"BSM physics" in neutron decay

Search for Time Reversal Violation by measurement of angular correlations in neutron decay

- nTRV and BRAND experiments

Adam Kozela

Institute of Nuclear Physics, PAN, Cracow, Poland

Time reversal violation

Cabibbo-Kobayashi-Maskawa matrix:

o TRV parametrized by complex phase δ_{KM} ,

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3 \varrho e^{i\delta_{KM}} \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3 \begin{bmatrix} 1 - \varrho e^{-i\delta_{KM}} \end{bmatrix} & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

• Many orders of magnitude to small to account for observed matter-antimatter asymmetry ...

 \Box θ -term in effective Lagrangian of strong interactions

$$L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \theta \cdot q(x)$$

• Generates unobserved nEDM ($d_n \approx 1.8 \cdot 10^{-26}$ ecm $\Rightarrow \theta < 10^{-9}$) ... "Strong CP problem"

□ Final state interactions (FSI)

TRV in weak interaction?

General form of Lorenz-invariant Hamiltonian of weak interaction for *n* decay:

$$\begin{split} H &= \bar{e}\gamma_{\lambda}\left(\mathcal{C}_{V} + \mathcal{C}'_{V}\gamma_{5}\right)\nu_{e}\bar{p}\gamma^{\lambda}n + \bar{e}\gamma_{\lambda}\gamma_{5}\left(\mathcal{C}_{A} + \mathcal{C}'_{A}\gamma_{5}\right)\nu_{e}\bar{p}\gamma^{\lambda}\gamma_{5}n \\ &+ \bar{e}(\mathcal{C}_{S} + \mathcal{C}'_{S}\gamma_{5})\nu_{e}\bar{p}n + \bar{e}\frac{\sigma_{\lambda\mu}}{\sqrt{2}}(\mathcal{C}_{T} + \mathcal{C}'_{T}\gamma_{5})\nu_{e}\bar{p}\frac{\sigma_{\lambda\mu}}{\sqrt{2}}n \\ &+ \bar{e}\gamma_{5}\left(\mathcal{C}_{P} + \mathcal{C}'_{P}\gamma_{5}\right)\nu_{e}\bar{p}\gamma^{5}n + H.c. \end{split}$$

$$\begin{aligned} \mathcal{C}_{i}, \mathcal{C}_{i}'-19 \text{ real param.} \end{aligned}$$

- Standard Model: V-A interaction, (C_V=C'_V=1, C_A=C'_A = λ ≈ -1.27, rest is 0), but actual experimental limitations are finite, on % level and may provide missing source of TRV.
- More accurate limitations on C_i more precise tests of proposed extensions of Standard Model: Left-Right Symmetric Models, Leptoquark exchange, Supersymmetric Models ...

Angular correlations in neutron decay

Adam Kozela

Angular correlations in neutron decay

$$W(\theta, E, \sigma_T) \propto 1 + A \frac{\vec{J} \cdot \vec{p}}{E} + N \vec{J} \cdot \hat{\sigma} + R \frac{\vec{J} \cdot \vec{p} \times \hat{\sigma}}{E} + \cdots$$

A- decay asymmetry (-0.1173) R, N - correlation coefficients

Adam Kozela

Why neutron?

- □ Long lifetime (886 sec, good and bad...).
- Decays by weak interaction (known from TRV).
- No effects from nuclear or atomic structure (for free neutrons exact value of M_F, M_{GT}).
- □ It is neutral... (application of high electric fields possible).
- Small decay asymmetry A and small charges involved in decay => (small and precisely known final state interaction correction).
- □ Made of u and d quark (very small effect from CKM-matrix).

Correlation coefficients N, R and exotic interactions

□ Allowing for nonzero exotic couplings in weak interaction (Jackson at al., 57):

$$N \approx 0.276 \cdot Re(S) + 0.335 \cdot Re(T) - A \cdot \frac{m}{E}$$

$$R \approx 0.276 \cdot Im(S) + 0.335 \cdot Im(T) - A \cdot \frac{\alpha m}{p}$$

$$R \approx 0.276 \cdot Im(S) + 0.335 \cdot Im(T) - A \cdot \frac{\alpha m}{p}$$

$$R_{FSI} \sim 0.0006 \pm 6 \cdot 10^{-6}$$

$$S = \frac{C_s + C'_s}{C_v}$$

$$S = \frac{C_s + C'_s}{C_v}$$

$$S = \frac{C_s + C'_s}{C_v}$$

□ N measurement: detector test (Re(S), Re(T) known well from other experiments).

□ If measured $\mathbb{R} \neq 0$ hew mechanism of T(CP) violation, limit on $\underline{Im(C_S)}$ i $Im(C_T)$.

nTRV experimental setup - top view PSI, Villigen 2004-2007

Adam Kozela

nTRV experiment results (exclusion plots)

What next?

- □ Increasing accuracy by a factor of two: 15 months of measurement.
- Better strategy: increase the length of the detector

gain factor more than l^3

- □ No money for both, but ...
- **2018: BRAND experiment received support from NCN**

Angular correlations in neutron decay in reach of BRAND experiment σ_{T1} σ_e PDG: $W(J,\sigma,E,E_{v},p,q) \propto 1 + a \frac{p \cdot q}{E E_{v}} + b \frac{m}{E} + \frac{\langle J \rangle}{j} \left(A \frac{p}{E} + B \frac{q}{E_{v}} + C \frac{q}{E_{p}} + D \frac{p \times q}{E E_{v}} \right) +$ \mathbf{p}_{v} $\sigma_T \left(H \frac{q}{E_u} + L \frac{p \times q}{E E_u} + N \frac{\langle J \rangle}{j} + R \frac{\langle J \rangle}{j} \times \frac{p}{E} \right) +$ A.Kozela at al ., Phys. Rev Lett 102, 172301(2009) $\sigma_{T}\left(S\frac{\langle J \rangle}{i}\frac{p \cdot q}{E E} + U\frac{\langle J \rangle}{i}\frac{p \cdot q}{E E} + V\frac{q}{E} \times \frac{\langle J \rangle}{i}\right)$ H, L, S, U, V: never measured

Adam Kozela

Correlation coefficients and exotic interactions, sensitivity factors

	$SM(\lambda)$	FSI (λ)	c(Re <i>S</i>)	c(Re <i>T</i>)	c(ImS)	c(Im <i>T</i>)	J.D.Jackson, SB Treiman, HW Wyld, Nucl.Phys, 4206-212, 1957
a	-0.104793	0	-0.171405 [†]	0.171405 [†]	-0.000727	+0.001171	
b	0	0	+0.171405	+0.828595	0	0	Leading order
A	-0.117233	0	0	0	-0.000923	+0.001420	No recoil
В	+0.987560	0	-0.126422	+0.194539	0	0	
D	0	0	0	0	+0.000923	-0.000923	Point charge
H	0	+0.060888	-0.171405	+0.276198	0	0	
L	0	-0.000444	0	0	+0.171405	-0.276198	
N	0	+0.068116	-0.217582	+0.334815	0	0	
R	0	+0.000497	0	0	-0.217582	+0.334815	
S	0	-0.001845	+0.217582	-0.217582	0 🕊	0	
U	0	0	-0.217582	+0.217582	0	0	
V	0	0	0	0	-0.217582	+0.217582	

* Kinematical factor averaged over electron kinetic energy E_k = (200,783) keV

BRaND experiment projections (exclusion plots for accuracy 5.10-4)

$$W(J,\sigma,E,E_{v},p,q) \propto 1 + a \frac{p \cdot q}{E E_{v}} + b \frac{m}{E} + \frac{\langle J \rangle}{j} \left(A \frac{p}{E} + B \frac{q}{E_{v}} + C \frac{q}{E_{p}} + D \frac{p \times q}{E E_{v}} \right) + \sigma_{T} \left(H \frac{q}{E_{v}} + L \frac{p \times q}{E E_{v}} + N \frac{\langle J \rangle}{j} + R \frac{\langle J \rangle}{j} \times \frac{p}{E} \right) + \sigma_{T} \left(S \frac{\langle J \rangle}{j} \frac{p \cdot q}{E E_{v}} + U \frac{\langle J \rangle}{j} \frac{p \cdot q}{E E_{v}} + V \frac{q}{E_{v}} \times \frac{\langle J \rangle}{j} \right)$$

Transition from $C_{T,S}$ and $C'_{T,S}$ to $\epsilon_{S,T}$ via EFT T.Bhattacharya at al .,Phys. Rev D **85**, 054512(2012)

BRAND experiment - vectors we need

- □ Neutron spin
- Electron momentum
- Transverse electron polarization
- Proton momentum

Exclusive kinematics

Principle of vertex reconstruction with 3-body kinematics

Proton detection

- Proton end-point energy 750 eV
- Problem of neutralization good vacuum <10⁻⁴
- Preacceleration in electric field (1)
- □ Conversion to electrons (~10)
- □ 110 nm converter foil (2) Albert Young, USA

80nm 6F6Fpoliamid + 20nm LiF + 10nm Al

- Acceleration of electrons (25keV) (3)
- Measurement in thin scintillator (35 µm) (4)
- Not sensitive to direct electrons from neutron decay
- Position sensitive light detection SiPM (5)

Proton momentum

- Position sensitive proton measurement -> emission angles
- Electron momentum + n-beam volume -> vertex reconstruction
- Precise timing -> proton time-of-flight
- Overdetermined kinematic ->

kinematic fit to improve knowledge of proton momentum

Principle of vertex reconstruction with 3-body kinematics

Electron tracking

- Electron end-point-energy 782 keV
- Electron tracker based on multiwire drift chamber
 - o Better position resolution from drift time
 - Charge division method (less planes x2)
- Hexagonal cell geometry (less wires x2)
- Gas mixture 1/4/95 alcohol/isobutan/He
- □ Efficiency ~97%

-8.621

Transverse electron polarization

- Mott polarimetry
- Asymmetry due to spin-orbit interaction
- Backscattering from heavy nuclei (Pb, Au, U)
- Increased scattering angle range (compared to nTRV)

Adam Kozela

Test runs performed at ILL, Grenoble 2020, 2021 - summary

Test of the prototype in real conditions

- Upgraded beam polarizer installed
- Decay chamber integrated with the beam line
- Neutron spin holding magnetic field and Earth field compensation
- Vacuum chamber with large thin window
 (4.5μm foil, Kevlar reinforced) pressure <10⁻⁵mb
- o Small beam related background observed

- Data analysis finished, serious problems identified:
 - Difficult SiPM gain matching for proton detector
 - o Problem with custom made Charge-to-Time converter
 - More selective trigger logic must be implemented

Summary

- Neutron decay perfect laboratory for BSM physics searches
- Correlation coefficients of neutron decay important for TRV effects, may be used to strengthen limits on scalar and tensor couplings of weak interaction
- First measurement of N- and R-correlations in neutron decay successfully finished (nTRV)
- Its successor (BRAND) aimed at simultaneous measurement of 11 correlation coefficients is in early stage

Thank You