News on the *W* boson mass from the ATLAS experiment

Jakub Kremer (DESY)

June 2, 2023

Kraków HEP Seminar Białasówka

HELMHOLTZ

 \cdot W boson mass is a crucial parameter of the SM

$$m_{W} = \left(\frac{\pi \alpha_{\rm EM}}{\sqrt{2}G_{\rm F}}\right)^{1/2} \frac{\sqrt{1+\Delta r}}{\sin \theta_{\rm W}}$$

- radiative corrections Δr introduce dependence on m_t , m_H
- $\cdot\,$ check self-consistency of SM in electroweak fit \rightarrow or find new physics
- global EW fits predict $m_W = 80354 \pm 7$ MeV

W boson mass experimentally

2017 ATLAS measurement: STDM-2014-18 2023 ATLAS measurement: ATLAS-CONF-2023-004

- 1983 CERN SPS W discovery
- 1983 UA1

m_w = 81 ± 5 GeV

- 1992 UA2 (with m_z from LEP) $m_W = 80.35 \pm 0.37 \text{ GeV}$
- 2013 LEP combined
 m_w = 80.376 ± 0.033 GeV
- 2013 Tevatron combined
 m_w = 80.387 ± 0.016 GeV
 - 2017 ATLAS

m_w = 80.370 ± 0.019 GeV

2021 – LHCb

m_w = 80.354 ± 0.032 GeV

2022 – CDF

m_w = 80.434 ± 0.009 GeV

2023 – ATLAS

 $m_W = 80.360 \pm 0.016 \text{ GeV}$

General measurement procedure

Vormalised to unity

Var./Nom.

- Use leptonic W boson decays: $W^{\pm} \rightarrow \ell^{\pm} \nu \ (\ell = e, \mu)$
- Vary m_W in signal prediction to generate template distributions of p_T^ℓ and m_T
- Find m_W value that optimises agreement of generated templates with data

Event selection

- Lepton selections
 - \cdot muons: $|\eta| <$ 2.4, isolated
 - + electrons: $|\eta| <$ 1.2 or 1.8 < $|\eta| <$ 2.4, isolated
- Kinematic requirements
 - use hadronic recoil to reconstruct neutrino kinematics
 - $\cdot p_{\mathrm{T}}^{\ell} >$ 30 GeV, $E_{\mathrm{T}}^{\mathrm{miss}} >$ 30 GeV
 - \cdot m_T > 60 GeV, u_T < 30 GeV

Event selection

- Lepton selections
 - \cdot muons: $|\eta| <$ 2.4, isolated
 - + electrons: $|\eta| <$ 1.2 or 1.8 < $|\eta| <$ 2.4, isolated
- Kinematic requirements
 - use hadronic recoil to reconstruct neutrino kinematics
 - + p_{T}^{ℓ} > 30 GeV, $E_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV
 - \cdot $m_{
 m T}$ > 60 GeV, $u_{
 m T}$ < 30 GeV
- Muon channel: 7.8M events
- Electron channel: 5.9M events
- Measurement categories
 - electron/muon
 - 3/4 rapidity regions
 - lepton charge

Reanalysis strategy

- Reproduce and validate results from original analysis
 - reproduce cutflows, distributions, background estimates, ...
 - re-test calibrations with Z boson events
 - re-evaluate systematic uncertainties
 - reproduce χ^2 fit results
- Improvements to systematic uncertainties
 - multi-jet background estimation
 - higher-order electroweak corrections
 - \cdot consider Γ_{W} uncertainty
- \cdot Further improvements to analysis
 - recover 1.5% data in electron channel
 - improve electron energy calibration setup
- $\cdot\,$ Validate updates in χ^2 fit
- $\cdot\,$ Implement profiled likelihood (PLH) fit for $m_{\rm W}$
- $\cdot\,$ Study $m_{\rm W}$ dependence on PDF sets

Detector calibrations

- Detector calibrations unchanged from original analysis
- Electron energy and muon momentum calibrated using $Z \rightarrow \ell \ell$ events
- Lepton efficiencies determined using tag-and-probe method
- Hadronic recoil calibrated using $Z \rightarrow \ell \ell$ events and transfer to $W \rightarrow \ell \nu$ events

Physics modelling

- + Baseline model for $p_{\rm T}^{\rm W}$
 - Pythia8 with AZ tune (fit to ATLAS 7 TeV $p_{\rm T}^Z$ measurement)
 - $p_{\rm T}^{\dot{Z}}$ data described within 2%
 - transfer from p_T^Z to p_T^W and evaluation of p_T^W/p_T^Z uncertainties using Pythia8
- New verifications
 - AZ tune describes $p_{\rm T}^{\rm W}$ distribution in 5 TeV data within exp. uncertainties
 - resummed calculation from DYTurbo also in agreement with AZ tune
- Treatment of angular coefficients (A_i) unchanged \rightarrow NNLO prediction + uncertainties from Z boson measurements
- Study several NNLO PDF sets: CT10, CT14, CT18, MMHT2014, MSHT20, NNPDF3.1, NNPDF4.0

PLH fit setup

$\cdot\,$ Comparison to χ^2 fit

- advantage: reduce systematic uncertainties via profiling of nuisance parameters (NP)
- disadvantage: computationally intensive, not straightforward to investigate systematic uncertainties

• Statistical framework: TRExFitter

- use 12 templates around $m_W = 80399$ MeV
- + linear vertical interpolation between templates \rightarrow tested to 0.1 MeV

\cdot Technical details

- $\cdot\,$ 1000s of NP reduced to \sim 200 via pruning \rightarrow < 1% change in final result
- Principal Component Analysis applied to toy-based uncertainties \rightarrow further reduction in number of NP
- Normalisation scheme
 - normalisation of templates left free in the fit
 - global normalisation factor applied to all signal samples
 - model-independent approach \rightarrow neglect dependence on W boson cross-section

slide from Philipp König

Transition from χ^2 to PLH fits

Transition from χ^2 to PLH fits

- $\cdot\,$ Consistency between fit methods
 - with stat. uncertainties only \rightarrow reproduce results from original analysis
 - including systematic uncertainties \rightarrow lower central value, reduced total uncertainty
- $\cdot\,$ PLH fit consistency
 - vary fitting ranges
 - lepton charge and flavour
 - \cdot separate η regions
 - · compare p_{T}^{ℓ} and m_{T} fits → correlation from pseudodata using toy variations of all systematics
- Good closure in all checks

PLH fit: what is expected?

- PLH fit can move the m_W central value \rightarrow how big a shift is "allowed"?
- · Study using pseudodata with toy variations of systematic uncertainties:
 - 1 σ change in the p_{T}^{ℓ} fit corresponds to 16 MeV
 - 1 σ change in the $m_{\rm T}$ fit corresponds to 23 MeV
- Central values of χ^2 and PLH fits differ by $\sim 1\sigma~(p_T^\ell)$ and $< 1\sigma~(m_T)$

- Several modern PDF sets considered \rightarrow spread of m_W values reduced by profiling of uncertainties
- CT18 PDF set chosen as new baseline
 - yields most conservative uncertainties
 - CT18 PDF uncertainties cover most other considered sets

- NNPDF3.1 and NNPDF4.0 sets stand out in terms of central values
- Signal normalisation factor for these sets also deviates slightly from other sets
- In particular, NNPDF4.0 normalisation factor not consistent with 1

Transition from CT10 to CT18 PDF set

Good consistency across all categories

m_w [MeV]

Post-fit distributions

18

Post-fit distributions

- Post-fit distributions show very good agreement with data
- Improvement compared to χ^2 fits using only statistical uncertainties

Systematic uncertainties

- Δm_{W} : difference between nominal fit and fit with NP fixed to $\pm 1\sigma$
- Largest contributions from physics modelling uncertainties (electroweak, A_i, PDF), muon calibration, hadronic recoil calibration

- Check of NP pull significances:
 - Distribution as expected (Gaussian with $\mu =$ 0, $\sigma =$ 1)
 - Suggests no significant over- or underestimations of uncertainties
- Reduction of uncertainties compared to original analysis:
 - 15 − 30% for PDF
 - + 10 40% for A_i and parton shower
 - $\cdot~\sim$ 15% for total uncertainties

Obs.	Mean	Elec.	PDF	Muon	EW	PS &	Bkg.	Γ_W	MC stat.	Lumi	Recoil	Total	Data	Total
	[MeV]	Unc.	Unc.	Unc.	Unc.	A_i Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	sys.	stat.	Unc.
p_{T}^{ℓ}	80360.1	8.0	7.7	7.0	6.0	4.7	2.4	2.0	1.9	1.2	0.6	15.5	4.9	16.3
m_{T}	80382.2	9.2	14.6	9.8	5.9	10.3	6.0	7.0	2.4	1.8	11.7	24.4	6.7	25.3

Results

• New ATLAS measurement of W boson mass yields:

 $m_W = 80360 \pm 5 \text{ (stat)} \pm 15 \text{ (syst)} = 80360 \pm 16 \text{ MeV}$

• Result even more consistent with prediction of global electroweak fits than original analysis ($m_W = 80370 \pm 19$ MeV)

Summary

- First measurement of m_W using PLH fit approach
- Result: $m_W = 80360 \pm 16 \text{ MeV} \rightarrow \text{precision improved by 15\%}$
- Foresee improvements to physics modelling for future m_W measurements, see e.g. measurement of p_T^W and p_T^Z at 5 and 13 TeV (ATLAS-CONF-2023-028)