ALICE Highlights and Future

Jacek Otwinowski

(on behalf of the ALICE Collaboration)

Outline

Light flavour & nuclei
Heavy flavour & charmonia
ALICE Run-3 performance
ALICE upgrades

Focus on the LHC Run-2 (2015-2018) results!

A Large Ion Collider Experiment (ALICE)

Excellent particle identification and good tracking in the broad momentum range!

ALICE Purpose

- Properties of QCD matter at extreme conditions
- Characterization of Quark-Gluon Plasma (QGP)
 - N. Cabibbo & G. Parisi. Phys. Lett. B59 (1975) 67
 - J. C. Collins and M. J. Perry. Phys. Rev. Lett. 34 (1975) 1353
- Influence of initial- and final-state effects on particle production
 Dark Matter searches...

15.10⁹ Years

"Quark Stars" D. D. Ivanenko & D. F. Kurdgelaidze Astrofizika (1965) 479

Time

Light flavour & nuclei

Antimatter/matter imbalance at the LHC

Phys. Rev. Lett. 133 (2024) 092301

Thermal-Fist, V. Vovchenko et al. Comput. Phys. Commun. 244 (2019) 295 Statistical Hadronization Model (SHM) A. Andronic et al. Nature 561 (2018) 321

AGH Białasówka

(Anti)hypertriton lifetime

Neutron Stars EoS - hyperon "puzzle" ($M_{NS} > 2 M_{\odot}$)

Phys. Rev. Lett. 131 (2023) 102302

 $\tau = 253 \pm 11$ (stat.) ± 6 (syst.) ps B_A = 72 ± 63 (stat.) ± 36 (syst.) keV

- Most precise measurement of hypertriton lifetime
- Models confirms that hypertriton is a weakly bound state

SHM predictions consistent with the data Increase of statistics with Run 3 data ongoing

18-Oct-2024

(Anti)alpha production at the LHC

Test particle production mechanism with light nuclei

- \square ⁴He p_T distributions measured for the first time at the LHC
- (Anti)alpha production underestimated by the coalescence model (different picture than for the lighter nuclei)

 $B_A = E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^{-A}$

Emergence of long-range angular correlations ("ridge") in low-multiplicity pp collisions

The "ridge" – sign of collective expansion of QGP in Pb-Pb collisions

Phys. Rev. Lett. 132 (2024) 172302

- □ The ridge is also visible in low multiplicity pp collisions
- Processes involved e⁺e⁻ annihilation (ALEPH) do not contribute to the ridge in pp collisions (also confirmed at higher energy Y.-Ch. Chen et al. arXiv:2312.05084)
- Pythia tunes underestimate the ridge

Identified particle flow in Pb-Pb collisions

JHEP 05 (2023) 243

- □ Low-p_T (<2 GeV/c): mass ordering (hydrodynamics)
- □ Interm.-p_T (2-7 GeV/c): baryon-meson grouping and splitting (partonic collectivity, quark coalescence,...)
- □ High-p_T (>7 GeV/c): fragmentation in jets

18-Oct-2024

AGH Białasówka

Identified particle flow in p-Pb collisions

Similar pattern to flow in heavy-ion collisions (initial vs final state effects)

- □ Low-p_T (<2 GeV/c): mass ordering
- □ Interm.- p_T (2-7 GeV/c): baryon-meson grouping and splitting for $N_{ch} > 25$ (diluted for $N_{ch} < 25$)
- □ High-pT (>7 GeV/c): fragmentation in jets

Identified particle flow in p-p collisions

Similar pattern to flow in heavy-ion collisions (initial vs final state effects)

- □ Low-p_T (<2 GeV/c): mass ordering
- □ Interm.- p_T (2-7 GeV/c): baryon-meson grouping and splitting for $N_{ch} > 25$ (disappears for $N_{ch} < 25$)
- □ High-p_T (>7 GeV/c): fragmentation in jets

Heavy flavour & charmonia

Heavy flavour (hard probes)

Ideal probes to study initial and final state effects on particle production

Initial state

- Modification of Parton Distribution Functions
- Gluon saturation and Color-Glass Condensate (CGC)
 - L. McLerran, R. Venugopalan, Phys. Rev. D 49 (1994) 2233

Final state

- □ Parton energy loss in QGP (collisional/radiative, $\Delta E_g > \Delta E_q > \Delta E_Q$) Yu. L. Dokshitzer et al., J. Phys. G: Nucl. Part. Phys. 17 (1991) 1602
- Hadronization mechanisms (fragmentation/recombination)
- Dissociation of charmonium states in hot medium
 T. Matsui & H. Satz, Phys. Lett. B178 (1986) 416
- Recombination of charm and anti-charm quarks
 P. Braun-Munzinger & J Stachel, Phys.Lett. B490 (2000) 196
 R Thews et al., Phys. Rev. C 63:054905

Prompt $\Lambda_{\rm C}$ baryon production in pp and Pb-Pb

Phys. Lett. B 839 (2023) 137796

- **D** Prompt Λ_c / D meson ratio in pp and Pb-Pb compared to model predictions
- Catania and TAMU models include hadronization mechanisms via coalescence and fragmentation
- Statistical hadronization model (SHMc) include only measured charmed mesons and baryons (p_T distributions modeled with core-corona approach)
- □ Λ_c / D ratio increases from pp to central Pb-Pb collisions at intermediate p_T → enhanced production via coalescence or/and feed-down from higher mass resonances

AGH Białasówka

$\rm R_{AA}$ of prompt $\Lambda_{\rm C}$ baryon in Pb-Pb

Phys. Lett. B 839 (2023) 137796

$$R_{AA} = \frac{d^2 N_{AA}}{dp_T dy} / \frac{d^2 N_{pp}}{\langle N_{coll} \rangle dp_T dy}$$

- □ Hint of hierarchy in central collisions: $R_{AA}(\Lambda_C) > R_{AA}(D_s^+) > R(D^0)$
- → Hadronization via charm quark coalescence or/and feed-down from higher mass resonances

- Catania and TAMU models do not include charm-quark radiative energy loss
- TAMU model provides a good description of the R_{AA} over the whole p_T range in both centrality classes

Prompt and non-prompt J/ ψ production

AGH Białasówka

18-Oct-2024

ALICE in Run 3

ALICE Run 3 Performance

AGH Białasówka

ALICE Upgrades

LS4: Future heavy-ion detector (ALICE 3)

Inner Tracking System 3 (ITS 3)

- □ Truly cylindrical (silicon sensor bending)
- **65** nm MAPS sensors
- Sensor stitching (30 cm wafers)
- Main physics motivation
 - Improve performance for heavy flavour and dielectron measurements

LoI: CERN-LHCC-2019-018 Physics performance: ALICE-PUBLIC-2023-002

Forward Calorimeter (FoCal)

Isolated photons

LoI: ALICE, LHCC-I-036 (2020) Physics case: ALICE-PUBLIC-2023-001 Physics performance: ALICE-PUBLIC-2023-004 Technical Design Report: <u>CERN-LHCC-2024-004</u> □ Electromagnetic (FoCal-E) and hadronic (FoCal-H) calorimeter
 □ Acceptance: 3.2 < η < 5.8

- Main physics motivation
 - Explore non-linear QCD evolution at small-x
 - **D** Measurements of isolated- γ , DY, open charm and UPC

18-Oct-2024

AGH Białasówka

ALICE 3

Main physics motivation

- QGP transport properties
- Hadronization mechanisms of charm and beauty hadrons, and nuclei
- Chiral symmetry restoration (photon and dileptons)
- BSM searches
- ...
- Strong R&D on innovative sensors ongoing (large-area MAPS Tracker, Si TOF and SiPM RICH)

LoI: CERN-LHCC-2022-009

ALICE 2024 UPGRADE WEEK 5th ALICE UPGRADE WEEK in Kraków

Oct 7 + 11, 2024 Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN), Kraków Europe/Warsaw timezone

Overview

Timetable

Registration

Participant List

Social Dinner

Venue and travel information

Hotel suggestions

Kraków and its surroundings

18-Oct-200tact Information

General Data Protection

5th ALICE Upgrade Week in Kraków

https://indico.cern.ch/event/1415726

Summary

Light flavour

- System created in Pb-Pb collisions is baryon-free and electrically neutral at midrapidity
- Most precise measurement of hypertriton lifetime (hypertriton is a weakly bound state)
- □ Anti-alpha p_T differential distributions measured for the first time at the LHC
- □ The "ridge" is also observed in low multiplicity pp collisions
- Flow develops in small systems (different pattern depending on multiplicity)

Heavy flavour

- Λ_C / D ratio increases from pp to central Pb-Pb collisions at intermediate p_T (enhanced production via coalescence)
- **G** Sign of prompt J/ψ (re)generation in central collisions
- □ ALICE has ambitious upgrade plans: ITS 3, FoCal (Run 4) and ALICE 3 (beyond Run 4)

backup

Antimatter/matter imbalance at the LHC

Phys. Rev. Lett. 133 (2024) 092301

³Η

р

n

Λ

(Anti)hypertriton lifetime

Phys. Rev. Lett. 131 (2023) 102302

 $c \cdot t = M \cdot L \cdot c/p$

p - hypertriton momentum

ALICE

Emergence of long-range angular correlations in low-multiplicity proton-proton collisions

Phys. Rev. Lett. 132 (2024) 172302

ALI-PUB-566419

Long-range near-side correlation in e⁺e⁻ Collisions at 91 GeV and 183-209 GeV with ALEPH

A. Badea et al. Phys. Rev. Lett. 123, 212002 (2019) Yu-Chen Chen et al. arXiv:2312.0508

Hypernuclei

Free Λ lifetime

Phys. Rev. D 108, 032009 (2023)

 $\tau = 261.07 \pm 0.37$ (stat.) ± 0.72 (syst.) ps

Light (anti)nuclei production

PRC 107, 064904 (2023)

Phys. Lett. B 858 (2024) 138943

18-Oct-2024

AGH Białasówka

Ultra long-range angular correlations in ALICE

