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Short introduction

Recently formulated statistical hadronization model of hadron production in heavy-ion collisions
in the few-GeV energy regime allowed to describe transverse mass and rapidity spectra of hadrons.

Main point of this model is assumption of spherical (Phys. Rev. C, 102(5):054903, 2020) or
spheroidal (Phys. Rev. C, 107(3):034917, 2023) expansion instead of classical formalism of
boost-invariant blast-wave models used in high-energy regime.

In this work, we continue the analysis of the data collected by the HADES Collaboration for
Au-Au collisions at the beam energy

√
sNN = 2.4 GeV and the centrality class of 10%.

Fits to the particles abundances suggest two different sets of possible freeze-out thermodynamic
parameters. The main difference between them resides in two different values of the freeze-out
temperature: T = 49.6 MeV vs. T = 70.3 MeV, reffered as low- and high-temperature ones.

In total we discuss 3 models: low-temperature spherical model, and low- and high-temperature
spheroidal models called ”A” and ”B” respectively.



Thermodynamic parameters

Three versions of the model

Parameter Spherical Spheroidal A Spheroidal B

T (MeV) 49.6 49.6 70.3

µB (MeV) 776 776 876

µI3 (MeV) −14.1 −14.1 −21.5

R (fm) 16.02 15.7 6.06

H (MeV) 8.0 10.0 22.5

δ 0 0.2 0.4

vR = tanh(HR) 0.57 0.66 0.60

γR = cosh(HR) 1.22 1.33 1.25



Geometry

Figure: Graphical representation of the flow parametrization for the three studied cases. The points on the
surfaces represent solutions of the equation (v2x + v2y)/(1− δ) + v2z/(1 + δ) = v2.



Coalescence model

The basic idea of the coalescence model for deuteron production is that the deuteron spectrum is
obtained as the product of proton and neutron spectra taken at half of the deuteron momentum.

Fp(p) =
dNp
d3p

, Fn(p) =
dNn
d3p

, (1)

and the deuteron distribution as the product:

dNd
d3pd

= AFR Fp
(pd

2

)
Fn
(pd

2

)
, (2)

where AFR is the deuteron formation rate coefficient, while the subscripts d, p, n refer to
deuterons, protons, and neutrons, respectively.



Coalescence model

As in both theory and experiment one usually deals with invariant momentum distributions,
E dN/(d3p) it is useful to recall that for cylindrically symmetric (with respect the beam axis z) we
have:

dN

d3p
=

dN

2π E dy p⊥dp⊥
=

dN

2πE dym⊥dm⊥
, (3)

where E is the on-mass-shell energy of a particle E =
√
m2 + p2 and m⊥ is its transverse mass

m⊥ =
√
m2 + p2⊥. Therefore, from (2) we obtain:

dNd
Ed dym⊥ddm⊥d

=
AFR

2π

dNp
E dym⊥dm⊥

dNn
E dym⊥dm⊥

. (4)

For finite values of rapidity

dNd
dym2

⊥ddm⊥d
=

AFR

2π cosh y

dNp
dym2

⊥dm⊥

dNn
dym2

⊥dm⊥
. (5)



Dueteron formation rate

A popular form of the coefficient AFR used in the literature is Acta Phys. Polon. B, 48:707, 2017
(Mrówczyński):

AFR =
3

4
(2π)3

∫
d3r D(r) |φd(r)|2 . (6)

Here the function D(r) is the normalized to unity distribution of the relative space positions of
the neutron and proton pairs at freeze-out, while φd(r) is the deuteron wave function

The most popular choice for those two functions are Gaussian profiles:

D(r) =
(
4πR2

kin

)−3/2
exp

(
− r2

4R2
kin

)
, (7)

|φd(r)|2 =
(
4πR2

d

)−3/2
exp

(
− r2

4R2
d

)
, (8)

where Rkin is the radius of the system at freeze-out and Rd = 2.13 fm is the deuteron radius.



Dueteron formation rate

Expression (7) gives the root-mean-squared value rrms =
√

6R ≈ 2.45R, which implies deuteron
production far away from the original thermal system and its long formation time
Thus, as an alternative to the Gaussian distribution (7), we use the distribution of a relative
distance for particles produced independently in a sphere of radius R, later sharp-cutoff model:

D(r) =
3

4πR3

(
1− 3r

4R
+

r3

16R3

)
θH(2R− r). (9)

Also for the deuteron wave function we use the Hulthen wave function defined by the expression
Phys. Rev. C, 103(1):014907, 2021

φd(r) =

√
αβ(α+ β)

2π(α− β)2
exp (−αr)− exp (−βr)

r
, (10)

where α = 0.2 fm−1 and β = 1.56 fm−1. 1 Both D(r) and |φd(r)|2 are normalized to unity.

1We use here traditional notation, β appearing in (10) should not be confused with inverse temperature.



Distribution profiles
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Figure: The square of the Hulthen wave function and different versions of the nucleon pair distribution
function D(r) multiplied by the factor 4πr2.



Formation ratio values

Formation rate Spherical A B

AGG (MeV3) 7 565 8 028 120 509

ASG (MeV3) 64 239 67 860 693 463

ASH (MeV3) 69 661 73 735 942 476

Table: Values of the formation rate parameter AFR for different choices of the functions D(r) and φd(r):
AGG is obtained with the two Gaussian profiles, Eqs. (7) and (8), and Rkin = R; ASG follows from
Eqs. (9) and (8); finally, ASH is calculated with Eqs. (9) and (10).

We observe that the values of AFR do not significantly differ for the spherical and spheroidal A
cases – they are both low-temperature scenarios with large freeze-out radii. However, an increase
in the magnitude of AFR is clearly seen if we switch from the Gaussian to the sharp cutoff
distribution of pairs. An additional increase of the magnitude of AFR is seen if we switch to the
spheroidal B scenario. In this case, the freeze-out radius is relatively small (∼ 6 fm) and the
overlap of the pair distribution with the deuteron wave function becomes the largest.



Cooper-Frye formula

The standard starting point for quantitative calculations is the Cooper-Frye formula that
describes the invariant momentum spectrum of particles:

E
dN

d3p
=

∫
d3Σµ(x) pµf(x, p). (11)

Here f(x, p) is the phase-space distribution function of particles, and pµ = (E,p) is their
four-momentum with the mass-shell energy E =

√
m2 + p2.

The infinitesimal element of a three-dimensional freeze-out hypersurface from which particles are
emitted d3Σµ(x) may be obtained from the formula:

d3Σµ = −εµαβγ
∂xα

∂a

∂xβ

∂b

∂xγ

∂c
da db dc, (12)

where εµαβγ is the Levi-Civita tensor with the convention ε0123 = −1 and a, b, c are the three
independent coordinates introduced to parametrize the hypersurface. This allows us to construct
a six-dimensional, Lorentz invariant density of the produced particles:

d 6N =
d3p

E
d3Σ · p f(x, p). (13)

The independent variables in such a general parametrization would be three components of
three-momentum and the variables a, b, and c.



Phase-space distribution function

Assuming local equilibrium the phase-space distribution function have general form:

f(x, p) = f(u · p) =
gs

(2π)3

[
Υ−1 exp

(u · p
T

)
− χ

]−1

, (14)

where χ = −1 (χ = +1) for Fermi-Dirac (Bose-Einstein) statistics, gs = 2s+ 1 is spin degeneracy,
T is temperature of system and Υ is fugacity factor.
In models fugacity factor takes form:

Υp = exp

(
µB + 1

2
µI3

T

)
,

Υn = exp

(
µB − 1

2
µI3

T

)
. (15)

where µB and µI3 are baryon and isospin chemical potentials, respectively.



Spherical Symmetry

Spherical Symmetry



Parametrization

First model assumes spherical symmetry of fireball and single-freeze-out approach was used to
define freeze-out hypersurface. Expansion of fireball is treated as Hubble like with constant H to
avoid non-zero speed of the centrum of the fireball. This assumptions and usage of spherical
coordinates, leads to the following parametrization:

d3Σµ = (1, 0, 0, 0)r2 sin θdθdφdr, (16)

uµ = γ(r) (1, v(r)er) (17)

with er = (cosφ sin θ, sinφ sin θ, cos θ),

pµ = (E, p ep) , (18)

with ep = (cosφp sin θp, sinφp sin θp, cos θp).

v(r) = tanh (Hr), (19)



Parametrization

Sphericall symmetry allows to calculate needed expressions in the phase-space distribution,
namely:

u · p = γ(r) (Ep − pv(r)κ) , (20)

d3Σ · p = Epr
2 sin θdθdφdr, (21)

γ(r) = cosh(Hr). (22)

where κ ≡ ep · er = cos θ cos θp + sin θ sin θp cos(φ− φp).



Proton distribution function

Using parametrization from slide before, and Fermi-Dirac distribution, one can obtain proton
distribution function in form:

dN

dym2
⊥dm⊥

=
gs cosh y

(2π)2

R∫
0

dr r2
π∫

0

dθ sin θ

2π∫
0

dφ

×
[
Υ−1 exp

(
γ(r)(E−p v(r)κ)

T

)
+ 1

]−1

. (23)

Due to spherical symmetry, the integral on the RHS of (23) is independent of the angles θp and
φp, hence we may set θp = φp = 0 (κ = cos θ) and write:

dN

dym2
⊥dm⊥

= cosh y S(p) (24)

where:

S(p) =
gs
2π

R∫
0

dr r2
π∫

0

dθ sin θ (25)

×
[
Υ−1 exp

(
E cosh(Hr)−p sinh(Hr) cos θ

T

)
+ 1

]−1

.



Protons in spherical model

In the spherical case, our results for protons and neutrons depend only on the magnitude of their
three-momentum:

p =
√
p2x + p2y + p2z =

√
p2⊥ +m2

⊥ sinh2 y. (26)

Hence, the transverse-momentum distribution of protons or neutrons at zero rapidity is directly
given by the function S(p⊥), namely:

dNp,n
dym2

⊥dm⊥

∣∣∣∣
y=0

= Sp,n(p⊥). (27)

On the other hand, the rapidity distribution is given by the integral:

dN

dy
= cosh y

∞∫
m

S

(√
p2⊥ +m2

⊥ sinh2 y

)
m2
⊥dm⊥. (28)



Results
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Figure: Transverse-momentum (left) and rapidity (right) spectra of protons obtained in the spherical
model (solid red lines) compared with the HADES data. The experimental errors of the
transverse-momentum spectra are within the data points. Brighter points in the right panel are mirror
(y → −y) reflections. The total yield of protons Np is 72.0, while the experimental result is 77.6, hence
differs by less than 10%.



Deuterons in spherical model

Having the proton model spectra reproduced, we can turn to the analysis of the deuteron
production. In this case, we use (27), and rewrite (4) in a compact form as:

dNd
dym2

⊥ddm⊥d

∣∣∣∣
y=0

=
AFR

2π
Sp
(p⊥d

2

)
Sn
(p⊥d

2

)
,

(29)

where we can use the substitution p⊥d =
√
m2
⊥d −m2

d. For finite values of rapidity, we use:

dNd
dym2

⊥ddm⊥d
=

AFR

2π cosh y
Sp


√
m2
⊥d cosh2 y −m2

d

2


×Sn


√
m2
⊥d cosh2 y −m2

d

2

 . (30)



Results
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Figure: Predictions of the spherical model for the deuteron production. Left: model transverse-momentum
spectra obtained for three different values of the formation rate coefficient AFR (as given in Table 1).
Right: model rapidity distributions. The biggest obtained yield is Nd ≈ 2.88, while the measured
deuteron yield is 28.7.



Spheroidal model

Spheroidal model



Parametrization

For spheroidally symmetric freeze-outs with respect to the beam axis, it is convenient to introduce
the following parametrization of the space-time points on the freeze-out hypersurface:

xµ =
(
t, r
√

1− ε er⊥, r
√

1 + ε cos θ
)
. (31)

Here the parameter ε controls deformation from a spherical shape, while
er⊥ = (cosφ sin θ, sinφ sin θ). For ε > 0 the hypersurface is stretched in the (beam)
z-direction.The resulting infinitesimal element of the spheroidally symmetric hypersurface has the
form:

d3Σµ = (1− ε)(
√

1 + ε, 0, 0, 0)r2 sin θdθdφdr, (32)

uµ = γ(r, θ)
(

1, v(r)
√

1− δer⊥, v(r)
√

1 + δ cos θ
)
, (33)

pµ = (Ep, pep), (34)

v(r) = tanh (Hr), (35)



Parametrization

Those relations allows to write needed expressions in the phase-space distribution as:

u · p = γ(r, θ) [Ep − pv(r)κ(δ)] , (36)

where κ(δ) =
√

1 + δ cos θ cos θp +
√

1− δ sin θ sin θp cos(φ− φp),

d3Σ · p = (1− ε)
√

1 + εEpr
2 sin θdθdφdr, (37)

γ(r, θ) =
[
1− (1 + δ cos (2θ))v(r)2

]− 1
2 . (38)

earlier analysis of the spectra showed that a very good description of the data can be obtained by
assuming single freeze-out and ε = 0, however with δ 6= 0. Then, we have, as in the spherical case:

d3Σ · p = E r2dr sin θ dθ dφ. (39)



Proton distribution function

The Cooper-Frye formula for fermions takes the form:

dN

dym2
⊥dm⊥

= cosh y S̃(p, θp) (40)

where :

S̃(p, θp) =
gs

(2π)2

R∫
0

dr r2
π∫

0

dθ sin θ

2π∫
0

dφ
[
Υ−1 exp

(u · p
T

)
+ 1
]−1

. (41)

With u · p given by (36), where due to the spheroidal symmetry we can set φp = 0.



Protons in spheroidal model

Finally, by changing variables from p and θp to rapidity and transverse mass, we may write:

dN

dym2
⊥dm⊥

= cosh y S̃

[√
m2
⊥ cosh2 y −m2, θy(m⊥, y)

]
, (42)

where:

θy(m⊥, y) = arccos
m⊥ sinh y√

m2
⊥ cosh2 y −m2

. (43)

We note that within our approximations the angle (43) is the same for nucleons and deuterons. At
zero rapidity we obtain as the special case:

dN

dym2
⊥dm⊥

∣∣∣∣
y=0

= S̃
(
p⊥,

π

2

)
. (44)



Results
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Figure: Transverse-momentum (left) and rapidity (right) spectra of protons obtained in the spherical
model version A (solid red lines) compared with the HADES data. The experimental errors of the
transverse-momentum spectra are within the data points. Brighter points in the right panel are mirror
(y → −y) reflections. The total yield of protons Np is 73.78, while the experimental result is 77.6, hence
differs by less than 5%.



Results

0 200 400 600 800 1000
10-10

10-9

10-8

10-7

10-6
protons (B)

-2 -1 0 1 2
0

20

40

60

80
protons (B)

Figure: Same as Fig. 5 but for the spheroidal model version B. The total yield of protons Np is 69.35, while
the experimental result is 77.6, hence differs by ≈ 10%. The contribution from the Delta resonance is not
included here (the complete result with Delta is shown in Phys. Rev. C, 107(3):034917, 2023 [?].



Deuterons in spheroidal model

Having checked that we can reproduce the proton spectra, we can make predictions for the
deuterons. In this case, we use (30) with the nucleon spectrum defined by Eq. (42). Our numerical
results are presented in Table 2.



Deuterons in spheroidal model A
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Figure: Predictions for the deuteron spectra in the spheroidal model version A. The biggest obtained yield
is Nd ≈ 2.02, while the measured deuteron yield is 28.7.



Deuterons in spheroidal model B
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Figure: Predictions for the deuteron spectra in the spheroidal model version B. The biggest obtained yield
is Nd ≈ 27.04, while the measured deuteron yield is 28.7, hence differs by ≈ 5%.



Results

Model A AGG ASG ASH

Nd 0.22 1.86 2.02

(dNd/dy)y=0 0.25 2.14 2.32

Model B AGG ASG ASH

Nd 3.46 19.89 27.04

(dNd/dy)y=0 4.09 23.56 32.02

Table: Model results for Nd and (dNd/dy)y=0 obtained for the spheroidal model A (the second and third
lines) and the spheroidal model B (the fourth and fifth line). The second, third, and fourth columns
correspond to different values of the formation rate coefficient A.

Total yield of deuterons in high-temperature spheroidal model is Nd ≈ 27.04, while the measured
deuteron yield is 28.7, hence differs by ≈ 5%.
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Conclusions

We find that the slope of the transverse-momentum spectra of deuterons follows naturally from
the main coalescence ansatz that the deuteron spectrum is the product of nucleon spectra taken at
half of the deuteron three-momentum. However, the normalization of the deuteron spectrum
depends very strongly on the value of the so-called formation rate coefficient.

Both, a higher freeze-out temperature (a smaller system’s size) and a non-Gaussian distribution of
the distance between the original pairs forming the deuteron increase the probability that a
nucleon pair forms a deuteron. Each of these effects increases the formation rate by a factor of 10.

At the level of the proton and pion spectra (the latter are not shown here), the three considered
herein freeze-out models give very similar quantitative descriptions of the data — the standard
deviations for the spheroidal models A and B are Q = 0.238 and Q = 0.256 (Phys. Rev. C,
107(3):034917, 2023), respectively. Taking into account the measured yield of deuterons, our
present work favors, however, the freeze-out scenario at a higher freeze-out temperature combined
with a spheroidal expansion. This case may be further examined by a study of other interesting
aspects such as the contribution from the Delta resonance, Lambda spin polarization (as in Phys.
Rev. C 100(5):054907, 2019), and the production of other light nuclei.


