Is there CP violation in the neutrino sector?

Agnieszka Zalewska "Białasówka" seminar 22.05.2020

K.Abe et al. (T2K Collaboration) Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations https://doi.org/10.1038/

s41586-020-2177-0

Outline

The basics of neutrino oscillations

T2K experiment: apparatus and analysis methods

T2K measurements of the oscillation parameters θ_{23} , $|\Delta m^2_{23}|$ and constraits on δ_{CP}

Future measurements of δ_{CP}

The basics of neutrino oscillations

Neutrino oscillations

Neutrino flavour states are not identical with neutrino mass states, but are their linear combinatons.

Neutrinos are born and interact with matter through the weak interactions (flavour states v_e , v_{μ} , v_{τ}), but propagate in space as mass states (v_1 , v_2 , v_3) at different speeds (mass) keeping the coherence.

1957 – B.Pontecorvo postulates neutrino and antineutrino oscillations 1962 – Maki, Nakagawa, Sakata postulate oscillations of muon and electron neutinos Now – formalism with 3 flavour states and 3 mass states is commonly applied (PMNS mixing matrix) 22.05.2020 $(\nu_e \quad \nu_\mu \quad \nu_\tau) = U_{PNMS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

Oscillations for three neutrino flavours

$$\Delta m_{ji}^2 = m_j^2 - m_i^2 \quad c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij}$$
$$P(\nu_{\alpha} \to \nu_{\beta}) = P(E, L, \Delta m_{ji}^2, \theta_{ij})$$

Neutrino oscillations in vacuum are described by 6 theoretical parameters: three mixing angles, two Δm^2 and δ_{CP} phase. For the propagation through matter, eg. from the Sun interior to its face, in addition the so called matter effects have to be taken into account (MSW model with LMA solution). Lenght of the baseline L and neutrino energy E are chosen experimentally to optimise the detrmination of the oscillation parameters.

Oscillation parameters in PDG 2018

	Parameter	best-fit	3σ
~4%	$\Delta m_{21}^2 \ [10^{-5} \ { m eV}^2]$	7.37	6.93 - 7.96
~3%	$\Delta m^2_{31(23)}~[10^{-3}~{ m eV}~^2]$	2.56(2.54)	$2.45 - 2.69 \ (2.42 - 2.66)$
~11%	$\sin^2 \theta_{12}$	0.297	0.250 - 0.354
	$\sin^2 \theta_{23}, \Delta m^2_{31(32)} > 0$	0.425	0.381 - 0.615
~15%	$\sin^2 \theta_{23}, \Delta m^2_{32(31)} < 0$	0.589	0.384 - 0.636
70	$\sin^2 \theta_{13}, \Delta m^2_{31(32)} > 0$	0.0215	0.0190 - 0.0240
~/%	$\sin^2 \theta_{13}, \Delta m^2_{32(31)} < 0$	0.0216	0.0190 - 0.0242
~31%	δ/π	1.38(1.31)	2σ : (1.0 - 1.9)
			$(2\sigma: (0.92\text{-}1.88))$

Determination of θ_{13}

- the best measurement in the Daya Bay reactor experiment

Is something hidden behind this difference of patterns?

Neutrino oscillations – still to be measured

Value of $\delta_{CP} \rightarrow CPV$ for neutrinos? Sign of $\Delta m_{23}^2 \rightarrow$ which is the neutrino mass hierarchy?

Measurements of θ_{13} , δ_{CP} and mass hierarchy in LBL accelerator experiments

AppearanceLeading term
$$P(v_{\mu} \rightarrow v_{e}) = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} \times \left(1 \pm \frac{2a}{\Delta m_{31}^{2}}(1-s_{13}^{2})\right)$$
Leading term $v_{\nu_{\mu} \rightarrow v_{e}} = 4c_{13}^{2}s_{13}^{2}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$ CP Conserving $v_{\nu_{\nu} \rightarrow v_{e}} = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\Delta_{32}\sin\Delta_{31}\frac{aL}{4E}(1-2s_{13}^{2})$ Matter effect $v_{\nu_{\nu} \rightarrow v_{e}} = 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\Delta_{32}\sin\Delta_{31}\frac{aL}{4E}(1-2s_{13}^{2})$ CP Violating $v_{\nu_{\nu} \rightarrow v_{\mu}} = 4s_{12}^{2}c_{13}^{2}(c_{12}c_{23}+s_{12}^{2}s_{13}^{2}s_{23}^{2}-2c_{12}c_{23}s_{12}s_{13}s_{23}\cos\delta)\sin^{2}\Delta_{21}$ Solar term $c_{q} = \cos\theta_{u}$ $s_{u} = \Delta m_{u}^{2}\frac{L}{4E_{v}}$ $a = 2\sqrt{2}G_{F}n_{v}E$ Disappearance $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \left(\cos^{4}\theta_{13}\cdot\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}\cdot\sin^{2}\theta_{23}\right)\cdot\sin^{2}\frac{\Delta m_{32}^{2}\cdot L}{4E_{v}}$

T2K experiment: apparatus and analysis methods

T2K experiment (Tokai to Kamioka)

With a strong participation of Polish groups from six institutions

T2K experiment: intensive muon neutrino and antineutrino beams produced at JPARC, near detectors (INGRID and ND280) at JPARC and far detector (SuperK) at Kamioka.

Achievements: world leading measurement of θ_{23} direct observation of the transition $\nu_{\mu} \rightarrow \nu_{e}$, hint for the CP violation in the neutrino sector.

JPARC

Japan Proton Accelerator Research Complex

Materials and Life Science Experimental Facility

Nuclear Transmutation

Neutrino to Kamiokande

Hadron Beam Facility

Linac 180 MeV

Rapid Cycling Synchrotron (3GeV, 25 Hz, 1MW) Main Ring 30 GeV 0.75 MW ⇔ 1.3 MW

T2K experiment

"Kinematical focusing" with off-axis detectors

Studies of v_{μ} (anti- v_{μ}) disapperance and v_{e} (anti- v_{e}) apperance

Kinematical focusing

- Optimises the flux at the maximum of the oscillation
- Narrow beam less dependent on beam uncertaintes, but more on beam pointing
- Lower energies achieved

LBL experiments – measurement principle

Measurement of the neutrino flux and energy spectrum in the near detector before oscillations

Extrapolation of the flux and energy spectrum to the far detector, assuming no oscillations

Measurement of the neutrino flux and energy spectrum in the far detector

-> conclusions concerning the oscillations based on the reduction of neutrino flux and modification of the neutrino energy spectrum

T2K – near detectors

Reduction of the systematic uncertainties by a factor 3 - 4

T2K – far detector

T2K measurementsof the oscillation parameters $θ_{23}$, $|\Delta m^2_{23}|$, $θ_{13}$ and constraits on δ_{CP}

Collected data

T2K – v_{μ} and anti- v_{μ} disapperance

Data samples used for δ_{CP} measurement

ND280 near detector

SuperK far detector

CP violation phase

δ_{CP} measurement

T2K result excludes most of the δ_{CP}>0 values @ 99.7% CL

Plot by the T2K Spokes-Person A.Ichikawa

T2K – early hints of CP violation

T2K data exclude CP conservation at the 95% confidence (2 σ) level. The 95% CL allowed region for the CP violating phase, δ_{CP} , is [–167°; –34°] ([– 88°; –68°]) for the normal (inverted) hierarchy, with the best fit point being –105° (–79°).

Future measurements of δ_{CP}

Upgrades of the T2K experiment

ND280 upgrade

Improved acceptance Twice in statistics for equal pot ToF for background reduction Beam upgrade

Increasing frequency and ppp: 515 kW in 2019, 800 kW by 2023 1.3 MW for T2HK

SK Gadolinium project (delayed by Covid-19)

May provide wrong-sign background constraint in anti- ν_{e}

V_e P_o e⁺ V δT-30μs, Vertices within 50cm

HyperKamiokande

Approved early 2020

- 1000-2000 v_e + v_e events.
 - 115 in T2K
- > 5σ discovery of CP violation.
- Precise measurement of θ₂₃

Same neutrino spectrum as T2K. Same ND280 as in T2K T2K results in x-sect and oscillation fosters future HK results.

	SK	HK
Site depth	Mozumi (1000m)	Tochibora (650m)
# PMT	11,129	40,000
Photo-coverage	40 %	40% (x2 QE)
Mass Fiducial mass	50 ktons 22.5 ktons	260 kkons 188 ktons

F. Sanchez talk at CERN, 4.05.20203

Fermilab Accelerator Complex

Present and future scientific programme based

Superconducting Linac (Part of proposed PIP II project)

Advanced Accelerator T st Area OPtoto Registration Studies Accelerator Technology Complex

Tevatron (Decommissioned)

Test Beam_____ Facility

Linac .

Booster_

Neutrino Beam

To Minnesota

Booster Neutrino Beam

Muon Area

Neutrino Beam To South Dakota (Part of proposed LBNF project)

Main Injector and Recycler

Protons
Neutrinos
Muons
Targets
R&D Areas

Combined analysis of T2K and NOvA

Why Liquid Argon?

Water Cherenkov detector is impractical for higher neutrino energies with many particles in the final state.

 π^{0} 's with momentum 0.5, 1, 2, 3, 5, 10 GeV in the ICARUS LAr detector

Why Liquid Argon?

Very good energy reconstruction of neutrino interaction products hence detectors can be placed on-axis and profit from:

- High flux \rightarrow big number of neutrino interactions
- Possible optimisation for both neutrino mass hierarchy and δ_{CP} measurements in the same experiment
- Neutrino energy range may be sufficient to cover two oscillation maxima at the same distance L

Reactor experiment JUNO: very precise measurements of θ_{12} and Δm^2_{12} and attempt to determine mass hierarchy

JUNO – mass hierarchy

- 20 kton LS detector
- 2-3 % energy resolution

$$\begin{aligned} P_{ee}(L/E) &= 1 - P_{21} - P_{31} - P_{32} \\ P_{21} &= \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}) \\ P_{31} &= \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31}) \\ P_{32} &= \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32}) \\ \Delta m_{31}^2 &= \Delta m_{32}^2 + \Delta m_{21}^2 \\ \text{NH} : \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \text{IH} : \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{aligned}$$

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., hep-ex/0612022 L.

Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008 PRD79:073007, 2009

Summary

The T2K recent result opens the era of δ_{CP} measurements

Additional data from T2K with upgraded near detector and beam together with combined analysis with NOvA should lead to a full exclusion of CP consertion and mass hierarchy determination at 3 sigma level

T2HK in Japan, LBNF in the USA and JUNO in China will bring up determination of δ_{CP} and mass hierarchy at >5 sigma level

CP violation in the neutrino sector vs matter-antimatter asymmetry in the Universe

Review: C.Hagedorn, R.N. Mohapatra, E.Molinaro, C.C.Nisji, S.T.Petcov, *CP violation in the lepton sector and implications for leptogenesis*, Int. J. Mod. Phys. A33, 1842006 (2018)

Presented various models of leptogenesis, some of them requiring large negative values of δ_{CP} – like indicated by T2K

Theoretical talk on that?

CP violation phase T2R

v energy dependency is not reflected in this plot

Oscillations for two neutrino flavours

For two flavour states α and β and two mass states 1 and 2, probability that after a distance L in vacuum a neutrino with energy E and initial flavour α will become a neutrino with flavour β equals:

$$P = \sin^2 2\theta \cdot \sin^2 \left[\frac{1.27\Delta m^2 [\text{eV}^2] \cdot L[\text{km}]}{E_{\nu} [\text{GeV}]} \right]$$

 Δm^2 (difference of mass squares of states 1 and 2) and θ (mixing angle between states 1 and 2) are theoretical parameters; L (baseline) and E (neutrino energy) are experimental parameters.