
Fluctuation of conserved charges:  
Exploring the phase diagram and other applications

• Why fluctuations 

• Making the connection between experiment and theory 

• Constraining proton annihilation and local charge conservation
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An old question
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Fermi 1953



The phase diagram
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Increase chemical potential by lowering the beam energy 

In reality, we add baryons (nucleons) from target and projectile to mid-rapidity 



What we know about the Phase Diagram
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Figure from HotQCD coll., PRD ‘14

T

µ~920 MeV

Lattice QCD: 
Tc ~ 155 MeV 
pseudo-critical line up to O(µ2) 
pressure (EoS) up to O(µ8)

Theory, 
Measurements 

155MeV

Nuclear  
Liquid-Gas

Pion gas



What we are looking for
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T

µ~920 MeV

155MeV

Nuclear  
Liquid-Gas

Critical Point / co-existence ?

Remnants of chiral criticality

We are dealing with small system of finite lifetime 

NO real singularities!



Cumulants and Phase structure
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What we always see.... What it really means....

“Tc” ~ 155 MeV

S. Borsanyi et al, JHEP 1011 (2010) 077 



Derivatives
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Tc Tc

1st order 5th order

3th order0th order



How to measure derivatives
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Cumulants of Energy measure the temperature derivatives of the EOS

Z = tr e�Ê/T+µ/TN̂B
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Cumulants of Baryon number measure the chem. pot. derivatives of the EOS



Cumulants of (Baryon) Number
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Kn =
�n

�(µ/T )n
ln Z =

�n�1

�(µ/T )n�1
�N�

Kn � VCumulants scale with volume (extensive):

Volume not well controlled in heavy ion collisions 

Cumulant Ratios: K2
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What to expect?
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Close to µ=0
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a ~ curvature of critical line

Needs higher order cumulants (derivatives) at µ ~ 0

F = F (r), r =
p

T 2 + aµ2

T

µ

�2

�µ2
F (T, µ)|µ=0 =

a

T

�

�T
F (T, µ = 0) � �E�

<latexit sha1_base64="9O7zAg+IZ6PurTwyKpxOiIeNuTY="></latexit><latexit sha1_base64="9O7zAg+IZ6PurTwyKpxOiIeNuTY="></latexit><latexit sha1_base64="9O7zAg+IZ6PurTwyKpxOiIeNuTY="></latexit><latexit sha1_base64="9O7zAg+IZ6PurTwyKpxOiIeNuTY="></latexit>

Free energy:



Cumulants at small µ

• Baryon number cumulants can be 
calculated in Lattice QCD 

- possible test of chiral criticality ?     
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Friman et al, ’11

Figure 6. Taylor expansion coefficients for B�2
B = �B

4 (T,µ̂B)
�B
2 (T,µ̂B)

as functions of the temperature: rB,0
42

(left panel) rB,2
42 (middle panel), rB,4

42 (right panel). The latter is not obtained independently, but
by means of the prior ansatz (see text): for this reason, we plot it in green.

Figure 7. SB�3
B/MB (left panel) and B�2

B (right panel) extrapolated to finite chemical potential.
The left panel is extrapolated up to O(µ̂2

B). In the right panel, the darker bands correspond to the
extrapolation up to O(µ̂2

B), whereas the lighter bands also include the O(µ̂4
B) term.

5 Conclusions and outlook

In this manuscript, we have calculated several diagonal and non-diagonal fluctuations of
electric charge, baryon number and strangeness up to sixth-order, in a system of 2+1+1
quark flavors with physical quark masses, on a lattice with size 483 ⇥ 12. The analysis
has been performed simulating the lower order fluctuations at zero and imaginary chemical
potential µB, and extracting the higher order fluctuations as derivatives of the lower order
ones at µB = 0. The chemical potentials for electric charge and strangeness have both
been set to zero in the simulations. From these fluctuations, we have constructed ratios
of baryon number cumulants as functions of T and µB, by means of a Taylor series which
takes into account the experimental constraints hnSi = 0 and hnQi = 0.4hnBi. These ratios
qualitatively explain the behavior observed in the experimental measurements by the STAR
collaboration as functions of the collision energy.

– 12 –

K4

K2

Wuppertal-Budapest, arXiv:1805.04445

μB
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FIG. 10. The cumulant ratios (bands) RB
31(T, µB) ⌘

SB�
3
B/MB and RB

42(T, µB) ⌘ B�
2
B versus RB

12(T, µB) ⌘
MB/�

2
B on the pseudo-critical line calculated from NNLO

Taylor series. Data are results on cumulant ratios of net
proton-number fluctuations obtained by the STAR Collab-
oration [18]. Also shown are preliminary results obtained atp
sNN = 54.4 GeV [20]. Dashed lines show joint fits to the

data as described in the text.

In Fig. 10 we show lattice QCD results up to RB

12 =
0.75, which corresponds to µB = Tpc(µB) ' 154.5 MeV.
The width of the bands shown in the figure reflect the
error on Tpc(µB) as given in Eq. 1 as well as the error
on the NNLO and continuum limit estimates for RB

31 and
RB

42. Note that the upper end of these error bands cor-
respond to the lower temperature, i.e. T = 155 MeV at
µB = 0 and T ' 152.5 MeV at µB/T = 1.

Also shown in this figure are results for the skewness
and kurtosis ratios of net proton-number fluctuations ob-
tained by the STAR Collaboration [18, 20]. These ratios
are plotted versus the measured ratio of mean over vari-
ance of net proton-number fluctuations, which is taken
as a proxy for the net baryon-number cumulant ratio4

RB

12.
As the experimentally determined skewness ratio of

net proton-number fluctuations has a rather weak de-
pendence on RP

12 and also the QCD result for RB

31 has
a weak dependence on RB

12, it obviously is not of much
importance for the comparison of data and lattice QCD
calculations whether RP

12 equals RB

12 or only is a proxy
within say (10-20)%. More relevant is the question to
what extent the magnitude of RP

31 is a good approxima-
tion5 for RB

31. A direct comparison between RP

31 and RB

31,
as shown in Fig. 10, suggests that freeze-out happens in

4
In a non-interacting HRG with vanishing strangeness and

electric-charge chemical potential the mean over variance of net

proton-number fluctuations and net baryon-number fluctuations

are identical. In the case of a strangeness neutral (nS = 0

with nQ/nB = 0.4), non-interacting HRG, however, the latter is

about 10% smaller.
5

Many caveats for a direct comparison between net baryon-

number fluctuations calculated in equilibrium thermodynamics

and net proton-number fluctuations measured in heavy ion col-

lisions have been discussed in the literature [10, 13]. The lattice
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FIG. 11. The cumulant ratios RB
51(T, µB) and RB

62(T, µB)
vs. RB

12(T, µB) evaluated on the pseudo-critical line. Data are
preliminary results for the cumulant ratio RP

62 of net proton-
number fluctuations obtained by the STAR Collaboration atp
sNN = 200 GeV and 54.4 GeV for the (0-40)% centrality

class [20].

the vicinity but below the pseudo-critical temperature.
In fact, as can be seen in Figs. 4 and 7, the ratios RB

31
and RB

42 are decreasing functions of the temperature. Ex-
perimental data for RP

31 lying above the theoretical band
for RB

31, evaluated on the pseudo-critical line, thus sug-
gest freeze-out to happen at a lower temperature.
Although errors on experimental results for the kurto-

sis ratio RP

42 are large, they are thermodynamically con-
sistent with the data on the skewness ratio as pointed out
already in our earlier analysis [19]. This gets further sup-
port through recent high statistics6 data obtained by the
STAR Collaboration at

p
sNN = 54.4 GeV [20]. These

data are shown in Fig. 10 at RP

12 = 0.4672(2). For this
value of the beam energy the kurtosis ratio RP

42 is found
to be smaller than RP

31. The magnitude of this di↵erence,
RP

42 � RP

31 = �0.12(5), is in good agreement with the
corresponding lattice QCD result on the pseudo-critical
line. For the range RB

12 = 0.45(5), which corresponds to
µB = (80�100) MeV, or µB/T = 0.57(7), we find from a
fit to the di↵erence of RB

42 and RB

31, R
B

42�RB

31 = �0.08(3).
At these values of the baryon chemical potential (or for
RB

12 ' 0.5) the NNLO results for the skewness and kurto-
sis ratios, presented in the previous section, seem to su↵er
little from truncation e↵ects in the Taylor expansions.
Also shown in Fig. 10 with dashed lines is a joint

fit to the experimental data on RP

31 and RP

42 [18] for
p
sNN � 19.6 GeV using a quadratic ansatz, already used

QCD results shown in Fig. 10 thus may be considered only as

a starting point for a more refined analysis of the experimental

data that may take into account e↵ects arising from experimen-

tal acceptance cuts, the small size of the hot and dense medium,

non-equilibrium e↵ects etc.
6
Statistics at

p
sNN = 54.4 GeV is a factor 3.4 larger than atp

sNN = 200 GeV and a factor (17-30) larger than at the otherp
sNN data sets shown in Fig. 10.

HotQCD, arXiv:2001.08530 

K6

K2

⟨B⟩
⟨δB2⟩

∼ μB



 Data (at high µ)
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HADES: arXiv:2002.08701 
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FIG. 22. Au + Au data: Efficiency and N2LO volume-corrected
proton cumulant ratios plotted as a function of the width of the
rapidity bin defined by y ∈ y0 ± !y and 0.4 ! pt ! 1.6 GeV/c.
Shown are ω = K2/K1 (top), γ1 × σ = K3/K2 (middle), and γ2 ×
σ 2 = K4/K2 (bottom) for various 5% centrality selections. Error
bars are statistical only, and dashed lines connect the data points
belonging to a given centrality. With decreasing !y, all ratios tend
toward unity (indicated also by a horizontal line); i.e., they approach
the Poisson limit where K1 = K2 = K3 = K4.

we show in Fig. 22 for a few centrality selections the ratios
of fully corrected cumulants (ω = K2/K1, γ1 × σ = K3/K2,
γ2 × σ 2 = K4/K2, where Kn are cumulants) as a function of
the width of the rapidity bin, namely y ∈ y0 ± !y, centered
at midrapidity y0 = 0.74 and with 0.4 ! pt ! 1.6 GeV/c.
These ratios were derived from the reduced cumulant ex-
pansions obtained by fitting one of Eqs. (9) or (10) to the
efficiency-corrected and centrality-selected data points.19 In

19For very narrow phase space, the NLO and N2LO fits give very
similar results.

this procedure, the modified volume cumulants Vn obtained
from the experimental Nhit distributions, as laid out in Sec. V,
were inserted while the values of the κn, κ ′

n, and κ ′′
n were

adjusted. Error bars shown in Fig. 22 are statistical; they were
obtained with the sampling techniques discussed in Sec. VI.
As phase space closes more, ever fewer correlated particles
contribute and one expects their distribution to approach the
Poisson limit [7] where the Kn converge, i.e., Kn = 〈Nprot〉 for
all n. From the figure, it is apparent that the data follow indeed
in all centrality selections such a behavior, with the cumulant
ratios approaching unity within their statistical errors.

Turning to rapidity bites substantially larger than ±0.1,
we found that NLO volume effects do not suffice anymore
to give a good description of the observed proton cumulants,
meaning that N2LO volume terms must be included. This is
demonstrated in Fig. 23, which, for y ∈ y0 ± 0.2, compares
the effect of the volume correction at successive levels of
sophistication. Shown are the reduced cumulants κ1, κ2, κ3,
and κ4 as a function of Npart when using 5% centrality bins:
either not volume corrected (open triangles), or with only the
leading order (LO) correction of Eq. (7) applied (open circles),
or with the full N2LO correction applied (full squares). To
not clutter the pictures too much, the NLO corrected points
are not displayed explicitly but both fit curves are shown:
NLO (dashed curve) done with Eq. (9) and N2LO (solid
curve) done with Eq. (10). The corresponding statistical and
systematic errors were obtained with the procedures described
in Sec. VI. Figure 23 illustrates that the LO scheme proposed
in Refs. [77,78] removes in our case only about 50–70% of
the volume fluctuations. While using instead NLO corrections
does improve the description, it still does not lead to a
fully satisfactory fit of the cumulants. One can see that the
linear fit of κ2, in particular, misses the data points which
definitely display a substantial curvature. When enlarging the
accepted phase space further, curvature terms become even
more important, as shown in Fig. 24, which compares volume-
corrected reduced proton cumulants and fits in the two rapidity
bins, y ∈ y0 ± 0.2 and y ∈ y0 ± 0.4. Consequently, all results
presented in the following were obtained by consistently
applying the full N2LO volume corrections.

Comparing furthermore the measured reduced proton cu-
mulants of Fig. 24 with their transport calculation coun-
terparts, as shown in Fig. 16, one can notice a qualitative
agreement for the y ∈ y0 ± 0.2 rapidity bite. In particular, the
IQMD model seems to capture the basic trends of κn with
Npart, including the presence of a curvature in κ2. However,
in our simulations, all three codes used (IQMD, UrQMD, and
HSD) generally miss the absolute magnitudes of κn, κ ′

n, and
κ ′′

n . In the present study, we refrained, however, from a more
detailed comparison of our data with model calculations.

From the reduced cumulants κn, the full proton cumulants
Kn = Npart κn as well as their ratios are readily obtained.
Cumulant ratios are shown as a function of Npart in Fig. 25
for rapidity bites y ∈ y0 ± 0.2 and y ∈ y0 ± 0.4. In contrast
to the narrow midrapidity bin y ∈ y0 ± 0.05 (cf. Fig. 22),
the deviation from the Poisson limit—where all Kn would
be equal—is blatantly apparent: Except for the notable re-
gion around Npart = 150, cumulant ratios at all orders differ
strongly from unity and they display, overall, a highly non-

024914-22

STAR: arXiv:2112.00240
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maximum number of participants, Nmax
part (394 for Au+Au

collisions), suppresses the initial volume fluctuations.
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FIG. 3. Centrality dependence of the proton cumulant ratios
for Au+Au collisions at p

sNN = 3.0 GeV. Protons are from
�0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. Systematic uncer-
tainties are represented by gray bars. Statistical uncertainties
are smaller than marker size. CBWC is applied to all cumu-
lant ratios. While open squares represent the data without
correction, blue triangles and red circles are the results with
VFC using the hNparti distributions from the UrQMD and
Glauber models, respectively.
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FIG. 4. Similar to Fig. 3: Rapidity and transverse mo-
mentum dependence of the proton cumulant ratios for 0–5%
central collisions. Black-squares, red-dots and blue-triangles
stand for data without and with the VFC using Glauber and
UrQMD, respectively.

Figure 4 depicts the cumulant ratios as a function of
rapidity y and transverse momentum pT in 0–5% central
collisions without and with the VFC. It is expected [45–

47] that the cumulant ratios approach the Poisson base-
line in the limit of small acceptance. For C3/C2, the ra-
tios with the VFC (UrQMD) and without the VFC devi-
ate from the Poisson baseline at the narrow rapidity win-
dows. The VFC (Glauber) ratio approaches unity as the
acceptance is decreased. For the C4/C2 ratio, the VFC
has a negligible effect in the most central bin. Therefore,
C4/C2 is reported without VFC in the discussions below.
In the central 0–5% collisions, as shown in Fig. 4, one ob-
tains C4/C2 = �0.85 ± 0.09 (stat.) ± 0.82 (syst.) in the
kinematic acceptance of �0.5 < y < 0 and 0.4 < pT < 2.0
GeV/c. The UrQMD model qualitatively reproduces the
acceptance dependence of the data, see Fig. 6 in the sup-
plemental material [37].

FIG. 5. Collision energy dependence of the ratios of cumu-
lants, C4/C2, for proton (squares) and net-proton (red circles)
from top 0–5% Au+Au collisions at RHIC [14, 15]. The points
for protons are shifted horizontally for clarity. The new re-
sult for proton from p

sNN = 3.0 GeV collisions is shown as a
filled square. HADES data of psNN = 2.4 GeV 0–10% colli-
sions [48] is also shown. The vertical black and gray bars are
the statistical and systematic uncertainties, respectively. In
addition, results from the HRG model, based on both Canon-
ical Ensemble (CE) and Grand-Canonical Ensemble (GCE),
and transport model UrQMD are presented.

A non-monotonic energy dependence of the net-proton
C4/C2 was reported for 0–5% central Au+Au collisions
at p

sNN = 7.7–200 GeV [14, 15]. A similar energy de-
pendence of the C4/C2 of protons is also evident (open
squares in Fig. 5). Though a minimum appears around
20 GeV, both the C4/C2 ratio of protons and net-protons
at 7.7 GeV are close to unity, albeit the large statistical
uncertainties. Meanwhile, the C4/C2 value for Au+Au
collisions at psNN = 3.0 GeV is around �1. The negative
value of the proton C4/C2 is reasonably reproduced by
the transport model UrQMD [17, 49].

The study of cumulant ratios in heavy-ion colli-
sions has motivated several QCD inspired model cal-

Different acceptance!

K3

K2

K4

K2

Energy



Compare Data with Lattice QCD 
and other field theoretical models

• Lattice cannot calculate hadron abundances 
• Cumulants are well defined quantities 
• Compare cumulants !? 

- Detector fluctuates (efficiency etc…)  
- Volume is not fixed in experiment  

- Possible solution (Rustamov et al, 2211.14849) 
- Baryon number conservation 

•Lattice uses grand canonical ensemble 
- Experiment measures protons not all baryons

14



Grand canonical ensemble
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Vtotal

Vsystem

 

 

Vtotal → ∞
Vsystem → ∞

Vsystem

Vtotal
→ 0

In coordinate space!!!!



How to make a grand-canonical ensemble in 
experiment
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y

dN /dy

}

Δ Yaccept

Δ Ycoll

Conditions for “charge” fluctuations:  
• Δ Ycorrrelation  <<  Δ Yaccept    (catch the physics) 
• Δ Ytotal   >>  Δ Yaccept  >>  Δ Ycoll  (keep the physics and minimize  

                                                         charge conservation effect)

ΔYcorrelation



Grand canonical ensemble
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Vtotal

Vsystem

Lattice: 
 

grand-canonical ensemble 
Coordinate space 

Vtotal → ∞
Experiment: 

  finite! 

 (hopefully) 
effect of global charge conservation  
Momentum Space

Vtotal

Vsystem ≪ Vtotal

 

 

Vtotal → ∞
Vsystem → ∞

Vsystem

Vtotal
→ 0

In coordinate space!!!!



Global charge conservation 
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Lattice data for  and  

 from Borsanyi et al., 1805.04445 

𝜒𝐵
4 /𝜒𝐵

2 𝜒𝐵
6 /𝜒𝐵

2

Solved for ANY equation of state (including QCD)

For ideal gas: 
Bleicher et al: hep-ph/0006201 
Bzdak et al: 1203.4529 
Braun-Munzinger et al, 1807.08927 

Alternative derivation: 
M. Barey, and A. Bzdak 2205.05497, 2210.15394

V. Vovchenko et al,  arXiv 2003.13905,  arXiv:2007.03850

fraction of measured baryons α =
β = 1 − α



Protons vs Baryons

• Proton are subset of all baryons 
- dilutes the signal 
- need to do binomial unfolding 

• Kitazawa, Asakawa PRC ‘12  
- Otherwise Apples vs. Oranges 
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11

�Yacc . 1 and for �Yacc ⌧ 1 tends to the binomial
distribution baseline, which at the LHC energies reads�
4[B � B̄]/2[B � B̄]

�binom
LHC

= 1 � 3↵�. For �Yacc & 1
the full result is described well by the SAM (61).

Finally, we look at the behavior of the hyperkurto-
sis, 6[B � B̄]/2[B � B̄]. Lattice QCD predicts a sign
change of the grand-canonical hyperkurtosis at µ = 0
in the vicinity of the pseudocritical temperature (Fig. 3).
This qualitative feature is thought to be a signature of the
QCD chiral crossover transition [16]. Therefore, a corre-
sponding measurement of 6[B� B̄]/2[B� B̄] in heavy-
ion collisions at the LHC can potentially serve as the
first experimental signature of that transition. The EV-
HRG model reproduces the available lattice QCD data
for �B

6
/�B

2
and gives the following value at T = 160 MeV:

�B
6

�B
2

' �0.23. (60)

The lower panel of Fig. 5 exhibits the rapidity accep-
tance dependence of the hyperkurtosis. In the absence
of momentum smearing, the Monte Carlo results are de-
scribed by the analytical SAM baseline, which for LHC
energies, i.e. for µ = 0, reads [5]

✓
6[B � B̄]

2[B � B̄]

◆SAM

LHC

= [1� 5↵�(1� ↵�)]
�B
6

�B
2

� 10↵(1� 2↵)2�

✓
�B
4

�B
2

◆2

. (61)

The hyperkurtosis, in the absence of momentum
smearing, is sensitive to the grand-canonical value (60)
in acceptances up to �Yacc . 1.5. For larger accep-
tances baryon conservation dominates, making it di�cult
to disentangle between the EV-HRG model and the bi-

nomial baseline, given by
�
6[B � B̄]/2[B � B̄]

�binom
LHC

=
1� 15↵�(1� 3↵�). This was already pointed out in our
previous study [5]. The thermal smearing distorts the
signal at small acceptances, �Yacc . 0.5, where the hy-
perkurtosis is closer to the binomial distribution baseline
than to the SAM. At 0.5 . �Yacc . 1.5, on the other
hand, 6[B � B̄]/2[B � B̄] is overshadowed neither by
the thermal smearing nor by the baryon number conser-
vation. We, therefore, argue that a measurement of a
negative hyperkurtosis in this acceptance range may be
interpreted as a signal of the chiral crossover.

C. Net baryon vs net proton fluctuations

Our discussion has so far been restricted to cumulants
of net baryon distribution. However, experiments typi-
cally cannot measure all baryons, in particular the mea-
surement of neutrons is extremely challenging. There-
fore one usually uses net protons as a proxy for net
baryons. It is natural to expect net protons to carry at
least some information about net baryon fluctuations. In

κ
κ

κ
κ

κ
κ

Δ

Figure 6. Rapidity acceptance dependence of net
baryon (black squares) and net proton (blue circles) cumulant
ratios 2/

Skellam
2 (top), 4/2 (middle), and 6/2 (bottom)

in 0-5% central Pb-Pb collisions at the LHC in an excluded
volume HRG model matched to lattice QCD. The open red di-
amonds correspond to net proton cumulants evaluated from
net baryon cumulants using a binomial-like method of Ki-
tazawa and Asakawa [17, 18]. The black lines correspond to
the analytical predictions of the SAM framework with (solid)
and without (dashed) Gaussian rapidity smearing.

fact, as shown by Kitazawa and Asakawa [17, 18], under
the assumption of isospin randomization at late stages of
heavy-ion collisions, one can reconstruct the cumulants
net baryon distribution from the measured (factorial) cu-
mulants of net proton distribution.

However, these considerations do not imply that ra-
tios of proton cumulants can be used directly in place
of the corresponding ratios of baryon cumulants, some-
thing which has nevertheless been employed in a number
of works in the literature [19? , 20]. The proton and

V. Vovchenko et al 2012.09954

Lattice QCD

Measure all Baryons

Measure only protons



Compare Data with Lattice QCD 
and other field theoretical models

• Lattice cannot calculate hadron abundances 
• Cumulants are well defined quantities 
• Compare cumulants !? 

- Detector fluctuates (efficiency etc…)  
- Experiment measures protons not all baryons 
- Volume is not fixed in experiment  

- Possible solution (Rustamov et al,  2211.14849) 
- Baryon number conservation 

• Lattice uses grand canonical ensemble 
- Experiment cuts momentum space, Theory cuts configuration space
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Coordinate vs momentum space cuts
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Correlations live in coordinate space
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FIG. 5. Scaled variance of particle number fluctuations ω̃coord inside coordinate space subvolumes calculated through MD simulations in
the microcanonical ensemble for different values of the density ñ and number of particles N along the T̃ = 1.4 isotherm. The results for ω̃coord

corrected for global particle number conservation through the (1 − α) factor are presented as a function of subvolume fraction α. The widths
of the bands correspond to the statistical uncertainties and their colors to the values of N , which vary as N = 400, N = 1000, N = 5000 and,
in the case of ñ = 0.3, also N = 25 000. The larger N is, the closer the corresponding bands are to the expected thermodynamic limit, depicted
by the horizontal red lines.

In contrast to the mean quantities, the behavior of fluc-
tuations depends on the choice of simulation ensemble. For
this reason, the calculations of particle number fluctuations
that occur throughout the MD simulations are performed in
the microcanonical ensemble rather than in the canonical-like
ensemble that we used before. As discussed above, we use the
values of the energy per particle Ũ/N computed previously in
the canonical-like ensemble as input into the microcanonical
ensemble simulation in order for our simulations to corre-
spond to the desired temperature of T̃ = 1.4 at given particle
number density.

First, we analyze the fluctuations in coordinate space sub-
systems. In Ref. [19] it was shown that these fluctuations can
be related to the grand-canonical susceptibilities in the large
volume limit. Namely, the scaled variance reads

ωcoord = (1 − α) ωgce. (12)

Here ωgce is the grand-canonical scaled variance [Eq. (6)]
and α is the fraction of the total volume occupied by the
subvolume.

Here we define the subvolume by performing cuts w <
wcut, where w is either x̃, ỹ, or z̃.5 It follows that α = wcut/L̃.
Due to the cubic symmetry of our simulation setup, the results
are expected to be identical for the same value of α regardless
of which coordinate is chosen, as long as τ̃ is sufficiently large
to ensure the ergodicity. We verified explicitly that, for the

5Note that in our notation the coordinate values vary in the range
0 < x̃, ỹ, z̃ < L̃.

same value of α, the results for ωcoord using either of the three
Cartesian coordinates are consistent with each other within
the statistical uncertainty. Thus, in order to reduce the total
statistical error, we averaged the results over the calculations
utilizing the cuts in x̃, ỹ, and z̃. Furthermore, the variance
〈$N2〉 is symmetric with respect to a change α → 1 − α [37].
We thus symmetrize our results with respect to α → 1 − α to
further decrease the statistical error.

Figure 5 depicts the MD results for the scaled variance
ω̃coord ≡ ωcoord/(1 − α) corrected for particle number conser-
vation as function of α for different values of the density ñ
along the isotherm T̃ = 1.4. For ñ = 0.02, the system is dilute
and exhibits properties similar to an ideal gas of particles
at the same temperature and density. In the grand-canonical
limit, the scaled variance of particle number fluctuations is
expected to show a slight enhancement over the Poisson limit,
namely ωgce & 1.126, as follows from both the virial expan-
sion and the MD based calculations of ωgce via Eq. (6) shown
in Fig. 4. The MD simulation results for ω̃coord lie in the
range between 1 and ωgce & 1.126, i.e., they do not exceed
the grand-canonical limit. These results approach the grand-
canonical limit if α is not too close to 0 or 1, as well as when
the number of particles N is increased.

For ñ = 0.1 the effects of interactions are more prominent,
with the grand-canonical scaled variance ωgce & 1.97 being
almost double the Poisson value. The finite-size effects are
also more prominent here, namely, they suppress the fluctu-
ations, which is shown by the MD simulations results being
consistently below ωgce, even for N = 5000. We do observe,
however, that ω̃coord is larger for larger N and the trend
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FIG. 6. Scaled variance of particle number fluctuations ω̃mom,mce

in the momentum space subsystem defined by a cut |vz| < vcut
z

in the longitudinal velocity, as obtained from molecular dynamics
simulations in the microcanonical ensemble for N = 400 particles
at different densities along the T̃ = 1.4 isotherm. The results are
presented as a function of subsystem fraction α ≡ 〈Nacc〉/N and cor-
rected for global particle number conservation through the (1 − α)
factor. The dashed red line corresponds to the ideal gas limit given
by Eq. (13).

is consistent with approaching the grand-canonical limit as
N → ∞.

At ñ = 0.3 (and T̃ = 1.4) the system is located close to
the CP at ñc ≈ 0.316 and T̃c ≈ 1.321. This is characterized by
large grand-canonical fluctuations of particle number, namely
ωgce ( 7–7.5 (see Fig. 4). As seen from Fig. 6, large fluctu-
ations of ω̃coord are also observed in MD simulations, with
the maximum values reached at α = 0.5. The results exhibit
strong system-size dependence, with the magnitude of ω̃coord

depending strongly on the total number of particles in the
system. For instance, at N = 5000 the maximum value of
ω̃coord is still about half that of the expected thermodynamic
limit and even N = 25000 is not sufficient to reach the limit.6

Nevertheless, the results clearly show that the CP does lead
to sizable fluctuations of particle number in finite systems,
justifying the search for large fluctuations as a signature of
criticality.

The large density case, ñ = 0.6, is qualitatively different
from the other cases. Here the fluctuations are suppressed rel-
ative to the Poisson baseline, with the grand-canonical scaled
variance being equal to ωgce ( 0.30–0.31. This suppression is
also observed in MD, with the simulation results saturating at
ω̃coord ≈ 0.3 in a broad interval around α = 0.5. The results
exhibit only mild system-size dependence and the obtained
values are consistent with the grand-canonical expectation in
the thermodynamic limit. We also observed that the ergodicity
is reached considerably faster, with τ̃ = 10 000 being suffi-
cient to obtain accurate results for ω̃coord, which is about an

6Note that even though we employ periodic boundary conditions,
this does not lead to a possible double counting of the CP effects
from multiple boxes. This is due to the minimum-image convention
scheme that we use, where each particle interacts with only a single
(the closest one) image of every other particle.

order of magnitude lower value compared to that required at
lower densities.

In all cases the scaled variance tends to unity in the limit
α → 0. This is the expected result reflecting the so-called
“Poissonization” of fluctuations in small volumes (accep-
tance) [38], when the system size becomes smaller than the
correlation length. In the opposite limit, α → 1, the scaled
variance vanishes due to the global conservation of particle
number, ωcoord → 0. The scaled variance corrected for global
conservation, ω̃coord, exhibits the same behavior as in the
α → 0 limit due to the symmetry between the subsystem and
the complement [37].

3. Momentum space subsystem

Here we study the behavior of fluctuations in the momen-
tum space, by performing a cut |vz| < vcut

z on the longitudinal
velocity of particles. Such a procedure resembles fluctuation
measurements in heavy-ion collision experiments, where only
the momenta, not the coordinates, of particles can be deter-
mined. Interactions between particles in the LJ fluid depend
only on their coordinates, but not the momenta. In fact, it
can be shown that the multiparticle momentum distribution
function in the canonical ensemble factorizes into a product
of single-particle Maxwell-Boltzmann distribution functions,
whereas all the effects of interactions are washed out by
integrating over the coordinates of all the particles. There-
fore, the scaled variance of particle number fluctuations in
the momentum space is expected, in the canonical ensemble,
to reduce to the binomial distribution stemming from global
particle number fluctuations [18,39], ωmom,ce = 1 − α, where
α = 〈Nacc〉/N and 〈Nacc〉 is the mean number of particles in
the momentum acceptance.

In the microcanonical ensemble, however, the fluctua-
tions can additionally be affected by exact conservation of
energy-momentum. One can derive the following baseline for
ω̃mom,mce

id = ωmom,mce
id /(1 − α) in the framework of ideal gas

of particles in the microcanonical ensemble in thermodynamic
limit, assuming, as before, that the momentum subspace cor-
responds to a cut |vz| < vcut

z :

ω̃mom,mce
id = 1 − 2[erf−1(α)]2e−2[erf−1(α)]2

3πα(1 − α)
. (13)

The details of the derivation are given in Appendix D, where
it is also shown that Eq. (13) is quantitatively accurate for
systems of 400 or more particles. In the case of an interacting
system, like the LJ fluid, one can expect corrections to Eq. (13)
due to the influence of the interaction energy on the total
energy-momentum conservation.

Figure 6 shows the results of MD simulations for ω̃mom,mce

as a function of α for different values of particle number den-
sity.7 The results are compared with the expected low-density
(ideal gas) limit given by Eq. (13), shown by the dashed red
line in Fig. 6. The MD calculations at the lowest considered
density (ñ = 0.02) are close to the low-density limit, while

7The value of α = 〈Nacc〉/N is regulated by the choice of vcut
z .
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FIG. 5. Collision energy dependence of scaled (anti)proton cumulants and factorial cumulants (correlation functions) in 0–5% Au-Au
collisions up to fourth order. The solid lines depict calculations that incorporate both the baryon conservation and excluded volume effects
(EV-HRG model) while the dashed lines correspond to baryon conservation only (ideal HRG model). The red squares and gray triangles
correspond to the experimental data of the STAR Collaboration [10] for protons and antiprotons, respectively. The blue circles correspond to
the canonical ensemble ideal HRG model calculation based on (anti)proton acceptance fractions from Ref. [27].

D. Acceptance dependence

The cumulants and correlation functions have been mea-
sured by the STAR Collaboration as a function of acceptance
in rapidity. Here we compare our model predictions for the
acceptance dependence of cumulants with the STAR data. As
neither the model nor the STAR data show conclusive notable

deviations from zero for the higher-order normalized correla-
tion functions Ĉ3/Ĉ1 and Ĉ4/Ĉ1, we focus the analysis of the
acceptance dependence on the second normalized correlation
function Ĉ2/Ĉ1.

The results for proton and antiproton number Ĉ2/Ĉ1 as
a function of the rapidity cut ymax (i.e., |y| < ymax) are

014904-9

Vovchenko et al, 2107.00163

• Viscous hydro 
• EOS tuned to LQCD 
• Correct for global charge  conservation  
• Protons NOT baryons  

• Baseline! 
No critical point or phase 

   transition 



Comparison with data from Beam energy scan

24

κ
κ

Let’s understand the second order cumulants first!
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Proton annihilation in the hadronic phase ?
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•Thermal Model with phase shift corrections: 
•No room for annihilation in hadronic phase 
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importantly, also non-resonant components [18]. In this approach, currently
implemented only for µB ' 0 (and here for the non-strange sector), the ef-
fect of multi-pion-nucleon interactions is estimated using LQCD.

2. Statistical hadronization of light quarks

In practice, TCF , µB, and V , the parameters at chemical freeze-out are
determined from a fit to the experimental data. For the most-central (0-
10%) Pb–Pb collisions at the LHC, the best description of the ALICE data
(see [19] and ref. therein) on yields of particles in one unit of rapidity
at midrapidity, is obtained with TCF = 156.6 ± 1.7 MeV, µB = 0.7 ± 3.8
MeV, and V = 4175 ± 380 fm3 (corresponding to a slice of one unit of
rapidity, centered at mid-rapidity) [18], shown in Fig. 1. The standard
deviations quoted here are exclusively due to experimental uncertainties
and do not reflect the systematic uncertainties connected with the model
implementation.
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Fig. 1. Left: Hadron yields dN/dy measured in central Pb–Pb collisions at the LHC
and the best fit with SHM. The lower panel shows the ratio of data and model with
uncertainties (statistical and systematic added in quadrature) of the data. Right:
Mass dependence of hadron yields divided by the spin degeneracy factor (2J + 1).
For SHM, plotted are the “total” yields, including all contributions from high-
mass resonances (for the ⇤ hyperon, the contribution from the electromagnetic
decay ⌃0

! ⇤�, which cannot be resolved experimentally, is also included), and
the (“primordial”) yields prior to strong and electromagnetic decays.

Very good agreement is obtained between the measured particle yields
and SHM over nine orders of magnitude in abundance values and encom-

Andronic et al, 2101.05747
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Why the discussion?

• Lifetime of hadronic phase is short 
• pion number effectively conserved 

-  suppressed (chiral symmetry) 

•  
• increased re-generation of anti-protons 

-  
• Most transport calculations violate 

detailed balance 
exceptions:  
E. Seifert, W. Cassing, PRC 97 (2018) 024913, 
O. Garcia-Montero et al, Phys. Rev. C 105 (2022) 
064906  

•

4π ⇔ 2π
⇒ finite μπ

5π ⇔ p + p̄
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Rapp, Shuryak, PRL 86 (2001) 2980; 

(s in [GeV2]), which both reproduce the measured multi-
plicities up to at least

√
s = 5 GeV using the parameters

c1 = 2.6 ± 0.5, c2 = (1.3 ± 0.2) GeV−1 and c̃1 = 2.65,
c̃2 = 1.78, respectively. For the latter, the energy depen-
dence of the width has also been given as [18]

σ2 = 0.174 〈n〉 s0.2 . (7)

For our application in a thermal environment at T =
150 MeV (implying

√
s = 2.33 GeV) we fix 〈n〉 = 5.65

(in accordance with eq. (6)) together with a 10% increase
in σ (as suggested by eq. (7)) to extract discrete weights
wn = P (n; 〈n〉,σ). The averaged pion-fugacity enhance-
ment factor then follows as

〈znπ 〉 =
nmax∑
n=2

wn exp[nµπ/T ] , (8)

where nmax = 9 for any practical purpose. Insert-
ing now thermal freezeout values Tth = 120 MeV and
µth
π $ 65 MeV (as arising in a thermal fireball model [8]),

yields 〈znπ 〉 = 25. This entails a large enhancement of the
antiproton-to-proton ratio, from 0.1% to 2.5%. In fact,
owing to the high power of the pion fugacity, slightly
larger chemical potentials of µπ = 75-80 MeV result in
an enhancement factor of 42-54, rendering the pertinent
p̄/p-ratio in line with the observed (chemical freezeout)
value, cf. Fig. 2.
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T [GeV]
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π
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NA 44

|

FIG. 2. Antiproton-to-proton ratio as a function of (de-
creasing) temperature in an isentropically expanding fireball.
The dashed curve represents the naive ratio, exp[−2µN/T ],
whereas the full curves are for finite pion chemical potentials
indicating uncertainties as discussed in the text. The experi-
menatl data point is from Ref. [13].

Such slightly increased values for the pion chemical
potential close to thermal freezeout can indeed be easily
argued for. Within the thermal fireball model of ref. [8]
elastic πN → B scattering (B: baryonic resonances up
to mB $ 1.7 GeV) was assumed to be frequent enough to

maintain (relative) chemical equilibrium for the occupa-
tion of the excited baryonic states. However, with typical
corresponding cross sections of σπN→B $ 15-30 mb [19],
this might not be fully justified anymore for the last few
fm/c prior to thermal freezeout. Consequently, a larger
fraction of the pion number resides in explicit pionic de-
grees of freedom rather than in excited resonances, which
translates into an effectively larger µπ.
Let us finally comment on implications of our obser-

vations for RHIC. Close to the expected chemical freeze-
out the pion density is very similar to SpS conditions.
Thus the rate of producing antiprotons through multi-
pion annihilation per unit time and volume is essentially
the same in both cases. The crucial difference is, how-
ever, that the total density of antiprotons is much larger
around midrapidity at RHIC due to substantially smaller
baryon chemical potentials. More quantitatively, using
typical thermal model estimates [20] with #totB $ 0.2#0
shortly after chemical freezeout (further reduced there-
after), one obtains τRHIC

ch $ 11 fm/c. With the life-
time of the hadronic phase at RHIC being compara-
ble to that at SpS energies, chemical equilibrium in the
pp̄ ↔ nπ reaction cannot be maintained until thermal
freezeout (also, the emerging pion oversaturation is less
pronounced in a baryon-poor regime). The observed
antiprotons at RHIC should therefore mostly originate
from earlier stages, corresponding to the standard hadro-
chemical freezeout in the vicinity of the phase boundary.
Nevertheless, our time scale estimate indicates that even
under RHIC conditions, antibaryon annihilation will be
partially compensated by the inverse reactions.
To summarize, we have analyzed the p̄/p-ratio at SpS

energies employing a thermal approach. So far this ob-
servable has been difficult to understand within, e.g.,
transport models which only included the annihilation
channel, causing doubts whether the latter is actually
active, or unconventional mechanisms for enhanced pro-
duction need to be invoked. We have shown, however,
that the ’puzzle’ can be resolved in a rather standard
statistical-mechanics framework upon inclusion of the in-
verse process of multipion scattering into p̄p pairs, which
can be supported until thermal freezeout. Our main
ingredient was that effective pion-number conservation
generates pion over-saturation at the later stages of a
heavy-ion collision, as described by the build-up of appre-
ciable pion chemical potentials. Raised to a large power
(n ∼ 6) the corresponding pion fugacities sustain a high
antibaryon fraction, thus counter-balancing the loss from
BB̄ annihilation. This mechanism also complies with the
measured centrality dependence being essentially con-
stant, as to be expected from a hadro-chemistry varying
little with impact parameter (for sufficiently peripheral
collisions the applicability of thermal model analyses, of
course, ceases and p̄ production, normalized to the num-
ber of participant nucleons, approaches its value in p-p
collisions, which lies about 30% below the one in central
nucleus-nucleus reactions [14]).
Finally we should note again that our findings are not

3

Need additional data to settle this issue



“Local” or “Global” Charge conservations
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May resolve the tension between proton fluctuations that seem to prefer “global” baryon 
conservation vs light  -   correlations that prefer more “local” baryon conservationd̄ p̄

“wants” long range charge correlation→ “wants” short range charge correlations

No annihilation

ALICE Coll., arXiv:2206.03343

κ2(p − p̄)
⟨p + p̄⟩

No annihilation

ALICE Coll., arXiv:2204.10166

cov(d̄, p̄)

κ2(d̄)κ2(p̄)
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yields in small systems at the LHC in the framework of the canon-
ical statistical model.

The calculations including local baryon conservation for R B−B̄
(0.4 million events) are shown in Figs. 1 and 2 as red band. These 
calculations both include the B B̄ annihilations during the hadronic 
phase. In Fig. 1 the correction for baryon conservation is performed 
via the 1 − α factor changed to α = "Yacc/"Ycons, reflecting the 
local nature of baryon conservation. It is seen that the corrected 
R B−B̄ essentially coincides with the result of global conservation 
within the conservation radius "Yacc < 1.5. Thus, if the range of 
baryon conservation is known, the appropriately corrected R B−B̄
can be used to constrain the baryon annihilation.

If the conservation range is not independently known, how-
ever, the picture is quite different. The combined effect of local 
baryon conservation and B B̄ annihilations on R p−p̄ in the ALICE 
acceptance is shown by the red band in Fig. 2. In this scenario, 
the calculation with local conservation and annihilation is in good 
agreement with the experimental data. In the absence of B B̄ an-
nihilations the data would be notably underestimated due to local 
conservation, as shown in Ref. [20], however when both the local 
conservation and B B̄ annihilation are implemented simultaneously, 
the agreement with the data is recovered.

2.4. Distinguishing annihilation from local baryon conservation

The data presented by the ALICE collaboration currently does 
not allow us to distinguish global conservation without B B̄ anni-
hilations from local conservation with B B̄ annihilations, although 
it can be argued that the shape of "ηacc dependence is better re-
produced by the latter scenario. Additional analysis is required to 
answer this question more definitively and also possibly put quan-
titative constraints on the effect of annihilation and regeneration 
during the hadronic phase.

One option is to look into the centrality dependence of R p−p̄ . 
The effect of the hadronic phase (and thus B B̄ annihilations) de-
creases for larger impact parameter, and can basically be neglected 
in peripheral collisions. Experimental data on R p−p̄ [20] do indi-
cate a centrality dependence: R p−p̄ decreases from 0.972 ± 0.015
in 0-5% central collisions to 0.935 ± 0.011 in 60-70% central colli-
sions. The latter value was shown in Ref. [50] to be consistent with 
local baryon conservation with "Ycons = 3 without B B̄ annihila-
tions. If (local) baryon conservation is independent of centrality, 
for instance if it is determined by the quark-anti-quark creation in 
the early stage of the collision, the centrality dependence of the 
data favors the local conservation + B B̄ annihilation scenario. Ad-
ditional support for this scenario can be found in the centrality 
dependence of the p/π ratio, where the data show indications for 
suppression in central Pb-Pb collisions [9], consistent with the ef-
fect of B B̄ annihilations.

Besides these indications, another observable which is able 
to distinguish these two scenarios, based on experimental data, 
would be very useful. To disentangle the local baryon conserva-
tion from B B̄ annihilations more directly we propose to study an 
additional fluctuation measure. In particular the scaled variance 
R B+B̄ ≡ κ2[B + B̄]/〈NB + NB̄〉 [or R p+p̄ for protons] of the total 
baryon (proton) + antibaryon (antiproton) number can be used for 
this purpose. This quantity is not sensitive to baryon conservation 
at the LHC because its correlator with the conserved net baryon 
number vanishes due to symmetry:

cov[B + B̄,B − B̄] = cov[B,B] − cov[B̄, B̄] 〈B〉=〈B̄〉= 0. (5)

However, R B+B̄ is sensitive to the annihilation and thus can be 
used to constrain this effect. Fig. 3 shows the results of calcula-
tions for (a) R B+B̄ as function of the rapidity acceptance "Yacc
and (b) R p+p̄ as function of the pseudorapidity acceptance "ηacc

Fig. 3. (a) Rapidity acceptance dependence of net baryon R B+B̄ = κ2[B + B̄]/〈B +
B̄〉 in 0-5% central Pb-Pb collisions at the LHC. The different bands have the same 
meaning as in Fig. 1. (b) Same as Fig. 2 but for R p+p̄ . The calculations shown in 
this figure do not contain contributions from volume fluctuations.

within the ALICE momentum acceptance 0.6 < p < 1.5 GeV/c. The 
numerical results explicitly illustrate that these two quantities are 
not sensitive to baryon number conservation: in the absence of B B̄
annihilations R B+B̄ approaches the grand-canonical value for large 
"Yacc whereas the calculations with the annihilations that incor-
porate either global or local baryon conservation yield identical 
results. The effect of B B̄ annihilations is to suppress both quan-
tities. In particular, the suppression is notable for R p+p̄ within the 
ALICE acceptance, thus the measurements can in principle be used 
to study B B̄ annihilations independent of the (local) baryon con-
servation.

Note that, in contrast to the net charges, R p+p̄ is significantly 
affected by volume fluctuations even at the LHC. The calculations 
in Fig. 3 do not incorporate volume fluctuations, thus, for a mean-
ingful comparison either the data have to be corrected for vol-
ume fluctuations or volume fluctuations included in the model 
calculation. The data can be corrected using models for volume 
fluctuations, for example the Glauber Monte Carlo [31]. We have 
checked that the errors for R p+p̄ that can be derived from the 
published data on proton fluctuations [20], as well as the system-
atic errors from performing the correction for volume fluctuations 
are presently too large to distinguish the difference between the 
annihilation scenarios shown in Fig. 3. However, this should be 
possible with upcoming high precision data. The event-by-event 
fluctuations presented here will also be useful in the ongoing ef-
forts to properly implement the regeneration reactions in hadronic 
afterburners.

Here we discussed the fluctuations either in pT -integrated ac-
ceptance as function of rapidity cut or in the acceptance where the 
measurements of proton fluctuations have been performed by the 

4

Baryon annihilation and fluctuations

• : 
- Not (really) affected by annihilation 
- affected by baryon number conservation 

• : 
- affected by annihilation 
- NOT affected by baryon number 

conservation 

κ2(p − p̄)

κ2(p + p̄)
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Savchuk et al., PLB 827, 136983 (2022)

κ2(p − p̄)
⟨p + p̄⟩

N.B.:  
In UrQMD annihilation has NO detailed balance 

No reaction  
 maximum effect 

→ 5π → p + p̄
→

Measure  AND  to constrain both amount of annihilation AND baryon correlation lengthκ2(p − p̄) κ2(p + p̄)

κ2(p + p̄)
⟨p + p̄⟩



New data @ 5.02 TeV

30

•Evidence for suppression of  ration in central collisions (~20%, >4  level) 
•Due to hadronic phase?

p/π σ

Short  
hadronic phase

Long  
hadronic phase

For analysis and discussion: See V.Vovlchenko and V.K 2210.15641



Summary

• Fluctuations measure derivatives of the Free Energy 
- They are a powerful tool to explore QCD phase diagram and other stuff 

•critical point 
•nuclear liquid gas transition 
•remnants of chiral criticality at µ ~ 0 

• Quantitative interpretation of measurements requires care: 
- Global (local) charge conservation 
- Protons vs baryons 
- momentum vs coordinate space 

• Fluctuations may constrain proton annihilation together with locality of baryon number 
conservation

31
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Thank You



Binomial acceptance vs actual acceptance

12

33

Binomial acceptance: accept each particle (charge) with a 
probability  independently from all other particles 𝛼

Hmm… 
Ok.

The binomial acceptance will not provide the correct result (except for a gas of 
uncorrelated particles)

What we really need is



Cumulants of (baryon) number distribution

34

Kn =
�n

�(µ/T )n
ln Z =

�n�1

�(µ/T )n�1
�N�

-1 0 1
μ-μc

5

10

〈N〉/eμ/T Degrees of freedom

K2

�N�

K3

K2

K4

K2

-1 1
μ-μc

-40

-20

20Cumulants scale with volume (extensive): Kn ∼ V

Volume not well controlled in heavy ion collisions 

Cumulant Ratios:
K2

�N� ,
K3

K2
,

K4

K2

K1 = �N� , K2 = �N � �N��2 , K3 = �N � �N��3

Baryon number cumulants measure derivatives of the EOS w.r.t chemical potential



Baryon number conservation and lattice 
susceptibilities

• Charges (baryon number, strangeness, electric charge) are conserved globally in HI collisions 
• Lattice (and most other calculations) work in the grand canonical ensemble: charges may 

fluctuate 
• Effect of charge conservation have been calculated in the ideal gas/HRG limit.  

NON-neglibile corrections especially for higher order cumulants 
(Bzdak et al 2013, Rustamov et al. 2017,…) 

• Wouldn’t it be nice to know what the effect of charge conservation on  
real QCD (aka lattice) susceptibilities is?
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FIG. 1. (Color online) Ratios of odd- and even-order cumulants
as a function of the fraction of measured baryons, p. The parameters
are B = 300, 〈NB〉 = 400, and 〈NB̄〉 = 100.

As already mentioned, the ratios of the odd-order cumulants
depend only on p. This allows us to construct the following
combination:

D = R5,1 − R3,1
[
1 − 3

4 (1 + γ )(3 − γ )
]
, (18)

such that D = 0 for the baryon-conservation-corrected dis-
tribution PB(n), Eq. (7), for any values of p, z, and B. Here,
γ = ±

√
1 + 8R3,1. The upper (lower) sign should be taken for

p < 3/4 (p > 3/4).8 Also, D = 0 for the Skellam distribution.

8For an analysis of experimental data, the case with p < 3/4 should
be considered.

FIG. 2. (Color online) Ratios of odd- and even-order cumulants
as a function of the fraction of measured baryons, p, in the range of
values which are of experiment interest. The parameters are B = 300,
〈NB〉 = 400, and 〈NB̄〉 = 100.

Therefore, a deviation of D from zero may indicate physics
that is not related to global baryon conservation.

IV. DISCUSSION AND COMMENTS

Several comments are in order regarding our results
obtained in the previous sections:

(i) The distribution (7) depends on z =
√

〈NB〉〈NB̄〉,
where 〈NB〉 (〈NB̄〉) is the total baryon (antibaryon)
number present in the Skellam distributions (1) and
(2). Thus, 〈NB〉 (〈NB̄〉) is related to the system without
baryon conservation. It is natural to expect that baryon
conservation will modify 〈NB〉 (〈NB̄〉); however, as we
argue below this correction is negligible. A straightfor-
ward calculation gives

〈NB,B̄〉C = z
IB∓1(2z)
IB(2z)

, (19)

where the upper (lower) sign corresponds to 〈NB〉C
(〈NB̄〉C), with 〈NB〉C − 〈NB̄〉C = B. Here the subscript
〈·〉C refers to averages obtained with full baryon number
conservation. Under the constraint 〈NB〉 − 〈NB̄〉 = B,
one can express z in terms of 〈NB,B̄〉C, and to a very
good approximation we find

z ≈
√

〈NB〉C〈NB̄〉C. (20)

Using the properties of the modified Bessel functions,
one can show that corrections to Eq. (20) are important
only if both B and 〈NB〉C〈NB̄〉C simultaneously assume
a value of the order of one or smaller. This is never
the case in heavy-ion collisions. Relation (20) together
with the requirement that 〈NB〉 − 〈NB̄〉 = B ensures
that 〈NB〉 ≈ 〈NB〉C and 〈NB̄〉 ≈ 〈NB̄〉C to very good
precision. The same identities also hold if we only
consider protons. Therefore, the formalism developed
in the previous section is of a great phenomenological
value since it allows us to calculate the effect of baryon
number conservation on the probability distribution and
its cumulants given experimentally determined average
yields.

(ii) We have shown that the odd-order cumulants do not
depend on 〈NB,B̄〉; their ratios are independent of B
and uniquely defined by one parameter, the fraction
of observed baryons (protons), p. This turns out to be
very useful for the phenomenological analysis of exper-
imental data. For example, chiral model calculations at
nonzero baryon densities show that both R3,1 and R5,1
are nontrivial functions of temperature and chemical
potential close to the crossover and the CEP. This is
demonstrated in Fig. 3, where we present the results
obtained in the Polyakov loop-extended quark-meson
model [17] for R3,1 and R5,1. We also show the new
observable D [see Eq. (18)], which exhibits strong,
temperature-dependent deviations from the baseline of
D = 0, even for temperatures below the pseudo-critical
one, T < Tpc. Therefore, effects due to a possible phase
transition should be accessible in experiment via an
analysis of this new observable D.

014901-4

This can actually be done!

V. Vovchenko,  O. Savchuk, R. Poberezhnyuk, M. Gorenstein, V.K., arXiv 2003.13905,  

V. Vovchenko,  R. Poberezhnyuk, V.K., arXiv:2007.03850

Bzdak et al, 2013



Subensemble acceptance method  
(SAM)
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Partition a thermal system with a globally conserved charge B (canonical ensemble) into two subsystems 
which can exchange the charge

The canonical partition function then reads:

The probability to have charge B1 in V1 is:

V = V1 + V2

Assume thermodynamic limit: 

V, V1, V2 → ∞;
V1

V
= α = const;

V2

V
= (1 − α) = const;

V1, V2 ≫ ξ3 ξ = correlation length

Zce(T, V, B) = ∑
B1

Zce(T, V1, B1)Zce(T, V − V1, B − B1)

P(B1) ∼ Zce(T, αV, B1)Zce(T, (1 − α)V, B − B1), α ≡ V1/V



Subensemble acceptance method  
(SAM)
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In the thermodynamic limit, ,  expressed through free energy density𝑉 → ∞ 𝑍𝑐𝑒

Cumulant generating function for B1:

All  can be calculated by determining the t-dependent first cumulant   𝜅𝑛
~𝜅1[𝐵1(𝑡)]

or

Cumulants of B1:



Making the connection…

𝐵1/𝑉
⟨𝐵1(𝑡)⟩
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Thermodynamic limit:  highly peaked at 
~𝑃(𝐵1; 𝑡) ⟨𝐵1(𝑡)⟩

 is a solution to equation  / d  = 0:⟨𝐵1(𝑡)⟩ 𝑑~𝑃 𝐵1

t = 0: 
             , ,  
i.e. conserved charge uniformly distributed between the two subsystems

𝜌𝐵1
= 𝜌𝐵2

= 𝐵/𝑉 𝐵1 = 𝛼𝐵

with



Second order cumulant
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(*)

Solve the equation for :~𝜅2

t = 0:

Higher-order cumulants: iteratively differentiate  w.r.t. t~𝜅2

Differentiate condition for maximum of ,  ~𝑃(𝐵1; 𝑡)



Full result up to sixth order
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– grand-canonical susceptibilities e.g from Lattice QCD!!

Details:  Vovchenko, et al. arXiv:2003.13905

β = 1 − α



Cumulant ratios
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Some common cumulant ratios: 

scaled variance

skewness

kurtosis

• Global conservation ( ) and equation of state ( ) effects factorize in cumulants up to the 3rd 
order, starting from  not anymore 

•  : Grand canonical limit 

• : canonical limit 

• :  recover known results for ideal gas

𝛼 𝜒𝐵
𝑛

𝜅4

𝛼 → 0
𝛼 → 1
χ2n = < N > + < N̄ > ; χ2n+1 = < N > − < N̄ >


