Top-quark pair production in heavy-ion collisions

Patrycja Potępa

Petr Baroň, Iwona Grabowska-Bołd, Jiří Kvita, Santu Mondal, Yuriy Volkotrub

Outline

1 Motivation

- 2 Proton and nuclear PDFs
- 3 Reference measurements
- 4 Measurement of $t\bar{t}$ in p+Pb collisions
- 5 Prospects of $t\bar{t}$ in Pb+Pb

Motivation PDFs Reference measurements Measurement

tt production

٥Ô

- Top quark is the heaviest elementary particle (175 GeV) and it decays before hadronisation.
- Top quark pair $(t\bar{t})$ is produced mainly via gluon fusion.
- Single top production has a lower cross section compared to $t\bar{t}$.
- \star tt process is sensitive to gluon parton distribution functions (PDFs).
- The final state consists of leptons and jets including two b-jets.

Measurement

$t\bar{t}$ decay channels

- The $t\bar{t}$ cross section is measured in ℓ +jets and dilepton channels in *p*+Pb collisions in ATLAS (ATLAS-CONF-2023-063).
- The first measurement using the dilepton channel in p+Pb collisions.
- A measurement in p+Pb collisions using the *l*+jets channel has been reported by CMS (PRL 119, 242001 (2017)).
- An evidence in Pb+Pb collisions using the dilepton channel has been reported by CMS (PRL 125 (2020), 222001).

 $\begin{array}{ll} \boldsymbol{\ell}+\mathbf{jets}: & t\overline{t} \to WbW\overline{b} \to \ell\nu_{\ell}bq\overline{q}'\overline{b} \\ \mathbf{dilepton}: & t\overline{t} \to WbW\overline{b} \to \ell\nu_{\ell}b\ell\overline{\nu}_{\ell}\overline{b} \end{array}$

Proton PDFs

Global analysis - a multi-experimentmulti-observable fit

Fixed-target DIS and DY

- deep inelastic scattering (DIS) and Drell–Yan (DY) processes,
- important in setting the large-x quark distributions.

HERA DIS

• access to a large x, Q^2 range.

Hadron colliders

access to new processes: W[±], Z, jets, tt̄.

Patrycja Potępa

PDFs

Reference measurements

Nuclear PDFs

- World data constraining nuclear Parton Distribution Functions (nPDFs) shown on the (x, Q²) plane.
- The kinematic coverage of experimental data has expanded massively with contributions from the LHC.
- Gaps still remain in the data determining nPDFs, leaving large stretches of phase space unconstrained.

Nuclear PDFs

- Recent ATLAS measurements will help to constrain a large phase-space region.
- UPC dijets 5.02 TeV
 - ATLAS-CONF-2022-021
- dijets 8.16 TeV p+Pb
 - arXiv:2309.00033
- ✤ tī 8.16 TeV p+Pb
 - ATLAS-CONF-2023-063

PDFs

Reference measurements

Measurement

Prospects

Nuclear PDFs

- Electron-lon Collider (EIC) will help to cover the gap on the (x, Q^2) plane.
- The project is years away, with estimated early completion in 2032.
- Recent ATLAS dijet results are closely related to the early physics goals of the EIC.

nPDF global fits

nPDF	KSASG20	nCTEQ15HQ	TUJU21	EPPS21	nNNPDF3.0 arXiv:2201.12363 (2022)		
	PRD 104, 034010 (2021)	PRD 105 (2022) 114043	PRD 105 9 (2022), 094031	EPJ C 82, 413 (2022)			
Order in α_s	NLO & NNLO	NLO	NLO & NNLO	NLO	NLO		
Free parameters	9	19	16	24	256		
Independent flavours	3	5	5 4		6		
Free-proton PDFs	CT18	\sim CTEQ6M	Q6M TUJU own fit CT18A		\sim NNPDF4.0		
Data points	4353	940	2410	2077	2188		
ℓA NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
ν A CC DIS	\checkmark		\checkmark	\checkmark	\checkmark		
<i>p</i> A DY	\checkmark	\checkmark		\checkmark	\checkmark		
$\pi A D Y$				\checkmark			
RHIC dAu π^0, π^\pm		\checkmark		\checkmark			
LHC pPb $\pi^0, \pi^\pm, \mathit{K}^\pm$		\checkmark					
LHC p+Pb dijets				\checkmark	\checkmark		
LHC <i>p</i> +Pb <i>D</i> ⁰				\checkmark	\checkmark		
LHC <i>p</i> +Pb <i>W</i> , <i>Z</i>		\checkmark	\checkmark	\checkmark	\checkmark		
LHC p +Pb γ					\checkmark		

nPDF global fits

nPDF	KSASG20	nCTEQ15HQ	TUJU21	EPPS21	nNNPDF3.0
	PRD 104, 034010 (2021)	PRD 105 (2022) 114043	PRD 105 9 (2022), 094031	EPJ C 82, 413 (2022)	arXiv:2201.12363 (2022)
Order in α_s	NLO & NNLO	NLO	NLO & NNLO	NLO	NLO
Free parameters	9	19	16	24	256
Independent flavours	3	5	4	6	6
Free-proton PDFs	CT18	\sim CTEQ6M	TUJU own fit	CT18A	\sim NNPDF4.0
Data points	4353	940	940 2410 2077		2188
ℓA NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	√
ν A CC DIS	\checkmark		\checkmark	\checkmark	\checkmark
pA DY	\checkmark	\checkmark		\checkmark	\checkmark
$\pi A DY$				\checkmark	
RHIC d Au π^{0},π^{\pm}		\checkmark		\checkmark	
LHC pPb π^0, π^\pm, K^\pm		\checkmark			
LHC p+Pb dijets				\checkmark	\checkmark
LHC <i>p</i> +Pb <i>D</i> ⁰				\checkmark	\checkmark
LHC <i>p</i> +Pb <i>W</i> , <i>Z</i>		\checkmark	\checkmark	\checkmark	\checkmark
LHC p +Pb γ					\checkmark

Four nPDF sets include LHC data.

nPDF global fits

nPDF	KSASG20	nCTEQ15HQ	TUJU21	EPPS21	nNNPDF3.0
	PRD 104, 034010 (2021)	PRD 105 (2022) 114043	PRD 105 9 (2022), 094031	EPJ C 82, 413 (2022)	arXiv:2201.12363 (2022)
Order in α_s	NLO & NNLO	NLO	NLO & NNLO	NLO	NLO
Free parameters	9	19	16	24	256
Independent flavours	3	5	4	6	6
Free-proton PDFs	CT18	~CTEQ6M TUJU own fit CT		CT18A	\sim NNPDF4.0
Data points	4353	940	940 2410		2188
ℓA NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ν A CC DIS	\checkmark		\checkmark	\checkmark	\checkmark
<i>p</i> A DY	\checkmark	\checkmark		\checkmark	\checkmark
$\pi A D Y$				\checkmark	
RHIC dAu π^0, π^\pm		\checkmark		\checkmark	
LHC pPb $\pi^0, \pi^\pm, \mathit{K}^\pm$		\checkmark			
LHC p+Pb dijets				\checkmark	\checkmark
LHC <i>p</i> +Pb <i>D</i> ⁰				\checkmark	\checkmark
LHC <i>p</i> +Pb <i>W</i> , <i>Z</i>		\checkmark	\checkmark	\checkmark	\checkmark
LHC p +Pb γ					\checkmark

* KSASG20 and TUJU21 provide NNLO calculations.

Patrycja Potępa

Motivation PDFs 00 000000000000000000000000000000000000		Reference measurements	Measurement	Prospects
Quark	PDFs			

***** EPPS21 nuclear modifications of bound protons in lead R_i^{Pb} at the initial scale $Q^2 = 10 \text{ GeV}^2$.

Similar results for up and down quarks $u \approx d$.

Patrycja Potępa

MotivationPDFs○○○○○○○○○○○○		Reference measurements	Measurement	Prospects
Gluon	PDFs			

Nuclear modifications of bound protons in lead R^{Pb}_a for gluons with different nPDFs.

Large errors and discrepancies between different nPDFs at high Bjorken-*x* values.

Patrycja Potępa

Seminarium HEP Białasówka

- Top quarks provide novel probes of nuclear modifications to nPDFs at high Bjorken-x values (PRD 93, 014026 (2016)).
- Nuclear modification factor (R_{pPb}) prediction has been reported in arXiv:1908.11534 as a function of $t\bar{t}$ pair p_T (left) and y (right).

Motivation

Reference measurements

ATLAS pp measurements

- ATLAS provides tt cross-section measurements in a wide centre-of-mass energy range.
- Measurements were done at 5 centre-of-mass energies:
 - 5.02 TeV
 - 7 TeV
 - 8 TeV
 - 13 TeV
 - 13.6 TeV
- Results are in agreement with theory predictions using the PDF4LHC21 PDF set.

PLB 848 (2024) 138376

CMS *p*+Pb measurement

- First observation of top-quark production in proton-nucleus collisions by the CMS.
 - Total integrated luminosity of **174 nb**⁻¹.
- ♦ Measurement done in ℓ+jets channel using a fit to invariant mass distributions of t → jj' b candidates.
- Combined cross section: $\sigma_{t\bar{t}} = 45 \pm 8$ nb.

Relative systematic uncertainty of **18%**.

PRL 119, 242001 (2017)

Motivation

ATLAS and CMS pp 7 and 8 TeV measurement

- The most precise tt cross-section measurement at 8 TeV scale.
- Two measurements of the $t\bar{t}$ production in the $e\mu$ channel

ATLAS: EPJ C 74 (2014) 3109, **CMS:** JHEP 08 (2016) 029.

- ★ Measured cross section
 7 TeV: $σ_{t\bar{t}} = 178.5 \pm 4.7$ pb,
 8 TeV: $σ_{t\bar{t}} = 243.3^{+6.0}_{-5.9}$ pb.
- $pp \sigma_{t\bar{t}}$ scaled by lead mass number A and extrapolated to 8.16 TeV can be compared to p+Pb $\sigma_{t\bar{t}}$.

JHEP 07 (2023) 213

Measurement

Prospects

ATLAS detector

- A Toroidal LHC ApparatuS (ATLAS) is the largest, multi-purpose particle detector at the LHC.
- Three main systems are used in reconstruction:
 - inner detector,
 - calorimeter system,
 - muon spectrometer.
- The tt analysis uses reconstructed electrons, muons, jets, b-jets and missing energy.

Overview of the ATLAS detector.

Measurement

Prospects

p+Pb data in ATLAS

- p+Pb data at $\sqrt{s_{NN}} = 8.16$ TeV collected in 2016 by ATLAS.
- The luminosity of 165 nb⁻¹, split into 57 nb⁻¹ (*p*+Pb) and 108 nb⁻¹ (Pb+*p*).
- Final luminosity calibration with a relative uncertainty of 2.4%.

Event display of a p+Pb collision containing a $t\bar{t}$ candidate.

Measurement

MC simulation

- MC samples produced using Powheg+Pythia 8 and Sherpa generators.
 - Two isospin configurations: proton-proton (pp), proton-neutron (pn).
- Two beam configurations: proton-lead (p+Pb), lead-proton (Pb+p).
- Events embedded into real p+Pb data forming data overlay samples.
- Signal: tt, Background: tW (single top), W, Z, diboson.

Event selection

e+jets

- 1 electron,
- 0 muons,
- at least 4 jets.

ℓ+jets

μ +jets

- 1 muon,
- 0 electrons,
- at least 4 jets.

Dilepton

ee

- 2 electrons,
- 0 muons,
- opposite sign leptons,
- *m*_{ℓℓ} > 45 GeV and *m*_{ℓℓ} ∉ (80 - 100) GeV,
- at least 2 jets.

$\mu\mu$

- 2 muons,
- 0 electrons,
- opposite sign leptons,
- $m_{\ell\ell} > 45 \text{ GeV}$ and $m_{\ell\ell} \notin (80 100) \text{ GeV}$,
- at least 2 jets.

$oldsymbol{ heta}\mu$

- 1 electron,
- 1 muon,
- opposite sign leptons,
- $m_{\ell\ell} > 15$ GeV,
- at least 2 jets.

٥

0.

Jet reconstruction

- Jets are required to have $p_{\rm T} > 20 \; {\rm GeV}$ and $|\eta| < 2.5$.
- * Jets are reconstructed using the anti- k_t algorithm with jet radius of R = 0.4.
- Two jet definitions are used
 - heavy-ion (HI) dedicated for Pb+Pb collisions including underlying event correction,
 - particle-flow (PF) standard jet definition with available *b*-quark tagging.

JETM-2023-001

Motivation PDFs Reference measurements Measurement Prospects Jet reconstruction ATLAS-CONF-2023-063 ℓ +jets channel **Dilepton channel** 1 *b*-jet category \geq 2 *b*-jet category 1 *b*-jet category \geq 2 *b*-jet category ATLAS Proliminary Pre-fit, =1 b-iet, I+iets Pre-fit. ≥2 b-iets. I+iets TLAS Preliminary ATLAS Pre Pre-fit =1 b-iet dileptor b-jets dil *Ph 15 =8 16 TeV 165 ph⁻¹ Esko loc Ph vs =8 16 TeV 165 cb⁻¹ Data Eake Ph 15 =8 16 TeV 165 ph +Pb vs =8 16 TeV 165 pb Eake lentor Fake lent W+light Diboso Dibose /MC Data / NIN KINN KIN 300 Jets p [GeV] 300 Jets p [GeV]

- PF jets with b-hadrons are tagged using a recurrent neural network algorithm DL1r (EPJ C 79 (2019) 970).
- A good aggrement between data and prediction within combined statistical (yellow band) and systematic (hatched band) uncertainties.

Motivation

Reference measurements

Measurement

Lepton reconstruction

- Electrons must have p_T > 18 GeV and |η| < 2.47, pass Medium identification and be isolated.
- Muons must have $p_T > 18$ GeV and $|\eta| < 2.5$, pass Medium requirements and be isolated.
- Low-pileup egamma calibration and dedicated electron and muon scale factors are applied (EGAM-2022-01).

Motivation PDFs 00 0000000 Reference measurements

Measurement

Lepton reconstruction

ATLAS-CONF-2023-063

ℓ +jets channel

Dilepton channel

- Fake lepton background is estimated from data using the matrix-method technique (arXiv:2211.16178).
- A good aggrement between data and prediction within combined statistical (yellow band) and systematic (hatched band) uncertainties.

Motivation

Reference measurements

Measurement

Hadronically decaying W boson

1 *b*-jet category

Prospects

 $\geq 2 b$ -jet category

Top quark and W boson

ATLAS-CONF-2023-063

Hadronically decaying top quark

 $\geq 2 b$ -jet category

1 *b*-jet category

- Invariant mass distributions of hadronically decaying top quark and W boson have been studied in 1 and ≥2 *b*-jet categorys.
- A good agreement is observed between data and prediction within statistical and systematic uncertainties.

Measurement

Prospects

Signal regions

- Six signal regions are defined using H^{ℓ,j}_T distributions.
- $H_{\rm T}^{\ell,j}$ is the scalar sum of all lepton and jet $p_{\rm T}$.
- Six signal regions:
 - 4*j*1*b*1ℓ ejets,
 - 4*j*2*b*incl1*l* ejets,
 - 4*j*1*b*1*ℓ* mujets,
 - 4j2bincl1ℓ mujets,
 - 2*j*1*b*2ℓ,
 - 2*j*2*b*incl2ℓ.

Fitting procedure

- * The signal strength is defined as $\mu_{t\bar{t}} = \sigma_{t\bar{t}}^{\text{measured}} / \sigma_{t\bar{t}}^{\text{theory}}$
 - $\mu_{t\bar{t}}$ is determined using a profile-likelihood method with $H_{\rm T}^{\ell,j}$ data distributions.
- ★ The most signal events are found in the ℓ+jets regions with ≥2 *b*-jets.
- ✤ The dilepton channel with ≥2 *b*-jets forms the cleanest signal region.

Measurement

Systematic uncertainties

- Systematic uncertainties arise from the lepton and jet reconstruction, *b*-tagging, fake-lepton background, the signal and background modeling, and luminosity.
- The main systematic uncertainties include jet energy scale and signal modelling.

The total systematic uncertainty amounts to 9%.

Source	unc. up	unc. down
Jet energy scale	+0.048	-0.044
<i>tī</i> generator	+0.048	-0.043
Fake-lepton background	+0.030	-0.027
Background	+0.030	-0.025
Luminosity	+0.029	-0.025
Muon systs.	+0.024	-0.021
W+jets	+0.023	-0.020
b-tagging	+0.022	-0.021
Electron systs.	+0.018	-0.017
MC statistical uncertainties	+0.011	-0.010
Jet energy resolution	+0.005	-0.004
tt PDF	+0.001	-0.001
Total syst.	+0.088	-0.081

F:

ATLAS Preliminary

Correlations

- Correlations beetween all systematic components have been studied.
- Components with ≥ 30% correlations are presented in a form of the correlation matrix.
- The largest correlation of ~ 70% is found between fake-lepton background estimation in *e*+jets and µ+jets channels.
- The largest anticorrelation of ~ -75% is observed between fake-lepton background estimation and matching two jet definitions heavy-ion (HI) and particle-flow (PF).

ATLAS-CONF-2023-063

Fake lepton background e+jets 1b	100.0	62.2	72.0	31.4	-75.4	-8.5	-19.4	3.9	5.2	-2.7	-1.2	5.7	4.6	2.1	24.1
ake lepton background e+jets 2bincl	62.2	100.0	42.6	36.3	-74.5	0.3	8.0	-0.3	9.3	6.5	-3.4	-4.3	2.3	1.5	4.5
Fake lepton background μ +jets 1b	72.0	42.6	100.0	22.9	-50.5	-8.3	-45.4	1.1	2.6	0.2	-0.9	14.0	-1.2	0.9	27.9
ake lepton background μ +jets 2bincl	31.4	36.3	22.9	100.0	-37.3	-0.7	5.8	-0.6	4.3	2.2	-0.4	-1.6	-4.4	1.2	5.9
HI to PF jet matching	-75.4	-74.5	-50.5	-37.3	100.0	4.1	-10.6	-5.9	-9.2	-6.2	0.1	5.9	-13.4	-0.6	-4.8
W+c-jets background	-8.5	0.3	-8.3	-0.7	4.1	100.0	-32.1	2.4	4.3	1.6	0.1	-23.9	-4.6	-0.0	-16.6
W+light-jets background	-19.4	8.0	-45.4	5.8	-10.6	-32.1	100.0	1.2	3.7	1.5	0.5	-4.3	-0.1	1.1	2.5
Z+b-jets background	3.9	-0.3	1.1	-0.6	-5.9	2.4	1.2	100.0	-41.5	-9.5	5.9	-1.0	-2.4	-0.2	-13.4
Z+c-jets background	5.2	9.3	2.6	4.3	-9.2	4.3	3.7	-41.5	100.0	-38.7	11.3	-13.6	-3.5	-0.1	-16.5
Z+light-jets background	-2.7	6.5	0.2	2.2	-6.2	1.6	1.5	-9.5	-38.7	100.0	1.7	-2.1	-1.5	-0.2	3.7
tỉ acc. PhH7	-1.2	-3.4	-0.9	-0.4	0.1	0.1	0.5	5.9	11.3	1.7	100.0	-1.1	-0.6	-0.1	-31.7
tt acc. aMC@NLO	5.7	-4.3	14.0	-1.6	5.9	-23.9	-4.3	-1.0	-13.6	-2.1	-1.1	100.0	2.4	1.8	36.8
ti shape aMC@NLO	4.6	2.3	-1.2	-4.4	-13.4	-4.6	-0.1	-2.4	-3.5	-1.5	-0.6	2.4	100.0	30.5	1.3
tī h _{damp} shape	2.1	1.5	0.9	1.2	-0.6	-0.0	1.1	-0.2	-0.1	-0.2	-0.1	1.8	30.5	100.0	4.7
με	24.1	4.5	27.9	5.9	-4.8	-16.6	2.5	-13.4	-16.5	3.7	-31.7	36.8	1.3	4.7	100.0
	Fake lepton background e+jets 1b	ake lepton background e+jets 2bind	Fake lepton background μ +jets 1b	ake lepton background µ+jets 2bind	HI to PF jet matching	W+c-jets background	W+lght-jets background	Z+b-jets background	Z+c-jets background	Z+light-jets background	ti acc. PhH7	tí aco: aMC@NLO	ti shape aMC@NLO	ti h _{dare} shape	H

Cross-section measurement

The top-quark pair production cross section is measured to be

 $\sigma_{t\bar{t}} = 57.9 \pm 2.0 \text{ (stat.)} ^{+4.9}_{-4.5} \text{ (syst.) nb.}$

- The total uncertainty amounts to 9%, which makes it the most precise $t\bar{t}$ measurement in HI collisions.
- The significance is well over 5 σ in the ℓ +jets and dilepton channels separately.
- First observation of top-quark pair production in the **dilepton channel** in *p*+Pb collisions.

ATLAS-CONF-2023-063

Comparison to other experimental results and theory

- The cross section is compared to the CMS measurement in the p+Pb system.
- The result is consistent with the cross section in *pp* collisions, scaled by A = 208 and extrapolated to $\sqrt{s} = 8.16$ TeV.
- The measured tt cross section is compared to the MCFM NNLO calculation (PRD 94, 093009 (2016)) for four nPDF sets.
 - The largest deviation is observed for the nNNPDF3.0 set with 2 σ significance.
 - A good agreement is found with NNLO calculation based on other nPDF sets.

Patrycja Potępa

Prospects of $t\bar{t}$ in Pb+Pb

Pb+Pb data collected by ATLAS:

- **Run 2:** 1.4 nb⁻¹ at $\sqrt{s_{NN}} = 5.02$ TeV in 2018,
- **Run 3:** 1.7 nb⁻¹ at $\sqrt{s_{NN}} = 5.36$ TeV in 2023.

Centrality varies from ultra-peripheral → peripheral → central, top quarks are expected to be produced with higher probability in central collisions.

Measurement

CMS Pb+Pb measurement

- First evidence of tt production in dilepton final states in heavy-ion collisions in CMS.
- Total integrated luminosity of 1.7 nb⁻¹.
- Measurement uses a fit to Boosted Decision Tree discriminator distributions.
- Observed significance:
 3.8 σ (dilepton-only),
 4.0 σ (dilepton + *b*-jets).
- Measured cross sections for two methods: $\sigma_{t\bar{t}} = 2.54 \stackrel{+0.84}{_{-0.74}} \mu b$ (dilepton-only), $\sigma_{t\bar{t}} = 2.03 \stackrel{+0.71}{_{-0.64}} \mu b$ (dilepton + *b*-jets).

PRL 125 (2020), 222001

Motivation

Reference measurements

Measurement

ATLAS pp 5.02 TeV measurement

- ✤ pp at $\sqrt{s} = 5.02$ TeV represents a reference system to Pb+Pb collisions at the same energy.
- Total integrated luminosity of 257 pb⁻¹.
- Measurement combines *l*+jets and dilepton decay modes.
- Very precise $t\bar{t}$ cross-section measurement: $\sigma_{t\bar{t}} = 67.5 \pm 0.9 \text{ (stat.)} \pm 2.3 \text{ (syst.)}$ $\pm 1.1 \text{ (lumi.)} \pm 0.2 \text{ (beam) pb.}$

JHEP 06 (2023) 138

1 The top-quark pair production cross section has been measured to be $\sigma_{t\bar{t}} = 57.9 \pm 2.0 \text{ (stat.)} ^{+4.9}_{-4.5} \text{ (syst.) nb.}$

- 2 The significance is well over 5 σ in the dilepton channel, resulting in the first observation of $t\bar{t}$ production in the dilepton channel in *p*+Pb collisions.
- 3 The result is consistent with the CMS measurement, the scaled cross section in *pp* collisions and NNLO calculation based on four nPDF sets.
- 4 A combination with the CMS measurement could further improve $t\bar{t}$ cross-section precision in *p*+Pb collisions.
- 5 A $t\bar{t}$ measurement in Pb+Pb collisions by ATLAS is also envisaged.

Acknowledgements

Research project partly supported by the National Science Centre of Poland under grant number UMO-2020/37/B/ST2/01043 and by PL-GRID infrastructure.

NATIONAL SCIENCE CENTRE