EXPLORING THE PROPERTIES OF HOT QCD MATTER IN THE QUASIPARTICLE APPROACH

Valeriya Mykhaylova

In collaboration with Chihiro Sasaki and Krzysztof Redlich

Institute of Theoretical Physics

University of Wrocław

Valeriya Mykhaylova

Outlook

• Quark-gluon plasma & its transport properties

What do we use?

• Quasiparticle model & kinetic theory

What did we find?

• Transport parameters - shear & bulk viscosities, ...

Quark-Gluon Plasma

- Subject of Quantum ChromoDynamics (QCD) theory of strong interactions
- Strongly coupled fluid produced in heavy ion collisions:

- Phase of matter in extreme conditions: $T \ge 155$ MeV, $au \simeq 10$ fm
- Mixture of deconfined quarks and gluons

Transport Phenomena in hot QCD

Longitudinal motion - friction between layers - shear viscosity η

Resistance to volume expansion/compression- bulk viscosity ζ

+ electrical conductivity, heat conductivity ...

Valeriya Mykhaylova

Transport Phenomena in Hot QCD

Lattice QCD data for gluon plasma (no quarks)

[V.M., "Transport Properties of Hot QCD Matter in the Quasiparticle Approach", PhD Thesis]

Va	leriy	/a	M	ykl	hay	lo۱	/a

☞ similar to massive quasielectron moving freely in solid states

Real QGP:

strongly-interacting particles, constant (bare) masses m_i^0

🖙 similar to massive quasielectron moving freely in solid states

Se Se Se

Real QGP:

strongly-interacting particles, constant (bare) masses m_i^0

Effective approach:

weakly-interacting **quasi**particles, dynamical $m_i[T, G(T)]$

Quasiparticles are "dressed" with effective masses $m_i[G(T), T]$:

$$m_i[G(T), T] = \sqrt{(m_i^0)^2 + \prod_i[G(T), T]}$$
 (1)

self-energies Π_i from perturbative QCD:

gluons:
$$\Pi_{g}[G(T), T] = \left(3 + \frac{N_{f}}{2}\right) \frac{G^{2}(T)}{6} T^{2}$$
 (2)
quarks: $\Pi_{l,s}[G(T), T] = 2\left[m_{l,s}^{0}\sqrt{\frac{G^{2}(T)T^{2}}{6}} + \frac{G^{2}(T)T^{2}}{6}\right]$ (3)

Quasiparticles are "dressed" with effective masses $m_i[G(T), T]$:

$$m_i[G(T), T] = \sqrt{(m_i^0)^2 + \prod_i[G(T), T]}$$
 (1)

self-energies Π_i from perturbative QCD:

gluons:
$$\Pi_{g}[G(T), T] = \left(3 + \frac{N_{f}}{2}\right) \frac{G^{2}(T)}{6} T^{2}$$
 (2)
quarks: $\Pi_{l,s}[G(T), T] = 2\left[m_{l,s}^{0}\sqrt{\frac{G^{2}(T)T^{2}}{6}} + \frac{G^{2}(T)T^{2}}{6}\right]$ (3)

 \mathbb{R} effective coupling G(T) – reliable thermodynamics – lattice QCD

 $s(T) \simeq \sum_{i=g,l,s,..} \int d^3 p\left([1 \pm f_i^0] \ln[1 \pm f_i^0] \mp f_i^0 \ln f_i^0 \right) = \text{lattice data} \to G(T)$ $f_i^0(E_i): \quad E_i[G(T),T] = \sqrt{p^2 + m_i^2[G(T),T]}$ (4)

[V.M, M. Bluhm, C. Sasaki, K. Redlich, PRD 100 (2019); lattice: Wuppertal-Budapest]

Valeri	va M	vkhav	lova
		,	

Effective Coupling and Masses

Thermodynamic Consistency

$$c_s^2 = \frac{\partial P}{\partial \epsilon} = \frac{s}{T} \left(\frac{\partial s}{\partial T}\right)^{-1}$$

regional gas: $c_s^2=1/3$ vs Quasiparticle model: $c_s^2
ightarrow 1/3$ as $T
ightarrow\infty$

[V.M. C. Sasaki, PRD103 '21]	
Valeriya Mykhaylova	Hot QCD Matter

Boltzmann Equation:

$$p^{\mu}\partial_{\mu}f_{i} = \mathcal{C}[f_{i}] \sim \int \omega(f_{i}'f_{j}' - f_{i}f_{j})$$
(5)

Boltzmann Equation:

$$p^{\mu}\partial_{\mu}f_{i} = \mathcal{C}[f_{i}] \sim \int \omega(f_{i}'f_{j}' - f_{i}f_{j}) \simeq -\frac{f_{i} - f_{i}^{0}}{\tau_{i}}$$
(6)

Approximate solution: f_i relaxes to equilibrium value f_i^0 in time τ_i

Boltzmann Equation:

$$p^{\mu}\partial_{\mu}f_{i} = \mathcal{C}[f_{i}] \sim \int \omega(f_{i}'f_{j}' - f_{i}f_{j}) \simeq -\frac{f_{i} - f_{i}^{0}}{\tau_{i}}$$
(6)

Approximate solution: f_i relaxes to equilibrium value f_i^0 in time τ_i Pure gluon plasma ($N_f = 0$):

$$\tau_g = \frac{1}{n_g^0 \bar{\sigma}_{gg \to gg}} = [n_g^0 \bar{\sigma}_{gg \to gg}]^{-1}; \qquad n_i^0 \sim \int f_i^0 \tag{7}$$

Boltzmann Equation:

$$p^{\mu}\partial_{\mu}f_{i} = \mathcal{C}[f_{i}] \sim \int \omega(f_{i}'f_{j}' - f_{i}f_{j}) \simeq -\frac{f_{i} - f_{i}^{0}}{\tau_{i}}$$
(6)

Approximate solution: f_i relaxes to equilibrium value f_i^0 in time τ_i Pure gluon plasma ($N_f = 0$):

$$\tau_{g} = \frac{1}{n_{g}^{0}\bar{\sigma}_{gg\to gg}} = [n_{g}^{0}\bar{\sigma}_{gg\to gg}]^{-1}; \qquad n_{i}^{0} \sim \int f_{i}^{0}$$
(7)

Quark-gluon plasma ($N_f = 2 + 1$):

$$\tau_{g} = [n_{g}^{0}(\bar{\sigma}_{gg \to gg} + \bar{\sigma}_{gg \to l\bar{l}} + \bar{\sigma}_{gg \to s\bar{s}}) + n_{l}^{0} \bar{\sigma}_{gl \to gl} + n_{s}^{0} \bar{\sigma}_{gs \to gs}]^{-1}$$
(8)

Boltzmann Equation:

$$p^{\mu}\partial_{\mu}f_{i} = \mathcal{C}[f_{i}] \sim \int \omega(f_{i}'f_{j}' - f_{i}f_{j}) \simeq -\frac{f_{i} - f_{i}^{0}}{\tau_{i}}$$
(6)

Approximate solution: f_i relaxes to equilibrium value f_i^0 in time τ_i Pure gluon plasma ($N_f = 0$):

$$\tau_g = \frac{1}{n_g^0 \bar{\sigma}_{gg \to gg}} = [n_g^0 \bar{\sigma}_{gg \to gg}]^{-1}; \qquad n_i^0 \sim \int f_i^0 \tag{7}$$

Quark-gluon plasma ($N_f = 2 + 1$):

$$\tau_{g} = [n_{g}^{0}(\bar{\sigma}_{gg \to gg} + \bar{\sigma}_{gg \to l\bar{l}} + \bar{\sigma}_{gg \to s\bar{s}}) + n_{l}^{0} \bar{\sigma}_{gl \to gl} + n_{s}^{0} \bar{\sigma}_{gs \to gs}]^{-1}$$
(8)

ightarrow Compute transport coefficients in the au-approximation

Valeriya Mykhaylova

Shear viscosity (reaction to flow): $\rightarrow \eta_g$, ζ_g for gluon plasma ($N_f = 0$) [Hosoya, Kajantie, NPB250 '85]

$$\eta = \frac{1}{15T} \sum_{i=g,l,s,\dots} d_i \int \frac{d^3 p}{(2\pi)^3} \frac{p^4}{E_i^2} f_i^0(1 \pm f_i^0) \tau_i \tag{9}$$

Shear viscosity (reaction to flow): $\rightarrow \eta_g$, ζ_g for gluon plasma ($N_f = 0$) [Hosoya, Kajantie, NPB250'85]

$$\eta = \frac{1}{15T} \sum_{i=g,l,s,\dots} d_i \int \frac{d^3 p}{(2\pi)^3} \frac{p^4}{E_i^2} f_i^0 (1 \pm f_i^0) \tau_i$$
(9)

Bulk viscosity (reaction to volume expansion/compression): [Bluhm, Kämpfer, Redlich, PRC 84 '11]

$$\zeta = \frac{1}{T} \sum_{i=g,l,s,\dots} d_i \int \frac{d^3 p}{(2\pi)^3} f_i^0 (1 \pm f_i^0) \frac{1}{E_i^2} \left[\left(E_i^2 - T^2 \frac{\partial m_i^2(T)}{\partial T^2} \right) c_s^2 - \frac{p^2}{3} \right]^2 \tau_i$$

~

Shear viscosity (reaction to flow): $\rightarrow \eta_g$, ζ_g for gluon plasma ($N_f = 0$) [Hosoya, Kajantie, NPB250'85]

$$\eta = \frac{1}{15T} \sum_{i=g,l,s,\dots} d_i \int \frac{d^3 p}{(2\pi)^3} \frac{p^4}{E_i^2} f_i^0 (1 \pm f_i^0) \tau_i$$
(9)

Bulk viscosity (reaction to volume expansion/compression): [Bluhm, Kämpfer, Redlich, PRC 84 '11]

$$\zeta = \frac{1}{T} \sum_{i=g,l,s,\dots} d_i \int \frac{d^3 p}{(2\pi)^3} f_i^0 (1 \pm f_i^0) \frac{1}{E_i^2} \left[\left(E_i^2 - T^2 \frac{\partial m_i^2(T)}{\partial T^2} \right) c_s^2 - \frac{p^2}{3} \right]^2 \tau_i$$

Electrical conductivity:

$$\sigma = \frac{1}{3T} \sum_{i=u,d,s,\dots} q_i^2 d_i \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{E_i^2} f_i^0 (1 - f_i^0) \tau_i$$
(10)

 $\rightarrow \sigma_g = 0$

Shear viscosity (reaction to flow): $\rightarrow \eta_g$, ζ_g for gluon plasma ($N_f = 0$) [Hosoya, Kajantie, NPB250'85]

$$\eta = \frac{1}{15T} \sum_{i=g,l,s,\dots} d_i \int \frac{d^3 p}{(2\pi)^3} \frac{p^4}{E_i^2} f_i^0 (1 \pm f_i^0) \tau_i$$
(9)

Bulk viscosity (reaction to volume expansion/compression): [Bluhm, Kämpfer, Redlich, PRC 84 '11]

$$\zeta = \frac{1}{T} \sum_{i=g,l,s,\dots} d_i \int \frac{d^3 p}{(2\pi)^3} f_i^0 (1 \pm f_i^0) \frac{1}{E_i^2} \left[\left(E_i^2 - T^2 \frac{\partial m_i^2(T)}{\partial T^2} \right) c_s^2 - \frac{p^2}{3} \right]^2 \tau_i$$

Electrical conductivity:

$$\sigma = \frac{1}{3T} \sum_{i=u,d,s,\dots} q_i^2 d_i \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{E_i^2} f_i^0 (1 - f_i^0) \tau_i$$
(10)

* common relaxation times τ_i

 $\rightarrow \sigma_g = 0$

Shear and Bulk Viscosities: $N_f = 0$ vs $N_f = 2 + 1$

* Dynamical quarks increase viscosities of hot QCD matter

 \star Faster restoration of conformal invariance for gluon plasma

Valeriya Mykhaylova

[[]V. M., C. Sasaki, PRD103 '21; V. M., M. Bluhm, K. Redlich, C. Sasaki, PRD100 '19]

Specific Shear Viscosity

[V.M., M. Bluhm, K. Redlich, C. Sasaki, PRD100 '19; Auvinen, Eskola, Huovinen, Niemi, Paatelainen, Petreczky, PRC 102 '20]

Non-Perturbative vs Perturbative QCD Regimes

Linear:
$$\frac{\zeta}{\eta} \propto \left(\frac{1}{3} - c_s^2\right) - \text{AdS/CFT} \text{ (strong G)} \text{ [Buchel, PRD 72 '05]}$$

Quadratic: $\frac{\zeta}{\eta} \propto \left(\frac{1}{3} - c_s^2\right)^2 - \text{pQCD} \text{ (weak G)} \text{ [Weinberg, Astrophys. J. 168 '71]}$

[V.M., C. Sasaki, PRD 103 '21; pQCD: Arnold, Moore, Yaffe, JHEP 05 '03; Arnold, Dogan, Moore, PRD 74 '06]

Valeriya Mykhaylova

Electrical Conductivity of QGP

* Overall agreement with other models and with lattice at low T Lattice: $m_{\pi} \approx 384 \text{ MeV} \implies$ larger bare quark masses

[V. M. and C. Sasaki, PRD 103 '21; V.M. EPJ ST 229 '20, Lattice: G. Aarts et al., JHEP 02 (2015)]

Valeriya Mykhaylova

Summary

Quark-gluon plasma – peculiar state of matter with unique properties and a lot of open questions.

Quasiparticle model – well-established tool connecting non-perturbative and perturbative QCD regimes (strong vs weak coupling).

Solution Possibilities – finite μ , quasiquarks out of chemical equilibrium, $N_f = 2 + 1 + 1$, momentum anisotropy...

THANK YOU FOR ATTENTION!