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Quantum determinism: exact predictions of average evolution of the variables which can be directly
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Quantum non-determinism: probabilistic predictions
of results of a measurement
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BUT DO WE NEED TO? YES!
Just treat everything quantum mechanically!!! Not entirely satisfactory...



3 reasons why...

* Macroscopic classicality: we don’t know how/when the transition
from quantum to classical happens but it does...

» Systems/phenomena that behave approximately classically but with
guantum corrections, that are classical but originate from quantum
mechanics

* GRAVITY



3 reasons why...

* Macroscopic classicality: we don’t know how/when the transition
from quantum to classical happens but it does...

» Systems/phenomena that behave approximately classically but with

guantum corrections, that are classical but originate from quantum
mechanics

* GRAVITY

* Progress towards quantizing gravity (loop quantum gravity, causal dynamical
triangulations, causal sets, strings, holography...) but no final victor so far

* Some even argue that gravity may not be fundamentally quantum

* Famous open problems pertaining to quantum degrees of freedom
interacting gravitationally
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Coupling quantum matter to gravity

... quantum backreaction can be neglected (but can it?)

Einstein equations

1 St

Ry — Eﬁguv — T4 (THV>

e

Ricci tensor Stress-energy

Ricci scalar tensor

CONTRIBUTION FROM
QUANTUM FIELDS
(semiclassical)



2 (in)famous open problems in gravity

* Cosmological constant problem: zero-point energy of quantum fields
sources curvature of spacetime via (0|Tw‘0) < Ag
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WAY TOO BIG

the radius of curvature of the universe
“would not even reach the moon”
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* Quantum evaporation of black holes: information loss, violation of
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Hawking evaporation revisited

Gravitationally collapsing object:
dying star, matter shell...




Hawking evaporation revisited

Gravitationally collapsing object:
dying star, matter shell...

* Time dependent metric g, ()

* Eventual formation of a black hole

* Quantum fields initially in their vacuum
get excited: particle production

* At late times, power spectrum becomes
thermal: Hawking radiation




First detour: harmonic oscillators
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Explicit time-dependence :> Excited states get populated
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1 Initial quantum state =
Wol - ground state of

harmonic oscillator




First detour: harmonic oscillators
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Explicit time-dependence II:> Excited states get populated
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Hawking evaporation revisited

Gravitationally collapsing object:
dying star, matter shell...

* Time dependent metric g, ()

* Eventual formation of a black hole

* Quantum fields initially in their vacuum
get excited: particle production

* At late times, power spectrum becomes
thermal: Hawking radiation

HOW DOES IT EVAPORATE?
SEMICLASSICAL QUANTUM
BACKREACTION




Toy model: collapsing shell

* Thin spherically symmetric domain
wall: classical degrees of freedom
radius R(t), mass M (t) obeying
classical equations of motion

* Metric (dynamic via dependence on
R(t) and M(t)): Minkowski inside,
Schwarzschild outside

* Quantum scalar field mode coupled
to R(t) and M(t) via time-
dependent vacuum expectation
values
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Second detour: domain walls

V(9) * Field picks a vacuum independently at
different points in space

* Regions with different vacua separated
by domain walls

e Stable classical field configurations

interpolating between the two vacua
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Spontaneous symmetry breaking of a | o,

discrete symmetry (e.g. phase transition):
degenerate vacua




Second detour: domain walls

V(9) Formation of these objects during
guantum phase transitions?

How do they become classical?
NOT A QUESTION WE CAN STRICTLY ASK

Spontaneous symmetry breaking of a
discrete symmetry (e.g. phase transition):
degenerate vacua



Second detour: domain walls

V(9) Formation of these objects during
guantum phase transitions?

NEW QUESTION:
How does their average abundance evolve?
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Spontaneous symmetry breaking of a oot |
discrete symmetry (e.g. phase transition): |
T — t

degenerate vacua 0 10 0 100 %0
M. Mukhopadhyay, T. Vachaspati, GZ (2020)




More complex toy model
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* Laboratory: sine-Gordon model in one spatial dimension
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sine-Gordon zoology

* Laboratory: sine-Gordon model in one spatial dimension

1

: 1
Lsg = Egbz — Eqblz —m?(1 — cos ¢)

V(o)

Degenerate Domain walls!!!
vacuum manifold (or kinks)




sine-Gordon zoology

* Laboratory: sine-Gordon model in one spatial dimension
L 2 1 12 2
Lsg :§¢ —Eqb —m*(1 —cos ¢)
* Build classical configuration analog to collapsing domain wall

* Free quantum field ¥ coupled to this ¢ background via

Y% (1 — cos §)

* Semi-classical backreaction ¥? — (1?)
* No gravity, but full field-theoretic model...



Building the “collapsing” background
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Antikink solution ¢ = — 4 Arctan eYM(x—xo—vt)



Building the “collapsing” background

¢ (¢, x)
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Kink-antikink bound state: breather
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Building the “collapsing” background
B(t, x)

\
X >

Kink-antikink scattering state
¢ = + 4 Arctan (Sinh(ymvt) )

v cosh(ymx)




Some results

M. Mukhopadhyay, E. Sfakianakis, T. Vachaspati, GZ (2021)



Kink-antikink scattering
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No backreaction of quantum radiation



Kink-antikink scattering
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Breather formation and evaporation
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Future prospects

* 3 dimensional field theoretic description of collapsing domain wall
* Include gravity (with all its renormalization problems)...

* Add a free quantum field minimally coupled to gravity (only indirectly
coupled to the domain wall)

* Include semiclassical backreaction
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Future prospects

* 3 dimensional field theoretic description of collapsing domain wall
* Include gravity (with all its renormalization problems)...

* Add a free quantum field minimally coupled to gravity (only indirectly
coupled to the domain wall)

* Include semiclassical backreaction

COMPUTATIONALLY INSTENSIVE

* Exploration of other ways to include quantum backreaction (e.g.
statistical ensembles, Wigner function truncations, stochastic gravity...)



Final detour: the poor man’s quantum gravity
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Classical
gravitational wave
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Final detour: the poor man’s quantum gravity
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Classical wave profile _ Radiation reaction
Vacuum fluctuations

Effective equation of motion for the detector
including quantum effects

M. Parikh, F. Wilczek, GZ (2020)



Personal perspective

Semiclassical methods:
peek through the keyhole

Strings, canonical
guantization methods... :
pick the lock

Door to quantum gravity



