## Fluctuation of conserved charges: Exploring the phase diagram and other applications

- Why fluctuations
- Making the connection between experiment and theory
- Constraining proton annihilation and local charge conservation

Thanks to: D. Oliinychenko, A. Sorensen, J. Steinheimer, V. Vovchenko





### An old question





## The phase diagram



Increase chemical potential by lowering the beam energy

- In reality, we add baryons (nucleons) from target and projectile to mid-rapidity



### What we know about the Phase Diagram



Figure from HotQCD coll., PRD '14





## What we are looking for



We are dealing with small system of finite lifetime

NO real singularities!



### **Cumulants and Phase structure**



What we always see....

What it really means....



## Derivatives







### How to measure derivatives

$$Z = tr \, e^{-\hat{E}_{I}}$$

$$\langle E \rangle = \frac{1}{Z} \operatorname{tr} \hat{E} e^{-\hat{E}/T + \mu/T\hat{N}_B} = -\frac{\partial}{\partial 1}$$

$$\langle (\delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \left( -\frac{\partial}{\partial 1/T} \right)$$

$$\langle (\delta E)^n \rangle = \left( -\frac{\partial}{\partial 1/T} \right)^{n-1} \langle E \rangle$$

Cumulants of Energy measure the temperature derivatives of the EOS

Cumulants of Baryon number measure the chem. pot. derivatives of the EOS

 $\hat{E}/T + \mu/T\hat{N}_B$ 



 $\left(-\frac{\partial}{\partial 1/T}\right)^2 \ln(Z) = \left(-\frac{\partial}{\partial 1/T}\right) \langle E \rangle$ 



$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}}$$

$$K_1 = \langle N \rangle, \ K_2 = \langle N - \langle N \rangle \rangle^2, \ K_3 = \langle N \rangle$$

Cumulants scale with volume (extensive):

Volume not well controlled in heavy ion collisions

**Cumulant Ratios:** 









### What to expect?











### Close to µ=0



$$F(r), \quad r=\sqrt{T^2+a\mu^2}$$
 a ~ cur

a ~ curvature of critical line

$$(T,\mu)|_{\mu=0} = \frac{a}{T} \frac{\partial}{\partial T} F(T,\mu=0) \sim \langle E \rangle$$

Needs higher order cumulants (derivatives) at  $\mu \sim 0$ 

### 11

### Cumulants at small µ

 Baryon number cumulants can be calculated in Lattice QCD

- possible test of chiral criticality? Friman et al, '11











### **Central Au + Au Collisions** (<u>9</u>. ES (|y| < 0.4) p\_(GeV/c) < 3 Ratio C<sub>4</sub>/C<sub>2</sub> 0 **C** -1 (-0.5 < y < 0) $(0.4 < p_{\tau}(GeV/c) < 2.0)$ 10 20 2 5 Collision Energy $\sqrt{s_{NN}}$ (GeV)

Different acceptance!

--E

\_\_\_\_

2.0



## Compare Data with Lattice QCD and other field theoretical models

- Lattice cannot calculate hadron abundances
- Cumulants are well defined quantities
- Compare cumulants !?
  - Detector fluctuates (efficiency etc...)
  - Volume is not fixed in experiment
    - Possible solution (Rustamov et al, 2211.14849)
  - Baryon number conservation
    - Lattice uses grand canonical ensemble
  - Experiment measures protons not all baryons



### Grand canonical ensemble







In coordinate space!!!!



### How to make a grand-canonical ensemble in experiment



![](_page_15_Picture_2.jpeg)

•  $\Delta Y_{total} >> \Delta Y_{accept} >> \Delta Y_{coll}$  (keep the physics and minimize charge conservation effect)

![](_page_15_Picture_5.jpeg)

### Grand canonical ensemble

![](_page_16_Picture_1.jpeg)

Lattice:

$$V_{total} \rightarrow \infty$$

grand-canonical ensemble Coordinate space

![](_page_16_Figure_5.jpeg)

![](_page_16_Figure_6.jpeg)

V<sub>total</sub>

In coordinate space!!!!

Experiment:  $V_{total}$  finite!  $V_{system} \ll V_{total}$  (hopefully) effect of global charge conservation Momentum Space

![](_page_16_Picture_10.jpeg)

## Global charge conservation

Solved for ANY equation of state (including QCD) V. Vovchenko et al, arXiv 2003.13905, arXiv:2007.03850

![](_page_17_Figure_3.jpeg)

Alternative derivation:

M. Barey, and A. Bzdak 2205.05497, 2210.15394

For ideal gas: Bleicher et al: hep-ph/0006201 Bzdak et al: 1203.4529 Braun-Munzinger et al, 1807.08927

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

- Proton are subset of all baryons
  - dilutes the signal
  - need to do binomial unfolding
    - Kitazawa, Asakawa PRC '12
  - Otherwise Apples vs. Oranges

Measure only protons

Lattice QCD

Measure all Baryons

### Protons vs Baryons

![](_page_18_Figure_10.jpeg)

![](_page_18_Picture_11.jpeg)

## Compare Data with Lattice QCD and other field theoretical models

- Lattice cannot calculate hadron abundances
- Cumulants are well defined quantities
- Compare cumulants !?
  - Detector fluctuates (efficiency etc...)
  - Experiment measures protons not all baryons
  - Volume is not fixed in experiment
    - Possible solution (Rustamov et al, 2211.14849)
  - Baryon number conservation
    - Lattice uses grand canonical ensemble
  - Experiment cuts momentum space, Theory cuts configuration space

![](_page_19_Picture_13.jpeg)

### Coordinate vs momentum space cuts

### **Small Spatial Volume**

![](_page_20_Figure_2.jpeg)

### Limited Acceptance

![](_page_20_Figure_4.jpeg)

$$\int_{i} e^{\frac{p^2}{2m}} \int \prod_{i} dx_i e^{V(x_i - x_j)} = Z_p \times Z_x \text{ factorizes!}$$

![](_page_20_Picture_6.jpeg)

### Correlations live in coordinate space

![](_page_21_Figure_1.jpeg)

Cut in coordinate space Integrate over all Momenta

Fluctuations close to expectation from grand canonical Correlations clearly visible

Need Space-Momentum correlations → Flow!

![](_page_21_Figure_5.jpeg)

Cut in momentum space Integrate over all Space

Fluctuations close to non-interacting gas NO correlations or criticality visible

![](_page_21_Picture_8.jpeg)

## Comparison with data from Beam energy scan

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

### Comparison with data from Beam energy scan

![](_page_23_Figure_1.jpeg)

Let's understand the second order cumulants first!

Figure courtesy of V. Vovchenko

![](_page_23_Picture_4.jpeg)

### Proton annihilation in the hadronic phase ?

![](_page_24_Figure_1.jpeg)

### Thermal Model with phase shift corrections:

No room for annihilation in hadronic phase

![](_page_24_Picture_4.jpeg)

### Me

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_4.jpeg)

- Lifetime of hadronic phase is short
- pion number effectively conserved

 $-4\pi \Leftrightarrow 2\pi$  suppressed (chiral symmetry)

- $\Rightarrow$  finite  $\mu_{\pi}$
- increased re-generation of anti-protons

 $-5\pi \Leftrightarrow p + \bar{p}$ 

 Most transport calculations violate detailed balance exceptions: E. Seifert, W. Cassing, PRC 97 (2018) 024913,

O. Garcia-Montero et al, Phys. Rev. C 105 (2022) 064906

### Why the discussion?

Rapp, Shuryak, PRL 86 (2001) 2980;

![](_page_26_Figure_12.jpeg)

Need additional data to settle this issue

![](_page_26_Picture_14.jpeg)

### "Local" or "Global" Charge conservations

ALICE Coll., arXiv:2206.03343

![](_page_27_Figure_2.jpeg)

### "wants" **short** range charge correlations "wants" long range charge correlation

### ALICE Coll., arXiv:2204.10166

![](_page_27_Figure_6.jpeg)

May resolve the tension between proton fluctuations that seem to prefer "global" baryon conservation vs light  $d - \bar{p}$  correlations that prefer more "local" baryon conservation

![](_page_27_Picture_8.jpeg)

## **Baryon annihilation and fluctuations**

•  $\kappa_2(p - \bar{p})$ :

- Not (really) affected by annihilation

- affected by baryon number conservation

- $\kappa_2(p + \bar{p})$ :
  - affected by annihilation
  - -NOT affected by baryon number conservation

### **N.B.:**

In UrQMD annihilation has NO detailed balance

- $\rightarrow$ No reaction  $5\pi \rightarrow p + \bar{p}$
- $\rightarrow$  maximum effect

Savchuk et al., PLB 827, 136983 (2022)

![](_page_28_Figure_13.jpeg)

Measure  $\kappa_2(p - \bar{p})$  AND  $\kappa_2(p + \bar{p})$  to constrain both amount of annihilation AND baryon correlation length

![](_page_28_Picture_15.jpeg)

![](_page_28_Picture_16.jpeg)

## New data @ 5.02 TeV

![](_page_29_Figure_1.jpeg)

### ALICE Collaboration, Phys. Rev. C 101 (2020) 044907

- Evidence for suppression of  $p/\pi$  ration in central collisions (~20%, >4 $\sigma$  level)
- Due to hadronic phase?

For analysis and discussion: See V.Vovlchenko and V.K 2210.15641

![](_page_29_Picture_9.jpeg)

![](_page_29_Picture_11.jpeg)

- Fluctuations measure derivatives of the Free Energy
  - They are a powerful tool to explore QCD phase diagram and other stuff
    - critical point
    - nuclear liquid gas transition
    - remnants of chiral criticality at  $\mu \sim 0$
- Quantitative interpretation of measurements requires care:
  - Global (local) charge conservation
  - Protons vs baryons
  - momentum vs coordinate space
- conservation

### Summary

Fluctuations may constrain proton annihilation together with locality of baryon number

![](_page_30_Picture_15.jpeg)

## Thank You

![](_page_31_Picture_1.jpeg)

### Binomial acceptance vs actual acceptance

![](_page_32_Picture_1.jpeg)

The binomial acceptance will not provide the correct result (except for a gas of uncorrelated particles)

![](_page_32_Picture_4.jpeg)

12

What we really need is

![](_page_32_Picture_7.jpeg)

### Cumulants of (baryon) number distribution

$$K_n = \frac{\partial^n}{\partial (\mu/T)^n} \ln Z = \frac{\partial^{n-1}}{\partial (\mu/T)^{n-1}} \langle N \rangle$$

$$K_1 = \langle N \rangle, \ K_2 = \langle N - \langle N \rangle \rangle^2, \ K_3 = \langle N - \langle N \rangle \rangle^3$$

Cumulants scale with volume (extensive):  $K_n \sim V$ 

Volume not well controlled in heavy ion collisions

**Cumulant Ratios:** 

$$\frac{K_2}{\langle N \rangle}, \quad \frac{K_3}{K_2}, \quad \frac{K_4}{K_2}$$

Baryon number cumulants measure derivatives of the EOS w.r.t chemical potential

![](_page_33_Figure_8.jpeg)

![](_page_33_Picture_9.jpeg)

### **Baryon number conservation and lattice** susceptibilities

- fluctuate
- Effect of charge conservation have been calculated in the ideal gas/HRG limit. NON-neglibile corrections especially for higher order cumulants (Bzdak et al 2013, Rustamov et al. 2017,...)
- Wouldn't it be nice to know what the effect of charge conservation on real QCD (aka lattice) susceptibilities is?

### This can actually be done!

V. Vovchenko, O. Savchuk, R. Poberezhnyuk, M. Gorenstein, V.K., arXiv 2003.13905, V. Vovchenko, R. Poberezhnyuk, V.K., arXiv:2007.03850

• Charges (baryon number, strangeness, electric charge) are conserved globally in HI collisions Lattice (and most other calculations) work in the grand canonical ensemble: charges may

![](_page_34_Figure_8.jpeg)

![](_page_34_Picture_9.jpeg)

![](_page_34_Picture_10.jpeg)

# Subensemble acceptance method (SAM)

Partition a thermal system with a globally conserved charge *B* (canonical ensemble) into two subsystems which can exchange the charge

$$V = V_1 + V_2$$

Assume thermodynamic limit:

$$V, V_1, V_2 \to \infty; \quad \frac{V_1}{V} = \alpha = const; \quad \frac{V_2}{V} = (1 - \epsilon)$$
$$V_1, V_2 \gg \xi^3 \qquad \xi = correlation \ length$$

The canonical partition function then reads:

$$Z^{ce}(T, V, B) = \sum_{B_1} Z^{ce}(T, V_1, B_1) Z^{ce}(T, V - V_1, B_1)$$
  
The probability to have charge B<sub>1</sub> *in* V<sub>1</sub> is:

 $P(B_1) \sim Z^{ce}(T, \alpha V, B_1) Z^{ce}(T, (1 - \alpha)V, B - B_1)$ 

 $\alpha$ ) = const;

![](_page_35_Figure_9.jpeg)

 $B-B_1$ 

, 
$$\alpha \equiv V_1/V$$

![](_page_35_Picture_12.jpeg)

### Subensemble acceptance method (SAM)

In the thermodynamic limit,  $V \rightarrow \infty$ ,  $Z^{ce}$  expressed through free energy density

$$Z^{ce}(T, V, B) \stackrel{V \to \infty}{\simeq} \exp\left[-\frac{V}{T}f(T, \rho_B)\right]$$

Cumulant generating function for B<sub>1</sub>:

$$G_{B_1}(t) \equiv \ln \langle e^{t B_1} \rangle = \ln \left\{ \sum_{B_1} e^{t B_1} \exp \left[ -\frac{\alpha V}{T} f(T, \rho_{B_1}) \right] \exp \left[ -\frac{\beta V}{T} f(T, \rho_{B_2}) \right] \right\} + \tilde{C}$$

Cumulants of  $B_1$ :

$$\kappa_n[B_1] = \left. \frac{\partial^n G_{B_1}(t)}{\partial t^n} \right|_{t=0} \equiv \tilde{\kappa}_n[B_1(t)]|_{t=0} \quad \text{or}$$

All  $\kappa_n$  can be calculated by determining the *t*-dependent first cumulant  $\tilde{\kappa}_1[B_1(t)]$ 

$$\kappa_n[B_1] = \left. \frac{\partial^{n-1} \tilde{\kappa}_1[B_1(t)]}{\partial t^{n-1}} \right|_{t=0}$$

![](_page_36_Picture_11.jpeg)

$$ilde{\kappa}_1[B_1(t)] = rac{\sum_{B_1} B_1 \, ilde{P}(B_1; t)}{\sum_{B_1} ilde{P}(B_1; t)} \equiv \langle B_1(t) 
angle \qquad ext{with} \qquad ilde{P}(B_1; t) = ilde{P}(B_1; t)$$

Thermodynamic limit:  $\tilde{P}(B_1; t)$  highly peaked at  $\langle B_1(t) \rangle$ 

$$\left< B_1(t) \right>$$
 is a solution to equation  $d\widetilde{P}$  / d $B_1$  = 0:  
 $t = \hat{\mu}_B[T, 
ho_{B_1}(t)] - \hat{\mu}_B[T, 
ho_{B_2}(t)]$  v

t = 0:

$$\rho_{B_1} = \rho_{B_2} = B/V, B_1 = \alpha B,$$

i.e. conserved charge uniformly distributed between the two subsystems

Making the connection...

![](_page_37_Figure_8.jpeg)

 $\hat{\mu}_B \equiv \mu_B/T, \qquad \mu_B(T, \rho_B) = \partial f(T, \rho_B)/\partial \rho_B$ with

![](_page_37_Picture_10.jpeg)

### Second order cumulant

### Differentiate condition for maximum of $\widetilde{P}(B_1; t)$ , $t = \hat{\mu}_B[T, \rho_{B_1}(t)] - \hat{\mu}_B[T, \rho_{B_2}(t)]$

$$t = \hat{\mu}_{B}[T, \rho_{B_{1}}(t)] - \hat{\mu}_{B}[T, \rho_{B_{2}}(t)] \qquad (*)$$

$$\frac{\partial(*)}{\partial t} : \qquad 1 = \left(\frac{\partial\hat{\mu}_{B}}{\partial\rho_{B_{1}}}\right)_{T} \left(\frac{\partial\rho_{B_{1}}}{\partial\langle B_{1}\rangle}\right)_{V} \frac{\partial\langle B_{1}\rangle}{\partial t} - \left(\frac{\partial\hat{\mu}_{B}}{\partial\rho_{B_{2}}}\right)_{T} \left(\frac{\partial\rho_{B_{2}}}{\partial\langle B_{2}\rangle}\right)_{V} \frac{\partial\langle B_{2}\rangle}{\partial\langle B_{1}\rangle} \frac{\partial\langle B_{1}\rangle}{\partial t}$$

$$\left(\frac{\partial\hat{\mu}_{B}}{\partial\rho_{B_{1,2}}}\right)_{T} \equiv \left[\chi_{2}^{B}\left(T, \rho_{B_{1,2}}\right) T^{3}\right]^{-1}, \qquad \rho_{B_{1}} \equiv \frac{\langle B_{1}\rangle}{\alpha V}, \qquad \rho_{B_{2}} \equiv \frac{\langle B_{2}\rangle}{(1-\alpha)V}, \qquad \langle B_{2}\rangle = B - \langle B_{1}\rangle, \qquad \frac{\partial\langle B_{1}\rangle}{\partial t} \equiv \tilde{\kappa}_{2}[B_{1}(t)]$$

Solve the equation for  $\widetilde{\kappa}_2$ :

$$\tilde{\kappa}_{2}[B_{1}(t)] = \frac{V T^{3}}{[\alpha \chi_{2}^{B}(T, \rho_{B_{1}})]^{-1} + [(1 - \alpha) \chi_{2}^{B}(T, \rho_{B_{2}})]^{-1}}$$

**t = 0:** 
$$\kappa_2[B_1] = \alpha (1 - \alpha) V T^3 \chi_2^B$$

Higher-order cumulants: iteratively differentiate  $\tilde{\kappa}_2$  w.r.t. t

![](_page_38_Picture_7.jpeg)

### Full result up to sixth order

$$\kappa_{1}[B_{1}] = \alpha VT^{3} \chi_{1}^{B}$$

$$\kappa_{2}[B_{1}] = \alpha VT^{3} \beta \chi_{2}^{B}$$

$$\kappa_{3}[B_{1}] = \alpha VT^{3} \beta (1 - 2\alpha) \chi_{3}^{B}$$

$$\kappa_{4}[B_{1}] = \alpha VT^{3} \beta \left[\chi_{4}^{B} - 3\alpha\beta \frac{(\chi_{3}^{B})^{2} - \chi_{3}^{B}}{\chi_{4}^{B}} - 3\alpha\beta \frac{(\chi_{3}^{B})^{2} - \chi_{3}^{B}}{\chi_{4}^{B}} - 3\alpha\beta \frac{(\chi_{3}^{B})^{2} - \chi_{3}^{B}}{\chi_{4}^{B}}$$

$$\kappa_{5}[B_{1}] = \alpha VT^{3} \beta (1 - 2\alpha) \left\{ [1 - 2\beta\alpha (1 - \alpha\beta) - 2(1 - 2\alpha)^{2} \frac{(\chi_{4}^{B})^{2}}{\chi_{2}^{B}} - 3[1 - 3(1 - 2\alpha)^{2} \frac{($$

$$\chi_n^B = \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} - \text{grand-can}$$

Details: Vovchenko, et al. arXiv:2003.13905

$$\beta = 1 - \alpha$$

![](_page_39_Figure_5.jpeg)

onical susceptibilities e.g from Lattice QCD!!

![](_page_39_Picture_7.jpeg)

### **Cumulant ratios**

### Some common cumulant ratios:

![](_page_40_Figure_2.jpeg)

- order, starting from  $\kappa_4$  not anymore
- $\alpha \rightarrow 0$  : Grand canonical limit
- $\alpha \rightarrow 1$ : canonical limit

$$3\alpha\beta\left(\frac{\chi_3^B}{\chi_2^B}\right)^2$$

• Global conservation ( $\alpha$ ) and equation of state ( $\chi_n^B$ ) effects factorize in cumulants up to the 3<sup>rd</sup>

•  $\chi_{2n} = \langle N \rangle + \langle \overline{N} \rangle$ ;  $\chi_{2n+1} = \langle N \rangle - \langle \overline{N} \rangle$ : recover known results for ideal gas

![](_page_40_Picture_10.jpeg)