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BUT DO WE NEED TO? YES!
Just treat everything quantum mechanically!!! Not entirely satisfactory…



3 reasons why…
• Macroscopic classicality: we don’t  know how/when the transition 

from quantum to classical happens but it does…
• Systems/phenomena that behave approximately classically but with 

quantum corrections, that are classical but originate from quantum 
mechanics
• GRAVITY
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• Macroscopic classicality: we don’t  know how/when the transition 

from quantum to classical happens but it does…
• Systems/phenomena that behave approximately classically but with 

quantum corrections, that are classical but originate from quantum 
mechanics
• GRAVITY
• Progress towards quantizing gravity (loop quantum gravity, causal dynamical 

triangulations, causal sets, strings, holography…) but no final victor so far
• Some even argue that gravity may not be fundamentally quantum
• Famous open problems pertaining to quantum degrees of freedom 

interacting gravitationally 
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Riemann tensor 𝑅!"#$(𝑥%) 

Quantum fields
&𝜙(𝑥!), &𝜓(𝑥!), )𝐴!(𝑥")

QUANTUM FIELD THEORY IN CURVED 

SPACETIME:

well-posed (up to some ambiguities) as 

long as…
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Ricci tensor
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CONTRIBUTION FROM 
QUANTUM FIELDS

(semiclassical)

... quantum backreaction can be neglected (but can it?)
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• Cosmological constant problem: zero-point energy of quantum fields 
sources curvature of spacetime via 0 "𝑇!" 0 ∝ Λ𝑔!"
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S. Hawking
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𝑅.

Gravitationally collapsing object: 
dying star, matter shell…

• Time dependent metric 𝑔!"(𝑡)
• Eventual formation of a black hole
• Quantum fields initially in their vacuum 

get excited: particle production
• At late times, power spectrum becomes 

thermal: Hawking radiation
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Hawking evaporation revisited

𝑅.

Gravitationally collapsing object: 
dying star, matter shell…

• Time dependent metric 𝑔!"(𝑡)
• Eventual formation of a black hole
• Quantum fields initially in their vacuum 

get excited: particle production
• At late times, power spectrum becomes 

thermal: Hawking radiation

HOW DOES IT EVAPORATE? 
SEMICLASSICAL QUANTUM 

BACKREACTION



Toy model: collapsing shell
• Thin spherically symmetric domain 

wall: classical degrees of freedom 
radius 𝑅 𝑡 , mass 𝑀 𝑡  obeying 
classical equations of motion
• Metric (dynamic via dependence on 
𝑅 𝑡  and 𝑀 𝑡 ): Minkowski inside, 
Schwarzschild outside
• Quantum scalar field mode coupled 

to 𝑅 𝑡  and 𝑀 𝑡  via time-
dependent vacuum expectation 
values
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Second detour: domain walls

Spontaneous symmetry breaking of a 
discrete symmetry (e.g. phase transition):

degenerate vacua

• Field picks a vacuum independently at 
different points in space

• Regions with different vacua separated 
by domain walls

• Stable classical field configurations 
interpolating between the two vacua

𝑥

𝜙(𝑥)𝜌!(𝑥)
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quantum phase transitions?

How do they become classical?
NOT A QUESTION WE CAN STRICTLY ASK 



Second detour: domain walls

Spontaneous symmetry breaking of a 
discrete symmetry (e.g. phase transition):

degenerate vacua

Formation of these objects during 
quantum phase transitions?

NEW QUESTION:
How does their average abundance evolve?

M. Mukhopadhyay, T. Vachaspati, GZ (2020)



More complex toy model



sine-Gordon zoology

• Laboratory: sine-Gordon model in one spatial dimension
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• Laboratory: sine-Gordon model in one spatial dimension

ℒ#$ =
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Degenerate 
vacuum manifold

Domain walls!!!
(or kinks)



sine-Gordon zoology

• Laboratory: sine-Gordon model in one spatial dimension

• Build classical configuration analog to collapsing domain wall
• Free quantum field 𝜓 coupled to this 𝜙 background via

• Semi-classical backreaction 𝜓% → 𝜓%

• No gravity, but full field-theoretic model…

ℒ#$ =
1
2
𝜙̇% −

1
2
𝜙&% −𝑚%(1 − cos	𝜙)

𝜓%(1 − cos	ϕ)



Building the “collapsing” background

Kink solution 𝜙 = +	4	Arctan	𝑒6 787#
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Building the “collapsing” background

Kink-antikink scattering state
 𝜙 = +	4	Arctan @CDB(96:;) 	

:	>?@B(967)

𝜙(𝑡, 𝑥)

𝑥



Some results
M. Mukhopadhyay, E. Sfakianakis, T. Vachaspati, GZ (2021)



Kink-antikink scattering

No backreaction of quantum radiation 



Kink-antikink scattering

Semiclassical backreaction of quantum radiation 



Breather formation and evaporation

Semiclassical backreaction of quantum radiation 



Future prospects

• 3 dimensional field theoretic description of collapsing domain wall
• Include gravity (with all its renormalization problems)…
• Add a free quantum field minimally coupled to gravity (only indirectly 

coupled to the domain wall)
• Include semiclassical backreaction 
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Future prospects

• 3 dimensional field theoretic description of collapsing domain wall
• Include gravity (with all its renormalization problems)…
• Add a free quantum field minimally coupled to gravity (only indirectly 

coupled to the domain wall)
• Include semiclassical backreaction 

• Exploration of other ways to include quantum backreaction (e.g. 
statistical ensembles, Wigner function truncations, stochastic gravity…)

COMPUTATIONALLY INSTENSIVE
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Final detour: the poor man’s quantum gravity

Classical 
gravitational wave
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gravitational wave



Final detour: the poor man’s quantum gravity

M. Parikh, F. Wilczek, GZ (2020)



Personal perspective

Strings, canonical 
quantization methods… : 

pick the lock

Semiclassical methods:
peek through the keyhole

Door to quantum gravity


