The Future Circular Collider Project: Plans and Physics Program

Tadeusz Lesiak Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Kraków

- 1. FCC project in a nutshell
- 2. FCC-ee Physics Programme

FCC

3. A few words about the FCC-hh

LHC_

Disclaimer:

the project FCC will be presented according to the official documents of the FCC Feasibility Study (mainly, so-called Mid-Term Review);

Genève

 the latter have been extensively reviewed by the external committes and by the respective bodies of the CERN Council

FCC and European Strategy for Particle Physics (2020) CIRCULAR COLLIDER

"An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy."

"Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage."

CERN Council, June 2021: approval of the FCC feasibility study (FCC-FS)

- \rightarrow Mid term review by the end of 2023
- \rightarrow Final report by the end 2025

cds.cern.ch/record/2721370/files/CERN-ESU-015-2020%20Update%20European%20Strategy.pdf

FCC - global international collaboration hosted at CERN

- ✓ Oth stage: construction of ~91 km circumference tunnel infrastructure in Geveva area to host:
- ✓ 1st stage FCC-ee: electron positron collisions (90-360) GeV
- ✓ 2nd stage FCC-hh: proton-proton collisions at ~100 TeV
 - **Options of AA and eh also envisioned**

FUTURE

FCC timeline

ANY future collider at CERN cannot start physics operation before ~2045-2048 (but construction will proceed in parallel to HL-LHC operation)

Why FCC?

- The motivation for FCC-ee: a circular e⁺e⁻ Higgs factory
- Opportunity for precise studies at four (five) energy thresholds well motivated by physics:

 $\sqrt{s} = M_Z, M(WW), M(ZH), M(t\bar{t}), (and m_H)?$

- Discovery of a light (m= 125 GeV) Higgs boson accessible to a circular machine
- Substantial progress in e⁺e⁻ circular collider technology (B factories et al.) → mature technology
- Lack of BSM physics at the LHC \rightarrow limits the physics case of the 1 TeV scale linear colliders
- The best performance of all proposed Higgs and electroweak factories \rightarrow see below

The motivation for proton-proton collider FCC-hh:

- Indirect exploration of the next energy frontier (~ 10x LHC)
- Addressing the fundamental aspects of the SM; further significant improvement in its precision tests
- Heavy-ion collisions and, possibly, ep/e-ion collisions
- Excellent playground for the HFM/HTS technology

Optimization of overall investment: FCC-hh will reuse same civil engineering and large part of FCC-ee technical infrastructure

It's the only facility commensurate to the size of the CERN community (at least 4 expts) which would guarantee the leading role of CERN in HEP for the next decades

Fortuna Varibilis: Linear vs Circular Colliders

FUTURE CIRCULAR COLLIDER

Proposed Linear e⁺e⁻ Colliders

T.Lesiak

FUTURE CIRCULAR COLLIDER

FCC Project

Feb. 2024

Circular Electron Positron Collider, China

T.Lesiak

Hybrid Asymmetric Linear Higgs Factory

B.Foster, R.D'Arcy, C.A. Lindstroem

FCC Working Points

- Optimal energy range for SM particles!
- HZ and ttbar thresholds never investigated at leptonic colliders !
- Circular colliders can serve up to 4 IPs \rightarrow increase discovery potential and the community

FCC-ee Cost (as given by the MTR)

COST (tunnel & FCC-ee & 10% expts)

	2 IP, without ttbar	4 IP, without ttbar	4 IP, incl ttbar
Domain	MCHF	MCHF	MCHF
		Additional	Additional
Total, Accelerators	3,847	60	1,144
Total, Injectors and transfer lines	585		
Total, Civil engineering	5,538	480	
Total, Technical infrastructures	2,490	28	321
Total, Experiments	150	142	
Total, Territorial Development	191		
FCC-ee TOTAL	12,801	710	1,465

FCC-ee: Design and Placement

■ The double ring e⁺e⁻ collider

FUTURE

CIRCULAR

- Top-up injection scheme (for HL) → requires booster synchrotron in the collider tunnel
- SR power of 50 MW/beam at all beam energies
- Perfect 4-fold super-periodicity allowing 2 or 4
 IPs (robustness, statistics, option for specialised detectors, maximization of physics output)
- Large horizontal crossing angle of 30 mrad
- Crab-waist collision optics

- The optimized ring placement chosen out of ~ 100 initial variants (based on geology, surface constraints, environment, infrastructure etc.)
- Total circumference 90.7 km
- Common footprint with FCC-hh (except around IPs)

FCC-ee: Collider Parameters & Run Plan

		and the second		
Parameter	z	ww	Н (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab ⁻¹ /yr] 4 IPs	87	9.3	3.5	0.65
beam lifetime (rad Bhabha + BS+lattice)	8	18	6	10
Z run produces most events followed by the WW run	4 years 5 x 10 ¹² Z LEP x 10 ⁵ Electroweak	2 years 2 x 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H RF system re-align and modifications	5 years 2 x 10 ⁶ tt pairs
Z run the most demanding a.f.a. accelerator and detector are concerned	machine 26	Z2 Z3 Z4 W1 W2 H1	→ H1 H1 t1 t2 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 19	2 t3 t4 t5
Accelerator upgrade in stages	3	10 21	100 20 ti	me [operation years]

FCC Project

FCC-ee Detectors in a nutshell

- Low material budget
- Hermeticity (forward region)
- Precision vertex and tracking detectors
- High granularity calorimeters (Particle Flow Algorithm PFA)
- Cost 500-700 MEUR
- Technology fully mature

- Number of electronic channels: >10⁹
- Most of the machine induced limitations are imposed by the Z pole run (large collision rates (33 MHz) and continuous beams, large event rates (100 kHz), beamstrahlung

FCC-ee Detector Concepts

FUTURE CIRCULAR

COLLIDER

FCC Project

CIRCULAR Higgs Boson Production at e⁺e⁻ Collider

T.Lesiak

- > The recoil technique in e^+e^- ZH unique for lepton colliders:
- Look just at the Z and reconstruct its decay products
- ZH events are tagged independently of Higgs decay mode (include invisible decay modes)
- Very clean Higgs mass determination: $\mathbf{m}_{\text{recoil}}^2 = (\sqrt{\mathbf{s}} \mathbf{E}_{\mathbf{Z}})^2 |\mathbf{p}_{\mathbf{Z}}|^2$ $\Delta m_H \sim 10 \text{ MeV}$

FCC Project

Precise determination of the ZH cross-section:

Feb. 2024

FUTURE CIRCULAR

COLLIDER

FUTURE CIRCULAR COLLIDER **Higgs Total Width and Couplings**

Higgs Couplings: Post FCC-ee

Higgs couplings normalized to the Standard Model predictions:

$$\begin{split} \mathbf{k_f} &= \frac{\mathbf{g_{Hff}}}{\mathbf{g_{Hff}^{SM}}}, \ \mathbf{f} = \mathbf{b}, \mathbf{c}, \tau \\ \mathbf{k_V} &= \frac{\mathbf{g_{HVV}}}{\mathbf{g_{HVV}^{SM}}}, \ \mathbf{V} = \mathbf{W}, \mathbf{Z}, \gamma, \end{split}$$

Fingerprinting NP: different BSM models predict different pattern of deviations from the SM:

FUTURE

CIRCULAR

 \mathbf{g}

T.Lesiak

Direct Higgs Production in s-channel

FUTURE

CIRCULAR

tt Pair Production at Threshold

23

Any next e⁺e⁻ collider:

FUTURE

CIRCULAR

for the 1st time the top quark to be studied using a precisely defined leptonic initial state

 $\begin{array}{c} e^+e^- \rightarrow Z/\gamma \rightarrow t\bar{t} \rightarrow (bW^+)(\bar{b}W^-) \\ \hline \\ \hline \\ Final state & BR [\%] & signature \\ \hline \\ Fully hadronic & 46.2 & 6 jets \\ Semi leptonic & 43.5 & 4 jets, 1 l^{\pm}, 1 \nu \\ \hline \\ Fully leptonic & 10.3 & 2 jets, 2 l^{\pm}, 2 \nu \end{array}$

Feb. 2024

> The shape of the transformed precision at the threshold is computable to high precision and depends on m_t , Γ_t , α_s , y_t , (and luminosity spectrum) cur pays to (2019) 79

FCC Project

FUTURE CIRCULAR **EW Couplings of the Top Quark**

COLLIDER

EW Couplings of the Top Quark

Circular Collider:

FUTURE CIRCULAR

COLLIDER

lack of initial-state polarization \rightarrow profit from the final-state polarisation, which is maximally transferred to the top decay products (t \rightarrow Wb)

Any anomalous ttZ, tty coupling would lead to a **modification** of the final kinematics, in particular **of the angular and energy distributions of the leptons from the W decays.** (analogy to τ polarisation in Z $\rightarrow \tau \tau$ decays at LEP)

- E₂, with the fractions of luminosity f and (1-f) \rightarrow evaluation of both m_w and Γ_w
- Choose the parameters E_1 , E_2 , and f in order to minimize the errors: $\Delta\Gamma_{w}$ an Δm_{w} :

 $E_1 = 162.5 \,\, {\rm GeV}$

 $12 {\rm ~ab}^{-1}$

f = 0.4

 $\Delta \Gamma_W = 1.2 \text{ MeV}$

LEP & SLC: longstanding discrepancies between different asymmetry measurements; uncertainties dominated by statistics

CIRCULAR Electroweak Observables: Instead of Summary

	Eur. P	hys. J. Plus (2022) 137			
Observable	unit	Present		FC	C-ee	
		value	$\pm \text{ error}$	(stat.)	(syst.)	$m_W [\text{GeV}]$
m_Z	$[\rm keV/c^2]$	91 186 700	2 200	4	100	
Γ_Z	$[\mathrm{keV}]$	$2 \ 495 \ 200$	2 300	4	25	
$\sin^2 heta_W^{ ext{eff}}$	$[\times 10^{6}]$	$231 \ 480$	160	2	2.4	
$1/lpha_{ m QED}(m_Z^2)$	$[\times 10^{3}]$	128 952	14	3	small	
R_l^Z	$[\times 10^{3}]$	20 767	25	0.06	0.2 - 1	BOUSY F FC-ee (Z pole) ⇒ F FC-ee (Djrect)
$\alpha_S(m_Z^2)$	$[\times 10^4]$	1 196	30	0.1	0.4 - 1.6	E _ LHC/Effure) 80.365
$\sigma_{ m had}^0$	$[\times 10^3 \text{ nb}]$	41 541	37	0.1	4	Standard Model
$\overline{N_{ u}}$	$[\times 10^3]$	2 996	7	0.005	1	
R_b	$[\times 10^{6}]$	$216 \ 290$	660	0.3	< 60	THE RANGE
$A^{b,0}_{ m FB}$	$[\times 10^4]$	992	16	0.02	1-3	80.355
$A_{ m FB}^{ m pol, au}$	$[\times 10^{4}]$	1498	49	0.15	< 2	80.35
au lifetime	[fs]	290.3	0.5	0.001	0.04	171.5 172 172.5 173 173.5 174 174.5 175
$ au ext{ mass}$	$[MeV/c^2]$	1776.86	0.12	0.004	0.04	, Introp (GeV)
au leptonic BR	[%]	17.38	0.04	0.0001	0.003	
m_W	$[MeV/c^2]$	80 350	15	0.25	0.3	m_{\star} [GeV]
Γ_W	[MeV]	2085	42	1.2	0.3	
		2 X 2 4				

T.Lesiak

Other flavour topics: CKM parameters, UT angles, tau physics, lepton universality, heavy quark spectroscopy, rare decays...

T.Lesiak

QCD Measurements

- High precision α_s determination (with the accuracy at the ‰ level) from:
- hadronic τ decays

FUTURE

CIRCULAR

- Jet rates, event shapes
- hadronic Z decays
- hadronic W decays

Eur. Phys. J. Plus (2022) 137:92

- > High precision studies of perturbative parton radiation including:
 - jet rates and event shapes
 - jet substructure
 - quark/gluon/heavy-quark discrimination
 - g,q,b,c parton-to-hadron fragmentation functions

High precision non-perturbative QCD studies including:

- colour reconnection (<1% control)
- final-state multiparticle correlations

High precision hadronization studies

very rare hadron production and decays

Feb. 2024

Heavy Neutral Leptons (HNL) Searches

Sterile, right-handed neutrinos (N) are common in extensions of the SM; they couple to Higss and SM v Substantial part of them are HNLs: very massive and characterised by macroscopic decay length

FUTURE

CIRCULAR COLLIDER

Motivation for FCC-hh

Opportunities of ~100 TeV pp collider:

- Exploration of scenarios that could emerge from a FCC-ee •
- The next qualitative leap in precision of crucial measurements, providing hope to answer nagging • questions (shortages of SM, BSM...)

Big gain (x10) in production cross sections of many relevant processes

- → Impressive precision of the SM measurements
- \rightarrow Reach of terra incognita in the energy frontier

Process	<u>σ</u> (100 TeV) / <u>σ</u> (14 <u>TeV</u>)		
Total pp cross-section	1.25		
W, Z production	7		
WW, ZZ production	10		
tt	30		
н	15		
ttH	60		
НН	40		
stop-stop production m=1 Tev	10 ³		

Eur. Phys. J. Special Topics (2019) 228; 755

With 20 ab^{-1} at $\sqrt{s}=100$ TeV expect:

$\sim 10^{13} \text{ W}$ $\sim 10^{12} \text{ Z}$ $\sim 10^{11} \text{ tt}$ $\sim 10^{10} \text{ H}$	~ 10 ⁹ ttH ~ 10 ⁷ HH ~ 10 ⁵ gluino pairs m=8 TeV
---	---

Feb. 2024

FCC-hh Accelerator

 FCC-hh DS FCC-hh IP

- FCC-hh

PD (Experiment)

15000

				TOTAL STATE OF	
Parameter	FCC	-hh	HL-LHC	LHC	0-
collision energy cms [TeV]	80-	116	14	14	(Experiment)
dipole field [T]	14 (Nb ₃ Sn) – 2	0 (HTS/Hybrid)	8.33	8.33	
circumference [km]	90	.7	26.7	26.7	(Injection + rf) (Injection + dump)
beam current [A]	0.	5	1.1	0.58	Experimental insertion straight: 961.2312m
bunch intensity [10 ¹¹]	1	1	2.2	1.15	Technical insertion
bunch spacing [ns]	25	25	25	25	straight: 2032m
synchr. rad. power / ring [kW]	1020	-4250	7.3	3.6	PJ PD (Experiment) (Experiment)
SR power / length [W/m/ap.]	13-54		0.33	0.17	
long. emit. damping time [h]	0.77-0.26		12.9	12.9	Circumforonco: 90 66 k
beta* [m]	1.1	0.3	0.15 (min.)	0.55	
normalized emittance [μm]	2.	2	2.5	3.75	PH PF (Momentum (Betatrop
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1	collimation) collimation)
events/bunch crossing	170	1000	132	27	
stored energy/beam [GJ]	6.1	- <mark>8.</mark> 9	0.7	0.36	(Experiment)
integrated luminosity [fb ⁻¹]	200	000	3000	300	-30000
					-15000 -10000 -5000 0 5000 1000

> Formidable challenges:

arXiv:2203.07804

- High-field SC magnets: (14 20) T; current setup with 16T dipoles \rightarrow beam energy 48GeV
- Power load in arcs from synchrotron radiation: 4 MW \rightarrow cryogenics, vacuum
- Stored beam energy: ~ 9 GJ \rightarrow machine protection
- Pile-up in the detectors: ~1000 events/crossing
- Energy consumption: 4 TWh/year

→ R&D on cryogenics, HTS, beam current...

...

Expected precision:

@HL-LHC), and from HZZ at FCC-ee.

Constraints also from self-coupling (5% precision of FCC-hh, 50%

 $\delta \lambda_{\rm 3H} / \lambda_{\rm 3H} \sim 5 \%$

FUTURE CIRCULAR FCC-hh Physics Potential Examples COLLIDER

HLLHC + FCCee + FCCeh + FCChh δk 68% prob. uncertainties 100 HEPfit (%) HL-LHC: SM width and κ_{o} = 1% 0.10 0 01 Kc Kt Kh K7 Kw Ky KZY κ_g δΓ_μ|ΓSM **T.Lesiak** FCC Project

Final word about thermal WIMP dark matter (DM)

- Thermal WIMP dark cannot be too heavy: (1-3) TeV upper mass limit from observed relic abundance
- The conclusive affirmation/rejection of WIMPs by accelerator expts is of paramount importance
 - LHC: can exclude only a fraction of the range (1-3) TeV
- FCC-hh is necessary and just sufficient with this respect

Precise measurement of SM couplings with precision ~ 1%

 The FCC project offers a complete, coherent and exciting option for the particle physics for the next decades – in agreement with ESPP

 Both electron-positron and proton-proton machines have a complementary physics programme

✓ The exploitation of two (or more) subsequent colliders in the same tunnel maximizes the outcome

✓ The project is progressing well and gaining momentum