K$	16.8 ± 3.5	49.3 ± 15.7
$K_3^*(1780) \longrightarrow \pi \bar{K}$	18.5 ± 1.3	29.9 ± 4.3
$K_3^*(1780) \longrightarrow \bar{K} \eta$	7.4 ± 0.6	47.7 ± 21.6
$K_3^*(1780) o ho(770) K$	16.8 ± 3.5	49.3 ± 15.7

Comparison to the LQCD data [C.Johnson and J.Dudek PRD 103, 074502 (2021)]

Decay process (3^{} \rightarrow 1^{} + 0^{-+})	eLSM (MeV)	LQCD (MeV)
$ ho_3(1690) \longrightarrow \overline{K}^*(892) K + \mathbf{c}.\mathrm{c.}$	3	2
$ ho_3(1690)\longrightarrow\omega(782)\pi$	36	22
$\omega_3(1670) \longrightarrow ho(770) \pi$	97	62
$\omega_3(1670) \longrightarrow ar{K}^*(892) K + {f c}.{f c}.$	2.9	2
$\omega_3(1670)\longrightarrow\omega(782)\eta$	2.8	1
$\phi_3(1850) \longrightarrow \bar{K}^*(892) K + \mathbf{c.c.}$	36	20
$\phi_3(1850) \longrightarrow \phi(1020) \eta$	4	3

- Model results are internally consistent, namely, the sum of the various decay channels do not overshoot the PDG total decay widths
- Chiral symmetry is the guiding principle even for high-spin (3^{--}) mesons
- Some predictions can be tested in *GlueX* and *CLAS12* experiments at Jefferson Lab

		-
decay process	eLSM (keV)	
$ ho_3^{\pm/0}$ (1690) $\to \gamma \pi^{\pm/0}$	69 ± 14	
$ ho_3^0(1690) o \gamma \eta$	157 ± 32	
$ ho_3^0(1690) ightarrow \gamma \eta^\prime(958)$	20 ± 4	
${\it K}_3^\pm$ (1780) $ ightarrow \gamma {\it K}^\pm$	58 ± 12]
${ m \textit{K}}_3^{0}(1780) ightarrow { m \textit{K}}^{0}$	231 ± 48	
ω_3 (1670) $ ightarrow \gamma \pi^0$	560 ± 120	
ω_3 (1670) $ o \gamma \eta$	19 ± 4	
$\omega_3(1670) o \gamma \eta'(958)$	1.4 ± 0.3	
$\phi_3(1850) o \gamma \pi^0$	4 ± 1	
ϕ_3 (1850) $ o \gamma \eta$	129 ± 26]
$\phi_3(1850) o \gamma \eta'(958)$	35 ± 7]
	4 🗆	• • • • • • • • • • • • • • • • • • •

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

22 / 33

Spin-2 glueball eLSM

"Is f₂(1950) the tensor glueball?" [A.Vereijken, S.Jafarzade, M.Piotrowska and F.Giacosa, (arXiv:2304.05225)]

Spin-2 glueball

- Glueballs are not experimentally observed yet
- In radiative J/\u03c6 decays, the primary c\u03c6 pair converts into two gluons and a photon. Scalar and tensor glueballs can be produced
- Spin-2 glueball with the quantum number $J^{PC} = 2^{++}$ is the second lightest state after scalar glueball according to all LQCD simulations
- Analyses of the BESIII data showed an enhancement in the mass distribution around 2210 MeV.[E. Klempt et.al. Phys.Lett.B 830 (2022) 137171]
- Glueball extended chiral Lagrangian

$$\mathcal{L}_{\lambda} = \lambda G_{2,\mu\nu} \Big(\mathsf{Tr}\Big[\{ L^{\mu}, L^{\nu} \} \Big] + \mathsf{Tr}\Big[\{ R^{\mu}, R^{\nu} \} \Big] \Big)$$

Branching Ratio	eLSM	Branching Ratio	eLSM
$\frac{G_2(2210) \longrightarrow \bar{K} K}{G_2(2210) \longrightarrow \pi \pi}$	0.4	$\frac{G_2(2210) \longrightarrow \rho(770) \ \rho(770)}{G_2(2210) \longrightarrow \pi \ \pi}$	55
$\frac{G_2(2210) \longrightarrow \eta \ \eta}{G_2(2210) \longrightarrow \pi \ \pi}$	0.1	$\frac{G_2(2210) \longrightarrow \bar{K}^*(892) \ \bar{K}^*(892)}{G_2(2210) \longrightarrow \pi \ \pi}$	46
$\frac{G_2(2210) \longrightarrow \eta \eta'}{G_2(2210) \longrightarrow \pi \pi}$	0.004	$\frac{G_2(2210) \longrightarrow \omega(782) \ \omega(782)}{G_2(2210) \longrightarrow \pi \ \pi}$	18
$\frac{G_2(2210) \longrightarrow \eta' \eta'}{G_2(2210) \longrightarrow \pi \pi}$	0.006	$\frac{G_2(2210) \longrightarrow \phi(1020) \ \phi(1020)}{G_2(2210) \longrightarrow \pi \ \pi}$	6
		4 🗆 🕨	< A > < 3

BR for the various spin-2 PDG resonances

Resonances	Branching Ratios	PDG	
f ₂ (1910)	$ ho(770) ho(770)/\omega(782)\omega(782)$	2.6 ± 0.4	3.1
f ₂ (1910)	$f_2(1270)\eta/a_2(1320)\pi$	0.09 ± 0.05	0.07
f ₂ (1910)	$\eta\eta/\eta\eta^\prime$ (958)	> 0.05	~ 8
f ₂ (1910)	ω (782) ω (782) $/\eta\eta\prime$ (958)	2.6 ± 0.6	~ 200
f ₂ (1950)	$\eta\eta/\pi\pi$	0.14 ± 0.05	0.081
f ₂ (1950)	$K\overline{K}/\pi\pi$	~ 0.8	0.32
f ₂ (1950)	$4\pi/\eta\eta$	> 200	> 700
f ₂ (2150)	$f_2(1270)\eta/a_2(1320)\pi$	0.79 ± 0.11	0.1
f ₂ (2150)	$K\overline{K}/\eta\eta$	1.28 ± 0.23	~ 4
f ₂ (2150)	$\pi\pi/\eta\eta$	< 0.33	~ 10
f _J (2220)	$\pi\pi/\overline{K}$	1.0 ± 0.5	~ 2.5

• Our results for $f_2(1950)$ does not contradict with PDG data

▶ PDG result for the total decay width $\Gamma_{f_2(1950)} = 464 \pm 24$ MeV

Test of spin-2 resonances in PDG as a glueball

Resonances	Interpretation status	
f ₂ (1910)	Agreement with some data, but excluded by $\eta\eta/\eta\eta'$ and $\omega\omega/\eta\eta\prime$ ratios	
f ₂ (1950)	$\eta\eta/\pi\pi$ agrees with data, no contradictions with data, but implies broad tensor glueball	
	Best fit as predominantly glueball of considered resonances	
f ₂ (2010)	Likely primarily strange-antistrange content	
f ₂ (2150)	All available data contradicts theoretical prediction	
f _J (2220)	Data on $\pi\pi/Kar{K}$ disagrees with theory, largest predicted decay channels are not seen	
f ₂ (2300)	Likely primarily strange-antistrange content	
f ₂ (2340)	Likely primarily strange-antistrange content, would also imply a broad glueball	

$U(1)_A$ breaking effect on spin-2 mesons

[R.D.Piasrski, F.Giacosa, and S.Jafarzade (to appear soon)]

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)

イロト 不得 トイヨト イヨト

Mixing angles

Singlet-octet mixing angles of mesons [R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 083C01 (2022)]

$n^{2s+1}\ell_J$	J^{PC}	$\theta_{\rm quad}$	$\theta_{ m lin}$
		[°]	[°]
$1^{1}S_{0}$	0^{-+}	-11.3	-24.5
$1^{3}S_{1}$	$1^{}$	39.2	36.5
$1^{3}P_{2}$	2^{++}	29.6	28.0
$1^{3}D_{3}$	$3^{}$	31.8	30.8

In case of 2⁺⁺, mixing angle from decay widths within eLSM (32.5°) agrees with the PDG result obtained from

$$heta_{\mathsf{quad}} = rctan\left(\sqrt{rac{4m_{\mathcal{K}_2}^2 - m_{a_2}^2 - 3m_{f_2'}^2}{-4m_{\mathcal{K}_2}^2 + m_{a_2}^2 + 3m_{f_2}^2}}
ight)$$

- Mixing relation works for 1⁻⁻ and 3⁻⁻ mesons
- The same mixing formula does not explain the decay results for 2⁻⁺ mesons. What is the sign and numerical value of the mixing angle in this sector?

For the parameter α of $U_A(1)$, quark fields under $SU_L(3) \times SU_R(3) \times U_A(1)$

$$q_{L,R} := \mathbb{P}_{L,R} q = \frac{1}{2} (1 \mp \gamma_5) q, \qquad q_{L,R} \to e^{\mp i \frac{\alpha}{2}} U_{L,R} q_{L,R}$$

• Mesonic fields with J = 0, 2

Mesons	Chiral Nonet	
$\left\{\pi, \mathcal{K}, \eta, \eta'(958) ight\}$	$\Phi:=\overline{q}_Rq_L$	
Scalar mesons		
$\left\{\pi_2(1670), K_2(1770), \eta_2(1645), \eta_2(1875)\right\}$	$\Phi_{\mu\nu} := -\overline{q}_R (\overleftrightarrow{D}_{\mu} \overleftrightarrow{D}_{\nu} - \frac{1}{4} \delta_{\mu\nu} \overleftrightarrow{D}^2) q_L$	
Orbitally excited tensor mesons		

• Following interaction terms are violating $U(1)_A$

$$\frac{\varepsilon^{ijk}\varepsilon^{i'j'k'}}{3!} \left(\Phi^{ii'} \Phi^{jj'} \Phi^{kk'}, \Phi^{ii'} \Phi^{jj'} \Phi^{\mu\nu\,kk'}, \cdots \right)$$

- Why η'(958) is much larger than η? Solved by using the instantons ['t Hooft, Phys. Rev. Lett. 37, 8 (1976)]
- Expansion of Euclidean action assuming the zero modes dominance leads to effective quark interaction ['t Hooft, Phys. Rev. D 14, 3432 (1976)]

- Instantons are the self dual solutions of the Yang-Mill equations in Euclidean space-time [Belavin et.al., Phys. Lett. B 59, 85 (1975)]
- Dirac operator has a zero mode in the presence of instanton
- Unknown parameter M relates mesonic and quark fields

$$\Phi = \frac{1}{2M^2} \Big(\frac{1}{3} \big(\overline{\psi} \lambda^0 \psi + \overline{\psi} \gamma_5 \lambda^0 \psi \big) \lambda^0 + \sum_{a=1}^8 \big(\overline{\psi} \lambda^a \psi + \overline{\psi} \gamma_5 \lambda^a \psi \big) \lambda^a \Big)$$

• $U_A(1)$ violating term for J = 0

$$\mathcal{L}_{\mathsf{eff}}^{J=0} = -\mathbf{a} \Big(\mathsf{det} \, \Phi + \mathsf{det} \, \Phi^{\dagger} \Big) = -\frac{g_0}{3!} \Big(\det \big(\overline{\psi} \mathbb{P}_R \psi \big) + \det \big(\overline{\psi} \mathbb{P}_L \psi \big) \Big) \,, \mathbf{a} = \frac{g_0 M^6}{8 \cdot 3!}$$

Fix a from $\eta - \eta'$ mixing and $g_0 = \int d\rho n(\rho) (8\pi^2)^3 \rho^9$ within dilute instanton gas model [R.D.Pisarski & F.Rennecke, PRD 101, 114019 (2020)] leads M = 165 MeV

Instanton induced interactions for J = 0 and J = 2

Lagrangian for spin-2 case [F.Giacosa, A.Koenigstein & R.D.Pisarski PRD 97 (2018) 9, 091901]

$$\mathcal{L}_{\mathsf{eff}}^{J=2} = -\frac{c}{3!} \left[\left(\epsilon^{ijk} \epsilon^{i'j'k'} \cdot \Phi_{jj'} \cdot \Phi_{\mu\nu\ kk'} \cdot \Phi_{ji'}^{\mu\nu} \right) + \mathsf{c.c.} \right], \quad c = \frac{g_2 M_2^8 M^2}{8 \cdot 3!}$$

• Coupling $g_2 = \int d\rho n(\rho) (8\pi^2)^3 \rho^{9+4}$ within DGI assuming $\Lambda_{\overline{MS}} = 0.3$ GeV

- Compared to $\mathcal{L}_{eff}^{J=0}$, we obtain the ratio $\frac{c}{a} = 0.01$ if $M_2 \approx M$ and
- Mixing has the same sign as 0^{-+} and strongly dependent on M_2
- Large mixing from decay channels [A.Koenigstein & F.Giacosa EPJA 52 (2016) 12, 356] is expected for $M_2 > M$

J

Conclusion

- We have extended the LSM
 - 1. Spin-2 mesons: $a_2(1320)$, $K_2^*(1430)$, $f_2(1270)$, $f_2'(1525)$
 - 2. Spin-3 mesons: $\rho_3(1690)$, $K_3^*(1780)$, $\phi_3(1850)$, $\omega_3(1670)$
 - 3. Spin-2 glueball: $f_2(1950)$
- Qualitative agreement with PDG and LQCD data for well-established J = 2,3 mesons
- Various predictions including the radiative decays can be the subject of future experimental studies (GlueX, CLAS12, BESIII)
- Model results can be useful for the assignment of missing 2⁻⁻ mesons and the 2⁺⁺ glueball
- ► Instanton induced interactions should be considered in the mixing between 2^{-+} mesons: $\eta_2(1645), \eta_2(1875)$

Thank you for the attention!

Shahriyar Jafarzade (Jan Kochanowski University of Kielce, Poland)