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Relativistic Hydrodynamics

Introduction

High energy heavy ion collisions 1 offer the opportunity to study the
properties of hot and dense QCD matter.

High energy heavy ion collisions is the only terrestrial laboratory where
one can study a non abelian gauge theory in a nonperturbative regime.

To understand the QCD matter we must know its space-time evolution.

The space time evolution is affected by equation of state as well as
dissipative, non equilibrium processes.

Relativistic hydrodynamics has become nowadays the basic theoretical
tool for modeling relativistic heavy-ion collisions 2.

We need information of various transport coefficients such as viscosities,
conductivities, and diffusivities.

1Florkowski, W.. Phenomenology of Ultra-Relativistic Heavy-IonCollisions. 2010.
2A. Muronga, PHYSICAL REVIEW C 69, 034903 (2004).
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Relativistic Hydrodynamics

Relativistic Hydrodynamics

Macroscopic evolution of the conserved quantities 3.

∂µTµν = 0, ∂µNµ = 0. (1)

An ideal fluid is defined by the assumption of local thermal equilibrium,
i.e., all fluid elements must be exactly in thermodynamic equilibrium.

Primary fluid-dynamical variables: T (x), µ(x) and uµ(x).

The conserved currents of an ideal fluid can then be expressed as,

Tµν = εuµuν + P∆µν , Nµ = nuµ; Sµ = suµ. (2)

∆µν = gµν + uµuν is the projector orthogonal to uµ.

3Romatschke, P., Romatschke, U.., arXiv:1712.05815.
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Relativistic Hydrodynamics

Corner stones of the formalism of ideal hydrodynamics are 4,5

1 Lorentz transformation.

2 Conservation laws.

3 Local thermodynamic equilibrium → a strong restriction.

Dissipative effects in a fluid originate from irreversible thermodynamic
processes that occur during the motion of the fluid.

Exchange of heat with between fluid elements, relative motion between
the fluid elements giving rise to dissipate energy by friction.

All these processes must be included in order to obtain a reasonable
description of a relativistic fluid.

4A. Jaiswal, arXiv:1408.0867
5A. Jaiswal, V. Roy, arXiv:1605.08694.
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First order viscous hydrodynamics

1st order Hydrodynamics

The earliest covariant formulation of dissipative fluid dynamics were due
to Eckart in 1940 6 and, later, by Landau and Lifshitz in 1959 7.
Important to note

1 For dissipative fluids, the energy-momentum tensor is no longer diagonal
and isotropic in the local rest frame.

2 Due to diffusion, the particle flow is expected to appear in the local rest
frame of the fluid element.

Tµν = εuµuν + P∆µν + Π∆µν + 2u(µhν) + πµν (3)

Nµ = nuµ + nµ. (4)

Π is the bulk viscous pressure, hµ is the energy-diffusion current , πµν is the
shear stress tensor.

6C. Eckart, Phys. Rev.58, 267 (1940).
7L.D. Landau and E.M. Lifshitz,Fluid Mechanics(Butterworth-Heinemann, Oxford,1987).

ARPAN DAS (ifj) 6 / 34



First order viscous hydrodynamics

In the theory of dissipative fluid dynamics, the important step is to fix uµ.
1 Eckart definition: velocity is defined by the flow of particles:

Nµ = nuµ, nµ = 0. (5)

2 Landau definition: velocity is specified by the flow of the energy.

uµTµν = εuν =⇒ hµ = 0. (6)

3 In the Landau frame,

Tµν = εuµν + (P + Π)∆µν + πµν , (7)

Nµ = nuµ + nµ. (8)

In order to derive the complete set of equations for dissipative fluid
dynamics along with the conservation equation we also need the
dynamical or constitutive relations satisfied by the dissipative tensors, Π,
πµν and nµ.
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First order viscous hydrodynamics

2nd law of thermodynamics
Entropy four current,

Sµ = Pβµ + βνTµν − αNµ, βµ = uµ/T (9)

The relativistic Navier-Stokes theory can be obtained by applying the
second law of thermodynamics to each fluid element.

∂µSµ = −βΠθ − nµ∇µα + βπµνσµν ≥ 0. (10)

Second law of thermodynamic can easily be satisfied if one identifies,

Π = −ζθ; nµ = κ∇µα, πµν = 2ησµν . (11)

As long as ζ, κ, η ≥ 0, the entropy production is always positive.
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First order viscous hydrodynamics

Stability and causality
Entropy production is essential but not sufficient condition for a theory of
dissipative relativistic hydrodynamics8,9.
Dynamics of departures of these fluids from their equilibrium states or
stability and causality also important for a relativistic theory.

Stability and causality

Linear perturbations

Rest frame Boosted frame

Nonlinear perturbations

Rest frame Boosted frame

If the stability and causality is preserved in all the Lorentz boosted frames
then we get an acceptable physical theories of relativistic dissipative
hydrodynamics.

8W. A. Hiscock and L. Lindblom, ANNALS OF PHYSICS 151, 466-496 (1983)
9W. A. Hiscock and L. Lindblom,PHYSICAL REVIEW D, VOLUME 31, NUMBER 4, 725.
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First order viscous hydrodynamics

Assume the background equilibrium state is homogeneous in space and
the background is Minkowski space time.

Look only for exponential plane wave solutions to the perturbation
equations,

δQ = δQ0 exp(ikx + Γt). (12)

The set of perturbation equation takes the form,

MA
BδY

B = 0 (13)

δY B represents the list of fields which describe the perturbation of the
fluid. MA

B complex- valued matrix which describes the linearized
equations of motion.
There will exist exponential plane-wave solutions whenever Γ and k have
values which satisfy the dispersion relation,

detM = 0→ Block diagonal form→ shear mode and sound mode. (14)
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Israel Stewart theory (IS theory)

IS theory

A more realistic description of the entropy four-current can be obtained by
considering it to be a function not only of the primary fluid-dynamical
variables, but also of the dissipative currents.

Sµ = Pβµ + βνTµν − αNµ −Qµ(δNµ, δTµν) (15)

Up to second order in dissipative currents,

Sµ = suµ − αnµ − (β0Π2 − β1nµnµ + β2πρσπ
ρσ)

uµ

2T

−(α0Π∆µν + α1π
µν)

nν
T

+O(δ3). (16)

ARPAN DAS (ifj) 11 / 34



Israel Stewart theory (IS theory)

In IS theory dissipative currents satisfy dynamical equations 10,11,

Π̇ +
Π

τΠ
= − 1

β0
[θ + βΠΠΠθ + α0∇µnµ + ψαnΠnµu̇µ + ψαΠnnµ∇µα

]
, (17)

ṅ〈µ〉 +
nµ

τn
=

1
β1

[
T∇µα− βnnnµθ + α0∇µΠ + α1∇νπνµ + ψ̃αnΠΠu̇µ

+ ψ̃αΠnΠ∇µα + χ̃απnπ
ν
µ∇να + χ̃αnππ

ν
µu̇ν

]
(18)

π̇〈µν〉 +
πµν

τπ
=

1
β2

[
σµν − βππθπµν − α1∇〈µnν〉 − χαπnn〈µ∇ν〉α

− χαnπn〈µu̇ν〉

]
. (19)

These relaxation times indicate the time scales within which the
dissipative currents react to hydrodynamic gradients, in contrast to the
relativistic Navier-Stokes theory.

10W. Israel and J. M. Stewart, “Transient relativistic thermodynamics and kinetic theory,” Annals
Phys.118, 341 (1979).

11G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke, Phys. Rev.D85(2012) 114047
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Israel Stewart theory (IS theory)

Important to note:
1 In Landau’s theory of relativistic viscous hydrodynamics deals with

dynamical variables T , uα, and µ ! but no causality and stability.
2 IS theory deals with more variables Π, πµν and nµ! but causality and stability

is present.

Is it possible to get a description of relativistic causal and stable viscous
hydrodynamic description which only deals with Navier-Stokes degrees of
freedom? → Yes.
For conformal symmetric systems it is possible12.
For non conformal systems it is also possible13 .

12Bemfica, F.S., Disconzi, M.M., Noronha, J.arXiv:1708.06255.
13Kovtun, P.arXiv:1907.08191
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Stable and causal first order hydrodynamics (FOCS)

FOCS

The physical objects Tµν = 〈T̂µν〉, Jµ = 〈Ĵµ〉 can still be expressed in
terms of the quantities T , uα and µ.

In equilibrium, the system can be parameterized by the temperature T ,
the timelike velocity vector uα, and by the chemical potential µ.

The equilibrium energy-momentum tensor and the current can be
expressed in terms of T , uα, and µ.

However, out of equilibrium, T , uα and µ have no first-principles
microscopic definitions, and thus should be viewed as merely auxiliary
variables used to parameterize the physical observable Tµν and Jµ.
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Stable and causal first order hydrodynamics (FOCS)

The hydrodynamic expansion is a gradient expansion.

Tµν = O(1) +O(∂) +O(∂2) + ...+O(∂k ) + ..., (20)

Jµ = O(1) +O(∂) +O(∂2) + ...+O(∂k ) + ..., (21)

where O(∂k ) denotes the terms with k derivatives of T , uα, µ, for
example the O(∂2) contributions contain terms proportional to ∂2T ,
(∂T )2, (∂T )(∂u) etc.

Given a time like unit vector uµ, the energy-momentum tensor (Tµν) and
the current (Jµ) may be decomposed as,

Tµν = Euµuν + P∆µν + (Qµuν + Qνuµ) + T µν , Jµ = Nuµ + J µ; (22)

Scalar basis: uλ∂λT , uλ∂λ(µ/T ), ∂.µ,
Vector basis: u̇µ,∆µλ∂λT ,∆µλ∂λ(µ/T ),
Tensor basis: σµν .
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Stable and causal first order hydrodynamics (FOCS)

To the first order in the derivative expansion,

E = ε+ ε1
uλ∂λT

T
+ ε2(∂.u) + ε3uλ∂λ(µ/T ) +O(∂2), (23)

P = p + π1
uλ∂λT

T
+ π2(∂.u) + π3uλ∂λ(µ/T ) +O(∂2), (24)

Qµ = θ1u̇µ +
θ2

T
∆µλ∂λT + θ3∆µλ∂λ(µ/T ) +O(∂2), (25)

T µν = −ησµν +O(∂2), (26)

N = n + ν1
Ṫ
T

+ ν2(∂.u) + ν3uλ∂λ(µ/T ) +O(∂2), (27)

J µ = γ1u̇µ +
γ2

T
∆µλ∂λT + γ3∆µλ∂λ(µ/T ) +O(∂2), (28)

At zero-derivative order, the constitutive relations are determined by the
three independent parameters ε, p, and n which in general all depend on
T and µ.
At one-derivative order, there are sixteen transport coefficients (seven for
uncharged fluids) ε1,2,3, π1,2,3, θ1,2,3, ν1,2,3, γ1,2,3, and η.
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Stable and causal first order hydrodynamics (FOCS)

Given any choice of T , uα and µ, one can always redefine,

T ′ = T + δT ;µ′ = µ+ δµ; u′α = uα + δuα. (29)

δT = a1Ṫ/T + a2∂·u + a3uλ∂λ(µ/T ) , (30)

δuµ = b1u̇µ + b2/T ∆µν∂νT + b3∆µλ∂λ(µ/T ) , (31)

δµ = c1Ṫ/T + c2∂·u + c3uλ∂λ(µ/T ) , (32)

Only criteria is that all these choices agree in equilibrium.
In terms of the redefinition of the fundamental hydrodynamic variables, E ,
P, Qµ, N , T µν and J µ all changes, but what remains unchanged are
Tµν and Jµ.
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Stable and causal first order hydrodynamics (FOCS)

The constitutive relations for Tµν and Jµ, written in terms of the new
fields T ′, u′, µ′, look the same as the constitutive relations in terms of the
old fields T , u, µ, with the following change:

εi → εi − ε,T ai − ε,µci , (33)
πi → πi − p,T ai − p,µci , (34)
νi → νi − n,T ai − n,µci , (35)
θi → θi − (ε+p)bi , (36)
γi → γi − nbi , (37)
η → η , (38)

It is clear that εi , πi , νi , θi , γi are not invariant under redefinition of the
fundamental variables. But one can construct some invariant quantities,
e.g.

fi = πi −
(
∂p
∂ε

)
n
εi −

(
∂p
∂n

)
ε

νi . (39)

li ≡ γi −
n

ε+ p
θi . (40)

Only invariant transport quantities are, fi , li and η.
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Stable and causal first order hydrodynamics (FOCS)

Getting back Landau frame

One can get back Landau frame by setting, E = ε, N = n, Qµ = 0.
We can always make this choice by proper choice of T , µ and uµ, i.e. ai ,
bi and ci .
For the choice of ai , bi and ci which are consistent with E = ε, N = n,
Qµ = 0, it can be shown that,πi = fi and γi = li → invariant quantities.
In the Landau frame,

Tµν = εuµν +

(
p + f1

Ṫ
T

+ f2∂.u + f3uλ∂λ(µ/T )

)
∆µν − ησµν +O(∂2),

(41)

Jµ = nuµ + l1u̇µ +
l2
T

∆µλ∂λT + l3∆µλ∂λ(µ/T ) +O(∂2). (42)

Till now we have not used onshell conditions, i.e. ∂µTµν = 0 and
∂µNµ = 0.
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Stable and causal first order hydrodynamics (FOCS)

The conservation equations,

∂µ(nuµ) + O(∂2) = 0, uν∂µ(εuµuν + p∆µν) + O(∂2) = 0 (43)

imply two “on-shell” relations among the scalars Ṫ , ∂·u, and µ̇, up to
O(∂2) terms.
Similarly,

∆α
ν ∂µ(εuµuν + p∆µν) + O(∂2) = 0 (44)

implies one “on-shell” relation among the vectors u̇α, ∆αλ∂λT , and
∆αλ∂λ(µ/T ), up to O(∂2) terms.
Using onshell relations,

Tµν = εuµuν + [p − ζ(∂.u)]∆µν − ησµν +O(∂2), (45)

Jµ = nuµ − σT ∆µλ∂λ(µ/T ) + χT ∆µλ∂λT +O(∂2), (46)

with,

σ =
n

ε+ p
l1 −

l3
T

; χT =
1
T

(l2 − l1). (47)
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Stable and causal first order hydrodynamics (FOCS)

Important ingredients:
1 The choice of frame such that E = ε, N = n, Qµ = 0.
2 The on-shell relations derived from zero-derivative hydrodynamics.

The arbitrariness involved in using the on sell condition implies that there
are multiple ways to write down the on-shell constitutive relations.

Landau frame is a whole class of frames.

Eliminating different one-derivative quantities will lead to different
Landau-frame hydrodynamic equations which may have different stability
and causality properties.
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Stable and causal first order hydrodynamics (FOCS)

Study the linearized stability, T = T0 + δT , v = v0 + δv , µ = µ0 + δµ.

Look for plane wave solutions of the form, eik.x−iωt .

First-order hydrodynamics of uncharged fluids in the general frame we
have six transport coefficients: ε1,2, π1,2, θ ≡ θ1 = θ2, and η.

For charged fluids in the general frame one has a fourteen-dimensional
parameter space of transport coefficients, ε1,2,3, π1,2,3, ν1,2,3, θ ≡ θ1 = θ2,
θ3, γ ≡ γ1 = γ2, γ3, η.

One can also find a subspace in the fourteen-dimensional parameter
space of transport coefficients where a class of stable frames can be
defined.
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Stable and causal first order hydrodynamics (FOCS)

Shear channel for uncharged fluid e.g.

ω(k) =
i(ε0 + p0)

√
1− v2

0

ηv2
0 − θ

+ O(k .v0) , (48)

Stability of the shear channel fluctuations requires: θ > η > 0.
The Landau-Lifshitz convention sets θ = 0 at non-zero η =⇒ stability
criteria is not satisfied.
Sound channel of uncharged fluid e.g.

ω(k) = −i
ε0+p0

θ
+ O(k2). (49)

For the stability of the sound mode one requires θ > 0.
θ > 0 contradicts the Landau-Lifshitz convention.
Special frame choice of the most general first order hydrodynamics can
give rise to unstable equilibrium state. This is just a bad choice of the
frame. In general first order hydrodynamics is stable and causal.
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Correspondence between IS and FOCS theory

IS-FOCS correspondence

We have two fundamentally different frame work of causal and stable
relativistic viscous hydrodynamics,

1 First order hydrodynamics in general frame (FOCS).

2 Second order Israel Stewart theory (IS).

In IS theory stability and causality: relaxation type evolution equation of
the dissipative fluxes Π, πµν and nµ.

In FOCS stability and causality: proper choice of hydrodynamic frame
with more transport coefficients.

Stability and causality in FOCS can be explored even in the non linear
regime.

So any mapping between IS and FOCS will allow us to explore IS
theories with our knowledge of FOCS theory.
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Correspondence between IS and FOCS theory

For boost-invariant conformal systems (exact conformal symmetry) two
approaches lead to very similar equations 14.

We assume that the system’s equation of state is conformal (massless
particles) but we allow for a non-conformal behavior of the coefficients in
the regulating sector of the theory.

We show that if the kinetic coefficients are expressed in terms of a
constant relaxation time there is an exact match between the dynamics
described by FOCS and IS formulations.
This allows us to get the first general analytical solution of the FOCS
equations.

14Bemfica, F.S., Disconzi, M.M., Noronha, J.arXiv:1708.06255.
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Correspondence between IS and FOCS theory

In the IS sector we consider following equations 15,16

Dε+ (ε+ p)θ − πµνσµν = 0, (50)

(ε+ p)Duµ −∆µ
λ∇

λP + ∆µ
λ∇µπ

µλ = 0, (51)

τR∆µν
αβDπαβ + δππθπ

µν + τππ∆µν
αβπ

αλσβλ − 2τR∆µν
αβπ

α
λω

βλ + πµν = 2ησµν .
(52)

For Bjorken flow, ds2 = dτ2 − dx2 − dy2 − τ2dξ2, τ =
√

t2 − τ2,
ξ = Tanh−1(z/t), uµ = (1,0,0,0), πµν = diag(0,−π/2,−π/2, π),
δππ = 4/3τR , τππ = λτR .

For the IS theory hydrodynamic equation becomes,

dε
dτ

= −ε+ p
τ

+
π

τ
, (53)

τR
dπ
dτ

+ π =
4
3
η

τ
−
(

4
3

+ λ

)
τR
π

τ
, (54)

15Bjorken, J.D..Phys Rev1983,D27,140-151.
16G.S.Denicol and J. Noronha, arXiv:1711.01657
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Correspondence between IS and FOCS theory

Assuming the conformal equation of state p = 1
3ε = aT 4

3 , and introducing
the variable

y =
dT
dτ

, (55)

allows us to rewrite Eq. (54) as,

4aτRT 3 dy
dτ

+ 12τRaT 2y2 + aT 3y
[
4 +

(
28
3

+ 4
(

4
3

+ λ

))
τR

τ

]
+

4aT 4

3τ
+

4
3

aT 4
(

4
3

+ λ

)
τR

τ2 −
4
3
η

τ2 = 0. (56)

Equations (55) and (56) are coupled differential equations for the
functions T and y , which are completely equivalent to the original IS
equations.
Note that Eq. (56) has the form of a Ricatti equation
(ay ′ + by2 + cy + d = 0, with b/a 6= 0 and c/a 6= 0), which was analyzed
and may be possible to solve analytically. 17

17G.S.Denicol and J. Noronha, arXiv:1711.01657
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Correspondence between IS and FOCS theory

For the FOCS approach, the evolution equations are reduced to the
formula

dE
dτ

+
E + P
τ
− 4

3
η

τ2 = 0, (57)

where the following constitutive relations are assumed,

E = ε+ ε1
dT
Tdτ

+
ε2

τ
;P = p + π1

dT
Tdτ

+
π2

τ
. (58)

In natural units, the coefficient functions ε1, ε2, π1, and π2 have dimension
of energy cubed, so for conformal systems they should scale as T 3.
Similarly, in this case the IS relaxation time τR should be inversely
proportional to T .
For strictly conformal systems with Weyl transformations we require also
that E = 3P =⇒ πi = (1/3)εi along with ε1 = 3ε2.
In this work we also discuss yet another case, where the coefficients ε1,
ε2, π1, and π2 are expressed in terms of a constant relaxation time
=⇒ xi = x0

i T 4.
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Correspondence between IS and FOCS theory

To include and discuss different cases together we take the constitutive
relation in the following form,

E = aT 4 + ε0
1 T n dT

Tdτ
+
ε0

2
τ

T n;P =
aT 4

3
+ π0

1 T n dT
Tdτ

+
π0

2
τ

T n, (59)

where ε0
1, ε0

2, π0
1 , and π0

2 are dimensionless (n = 3) or dimensionful
(n 6= 3) constants (for constant relaxation times).
FOCS hydrodynamic equation with y = dT/dτ ,

ε0
1T n−1 dy

dτ
+ (n − 1) ε0

1 T n−2 y2 +

(
4aT 3+(ε0

1 + π0
1 + n ε0

2)
T n−1

τ

)
y

+
4
3τ

aT 4 +
π2 T n

τ2 − 4
3
η

τ2 = 0.

(60)

we can formulate the IS and FOCS frameworks in terms of the two
differential equations for the temperature T and its derivative y = dT/dτ .
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Correspondence between IS and FOCS theory

Both IS and FOCS formalism has one common equation, y = dT/dτ .
After equating the terms with the same derivatives of the function y in
Eq. (56) and (60) we find:

ε0
1 = 4aτRT 4−n, (61)

ε0
1 =

12
n − 1

aτRT 4−n, (62)

π0
1 =

4
3

aτR(11 + 3λ)T 4−n − ε0
1 − nε0

2, (63)

π0
2 =

4
9

aτR

(
4 + 3λ

)
T 4−n. (64)

One can easily notice that in the strictly conformal case, n = 3, it is
impossible to exactly match the FOCS and IS equations.
An interesting situation takes place when n = 4. In this case Eqs. (61)
and (62) are fully consistent.
The kinetic coefficient ε0

1 has dimension of fm and, thus, it can be treated
as a fixed relaxation time related to τR (which is also constant).
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Correspondence between IS and FOCS theory

To uniquely determine the kinetic coefficient in the FOCS theory we use
the traceless condition of the energy momentum tensor.

Tµ
µ = 0 =⇒ πi = εi/3 =⇒ λ = −1. (65)

In the FOCS approach, the bulk viscosity appears as a linear
combination of the regulators and one can show that 18,

ζ = (−π2 + c2
s (ε2 + π1)− c4

s ε1) = 0. (66)

For conformal equation of state with c2
s = 1/3 and the condition of

vanishing of Tµν ,

ε0
1 = 4aτR , (67)

ε0
2 =

4
3

aτR , (68)

π0
1 =

4
3

aτR , (69)

π0
2 =

4
9

aτR . (70)

18Kovtun, P,arXiv:1907.08191.
ARPAN DAS (ifj) 31 / 34



Correspondence between IS and FOCS theory

Analytical solution of FOCS
The general solution of the IS equations in (53) and (54) in Bjorken flow is
19,

ε(τ̂) = ε0

(
τ̂0

τ̂

) 4
3 + λ+1

2

exp

(
− τ̂ − τ̂0

2

)

×

 M
−λ+1

2 ,

√
λ2+4ã

2

(τ̂) + αW
−λ+1

2 ,

√
λ2+4ã

2

(τ̂)

M
−λ+1

2 ,

√
λ2+4ã

2

(τ̂0) + αW
−λ+1

2 ,

√
λ2+4ã

2

(τ̂0)

 (71)

where τ̂ = τ/τR , ã = 16/(9τRT )(η/s),τ̂0 is the initial time, ε0 and α are
constants that define the initial value problem, and Mk,µ(x) and Wk,µ(x)
are Whittaker functions.
The matching to IS theory shown here implies that the general solution
for the energy density in IS also holds for the FOCS theory (for
appropriate values of λ).
This is the first analytical solution of the FOCS theory.

19Denicol, G.S., Noronha, J.. arXiv:1711.01657.
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Correspondence between IS and FOCS theory

For boost-invariant, baryon-free systems with a conformal equation of
state, If the regulator sectors of the theories are determined by a constant
relaxation time, there exists a mapping between the FOCS and IS
approaches that makes their dynamics exactly the same.
The causality conditions for the FOCS approach found here proved to be
relevant when determining the range of acceptable values of the transport
coefficients in the FOCS approach, after the matching to IS theory.
Mapping between IS theory and FOCS theory is only well defined if the
IS parameter λ takes values that are distinct from the standard
14-moment result.
For a more complex system simple correspondence between FOCS and
IS may not exists.
FOCS yields four second-order equations which are in general equivalent
to eight first-order equations, while IS is based on ten equations
describing the time evolution of ten independent components of the
symmetric energy-momentum tensor.
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Correspondence between IS and FOCS theory

Thank You!
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Perturbation Hydro equations

T ab = ρuaub + (p + τ)qab + qaub + qbua + τab, (72)
Na = nua + νa, (73)

∇aδT ab = 0, (74)
∇aδNa = 0, (75)
δτ = −ζ∇aδua (76)

δqa = −κTqab (∇b(δT/T ) + uc∇cδub + δuc∇cub) , (77)

δνa = −σT 2qab∇bδΘ, (78)

δτab = −2η〈∇aδub + δuauc∇cub〉, (79)

δT ab = (ρ+ p)(δaub + uaδub) + δρuaub + (δρ+ δτ)qab

+ uaδqb + ubδqa + δτab,

δNa = δnua + nδua + δνa. (80)
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To discuss the notion of stability and causality at the non linear level,

Tµν = (ε+A1)uµuν + (P(ε) +A2) ∆µν − 2ησµν + uµQν + uνQµ, (81)

A1 = χ1
uα∇αε
ε+ P

+ χ2∇αuα,A2 = χ3
uα∇αε
ε+ P

+ χ4∇αuα,

Qµ = λBDN

(
c2

s ∆ν
µ∇νε

ε+ P
+ uα∇αuµ

)
. (82)

The coefficients χi can be directly related to our parametrizations (n = 4):

3χ1 = ε0
1T 4, χ2 = ε0

2T 4, 3χ3 = π0
1T 4, χ4 = π0

2T 4. (83)

For the Bjorken case Qµ does not appear in the FOCS equation. Thus in
this case λBDN remains unconstrained.
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Causality and stability at linear as well as non linear level give constraint
equation,

λBDN > 0, χ1 > 0, η ≥ 0;λ ≥ η, (84)

c2
s (3χ4 − 4η) ≥ 0, (85)

λχ1 + c2
sλ

(
χ4 −

4η
3

)
≥ c2

sλχ2 + λχ3 + χ2χ3 − χ1

(
χ4 −

4
3
η

)
≥ 0. (86)

ζ +
4η
3
≥ 0, (87)

3c2
s{χ1

[
λ2 (4η − 3χ4) + 3χ3

(
−λ2 + λχ2 + χ2

2
)]

+ λ[λ2 (4η + 3χ3 − 3χ4) + 3χ2
2χ3 + λχ2 (4η + 9χ3 − 3χ4)]

+ χ2
1 (4η − 3χ4) (2λ+ χ2)} − 9c4

sλ
2 (χ1 − χ2) (λ+ χ2)

+ (4η + 3χ3 − 3χ4)
(
χ2

1 (4η − 3χ4) + 3λχ3 (λ+ χ2) + 3χ2χ3χ1
)
≥ 0.

(88)
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The entropy production using the more general entropy four-current is 20,

∂µSµ = −βΠ

[
θ + β0Π̇ + βΠΠΠθ + α0∇µnµ + ψαnΠnµu̇µ + ψαΠnnµ∇µα

]
− βnµ

[
T∇µα− β1ṅµ − βnnnµθ + α0∇µΠ + α1∇νπνµ + ψ̃αnΠΠu̇µ

+ ψ̃αΠnΠ∇µα + χ̃απnπ
ν
µ∇να + χ̃αnππ

ν
µu̇ν

]
+βπµν

[
σµν − β2π̇µν − βππθπµν − α1∇〈µnν〉 − χαπnn〈µ∇ν〉α− χαnπn〈µu̇ν〉

]
.

(89)

20W. Israel and J. M. Stewart, “Transient relativistic thermodynamics and kinetic theory,” Annals
Phys.118, 341 (1979).
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Second law of thermodynamics is satisfied if we impose the following
relationships,

Π = −ζ[θ + β0Π̇ + βΠΠΠθ + α0∇µnµ + ψαnΠnµu̇µ + ψαΠnnµ∇µα
]

(90)

nµ =
κ

T

[
T∇µα− β1ṅµ − βnnnµθ + α0∇µΠ + α1∇νπνµ + ψ̃αnΠΠu̇µ

+ ψ̃αΠnΠ∇µα + χ̃απnπ
ν
µ∇να + χ̃αnππ

ν
µu̇ν

]
, (91)

πµν = 2η
[
σµν − β2π̇µν − βππθπµν − α1∇〈µnν〉 − χαπnn〈µ∇ν〉α− χαnπn〈µu̇ν〉

]
.

(92)

The relativistic Navier-Stokes theory can then be understood to be valid
only up to first order in the dissipative currents.
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It is important to note that in equilibrium following equations hold,

Ṫ = 0; µ̇ = 0; T u̇µ + ∆µν∂νT = 0; Eα − T ∆αν∂ν(µ/T ) = 0;

∂µuµ = 0, σαβ = 0, (93)

Further in equilibrium,

Qµ = 0,

=⇒ θ1u̇µ +
θ2

T
∆µλ∂λT + θ3∆µλ∂λ(µ/T ) = 0. (94)

In the absence of external field T ∆αν∂ν(µ/T ) = 0,

θ1u̇µ +
θ2

T
∆µλ∂λT = 0. (95)

But in equilibrium, T u̇µ + ∆µν∂νT = 0 =⇒ θ1 = θ2.
Similarly in equilibrium J µ = 0, and in the absence of external field,
T ∆αν∂ν(µ/T ) = 0, thus,

γ1u̇µ +
γ2

T
∆µλ∂λT = 0. (96)

So for thermodynamic consistency we have γ1 = γ2. γ1 = γ2 along with
θ1 = θ2 implies l1 = l2.
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E = Tµνuµuν ; P =
1
d

∆µνTµν ; Qα = −∆αµuνTµν ;N = −uµJµ;

Tµν =
1
2

(
∆µα∆νβ + ∆να∆µβ −

2
d

∆µν∆αβ

)
Tαβ ;Jµ = ∆µαJα. (97)

The decomposition of Tµν and Jµ are just identities.
Hydrodynamic picture through the derivative expansion of E , P, Qµ, T µν ,
N , and J µ.
To zeroth order in derivative expansion, there are two scalars, T and µ,
no transverse vectors, and no transverse traceless 2-tensors.
To first order in derivative expansion, there are three scalars, uλ∂λT ≡ Ṫ ,
∂λuλ, and uλ∂λµ ≡ µ̇.
There are also three transverse vectors, ∆ρσ∂σT , u̇ρ, and ∆ρσ∂σµ.
There is one transverse traceless symmetric tensor,
σµν = ∆µρ∆νσ(∂ρuσ + ∂σuρ − 2

3 gρσ∂λuλ).
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It turns out that relativistic generalization of the Navier-Stokes theory is
unstable i.e. presence of the exponentially growing modes.

It is also been argued that Navier-Stokes theory is acausal.
Naively speaking the origin of the acausal nature is in the linear relations
between dissipative currents and gradients of the primary fluid-dynamical
variables.
This imply that any inhomogeneity of α and uµ, immediately results in
dissipative currents.
Israel and Stewart’s formulation of causal relativistic dissipative fluid
dynamics is the most popular and widely used.
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It is clear that one can go to a new frame (by choosing ai and ci
appropriately) in which E = ε and N = n.

εi → εi −
(
∂ε

∂T

)
ai −

(
∂ε

∂µ

)
ci = 0, (98)

νi → νi −
(
∂n
∂T

)
ai −

(
∂n
∂µ

)
ci = 0. (99)

In this frame,

πi → πi −
(
∂p
∂T

)
ai −

(
∂p
∂µ

)
ci = πi − εi

(
∂p
∂ε

)
n
− νi

(
∂p
∂n

)
ε

= fi . (100)

If we choose bi = θi
ε+p , then in the Landau frame θi = 0, =⇒ Qµ = 0 and

in this frame γi → γi − nbi = γi − n
ε+pθi = li .

In the Landau frame,

Tµν = εuµν +

(
p + f1

Ṫ
T

+ f2∂.u + f3uλ∂λ(µ/T )

)
∆µν − ησµν +O(∂2),

(101)

Jµ = nuµ + l1u̇µ +
l2
T

∆µλ∂λT + l3∆µλ∂λ(µ/T ) +O(∂2). (102)
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For the type of Israel-Stewart theory considered here, causality and
stability around equilibrium hold when η/(sτRT ) ≤ 1/2 (where
s = 4ε/3T )21,22.
The parameter λ does not appear contribute in a linearized analysis. So it
can not be constrained.
Kinetic theory (14-moment approximation) predicts the value of λto be
equal to 10/21, while the shear viscosity is given by η = 4ετR/15.
One can show that causality in the FOCS theory is violated if one uses
the 14-moment value λ = 10/21.
Causality in the FOCS approach with coefficients given by (67)-(70) can
be fulfilled, however, if λ is negative.
The results presented herein may suggest that the IS parameter
λ = 10/21 can be at odds with causality when one goes beyond the
linearized regime.
General statements about causality in the nonlinear regime of
Israel-Stewart theory is not present in the presence of both shear and
bulk viscosity.

21Denicol, G.S., Niemi, H., Molnar, E., Rischke, D.H..,arXiv:1202.4551.
22Pu, S., Koide, T., Rischke, D.H.. arXiv:0907.3906.
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