Search for monopole production in ultraperipheral Pb+Pb collisions with the ATLAS detector

arXiv:2408.11035

Krzysztof Cieśla (AGH Kraków)

Białasówka Seminar 29 November 2024

Maxwell's equations In vacuum

Symmetry between ${\bf E}$ and ${\bf B}$ in vacuum

Maxwell's equations Adding electric charge and current

Symmetry broken by electric charge and current

Maxwell's equations Adding magnetic charge and current

Gauss's Law for E: Gauss's Law for B:

 $\nabla \cdot \mathbf{E} = \rho_e \qquad \qquad \nabla \cdot \mathbf{B} = \rho_m$

Faraday's Law:

Ampere's Law:

ħa

0

 $\nabla \times \mathbf{E} = -\mathbf{J}_{\mathbf{m}} - \frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \mathbf{J}_{\mathbf{e}} + \frac{\partial \mathbf{E}}{\partial t}$

- Symmetry could be restored by magnetic charges and currents
- Dirac (1931): the existence of magnetic monopole would explain charge quantisation

$$\frac{ge}{\hbar c} = \frac{n}{2};$$
 $n = 1, 2, ...$ $g = ng_D \Rightarrow g_D = \frac{nc}{2e} = \frac{e}{2\alpha} \approx 68.5e$

Recent monpole searches at the LHC (pp)

- Complementary detection techniques
- Both searches use production modelled by Drell-Yan or photon fusion (PF)
 - Derived from e^+e^- scattering using naive substitution $\alpha_{EM} \rightarrow \alpha_{MM}$
 - Large γ -MM coupling constant $\alpha_{MM} \sim \frac{1}{4\alpha_{EM}} \approx 34 \rightarrow$ perturbative calculations cannot reliably predict cross-section

Magnetic monopoles in heavy-ion collisions

- LHC Pb+Pb collisions @ 5.02 TeV \rightarrow peak B \sim 10^{16} T
- Occurs at distances of twice the nuclear radius: $b \sim 2R$
- ${\sim}10^4$ greater than the strongest known astrophysical magnetic fields

Artist's conception of a magnetar

Magnetic monopoles in heavy-ion collisions

- Production via the **Schwinger mechanism** in strong magnetic fields Gould, Ho, Rajantie, PRD 100, 015041 (2019), PRD 104, 015033 (2021)
 - Analogy to originally described spontaneous creation of e^+e^- pairs in presence of ultra-strong electric field
- Advantages over *pp* searches:
 - Cross-section calculated using $semiclassical \ techniques \rightarrow$ do not suffer from non-perturbative nature of coupling
 - Composite monopoles enhance the cross-section
 - No exponential suppression ($e^{-4/\alpha} \sim 10^{-236})$ for composite monopole models

Drukier & Nussinov, Phys. Rev. Lett. 49 (1982) 102

Monopole searches in LHC heavy-ion collisions

MoEDAL MMT detectors exposed to 0.235 nb^{-1} of Run-2 Pb+Pb (IP8) data MoEDAL Collaboration, Nature, 602 (2022) 63

MoEDAL probes CMS Run-1 beam pipe MoEDAL Collaboration, arXiv:2402.15682

- Ultraperipheral (UPC) heavy-ion collisions are intense source of quasi-real photons, with each photon flux scaling with Z² (in Pb+Pb: Z⁴ = 82⁴ ~ 45 million times enhancement w.r.t. pp)
- Photon-induced processes characterised by a very clean signature and almost no background
- Various types of interactions possible (including BSM):

ATLAS

ATLAS & ZDC

- Various types sub-detectors available in ATLAS ($|\eta|$ < 4.9)
- Different UPC event topologies measured via Zero Degree Calorimeters (ZDC)

ZDC UPC categories

 \sim 60% events @ m_X = 30 GeV \sim \sim 30% events @ m_X = 30 GeV \sim 10% events @ m_X = 30 GeV

- Different UPC topologies possible due to emission of neutrons
- Crucial role of Zero Degree Calorimeters

ZDC UPC categories

 \sim 60% events @ m_X = 30 GeV \sim 30% events @ m_X = 30 GeV \sim 10% events @ m_X = 30 GeV

- Different UPC topologies possible due to emission of neutrons
- Crucial role of Zero Degree Calorimeters
- Mainly due to trigger limitations empty events at L1
- Fraction of XnXn events increases with central system mass

EM breakup modelling

- Models of EM breakup fractions use parametrisations based on low-energy photonuclear scattering data
 - Significant contribution from Giant Dipole Resonance
 - Models can describe the LHC data at ${\sim}20\%$ level

SuperChic 4.2 MC (Harland-Lang et al.) PRD 107 (2023) 9, 093004

Monopole interactions in the detector

- Energy loss:
 - Ionisation dominates

Ahlen, Phys. Rev. D 17 (1978) 229

$$-\frac{dE}{dx} = K\frac{Z}{A}g^2 \left[\ln \frac{2m_e c^2 \beta^2 \gamma^2}{I_m} + \frac{K(|g|)}{2} - \frac{1}{2} - B(|g|) \right]$$

- For $g = 1g_D$ (= 68.5e) and $\beta \sim 1$: $(dE/dx)_{MM} \approx 5000 (dE/dx)_{MIP}$
- Highly ionising particle (HIP) ightarrow lots of $\delta ext{-electrons}$ near trajectory
- Slow monopoles \rightarrow less ionisation
- Equations of motion:
 - Monopoles accelerated by magnetic field
 - Trajectory **bends in** r z plane, **straight-line in** $r - \varphi$ plane

The ATLAS Inner Detector

Low-energy monopole interaction in ATLAS

- Simulated pairs of monopoles in UPC (each with $m_M = 20$ GeV)
 - Large activity in the **Pixel detector**
 - Monopoles with $p_{T}\,<\,30$ GeV typically do not reach SCT

Transverse view (Pixel only)

Low-energy monopole interaction in ATLAS

- Simulated pairs of monopoles in UPC (each with $m_M = 20$ GeV)
 - Large activity in the **Pixel detector**
 - Monopoles with $p_{T}\,<\,30$ GeV typically do not reach SCT

Low-energy monopole interaction in ATLAS

- Simulated pairs of monopoles in UPC (each with $m_M = 20$ GeV)
 - Large activity in the **Pixel detector** \leftarrow **primary focus**
 - Monopoles with $p_{T}\,<\,30$ GeV typically do not reach SCT
 - Monopoles with p_{T} < 300 GeV do not reach calorimeter

Analysis strategy

- Using 2023 Pb+Pb data at $\sqrt{s_{
 m NN}}=$ 5.36 TeV, 1.7 nb $^{-1}$
- First ATLAS result using Run3 Pb+Pb data
- Signal trigger:
 - L1: presence one or more neutrons in both ZDCs, and veto on total energy in calorimeter (E_T < 10 GeV)
 - HLT: presence of more than 100 Pixel clusters
 - **Prescale**: about 1/6 of total events were saved \rightarrow **0.262** nb^{-1}
- Supporting trigger: ZDC activity on either side, same as signal trigger otherwise – background estimation, 9.6 μb⁻¹

Signal simulation

- Use predictions based on the semiclassical model
 - Free Particle Approximation (FPA)

Gould, Ho, Rajantie, PRD 100, 015041 (2019), PRD 104, 015033 (2021)

- Monopole coupling with initial magnetic fields treated exactly (up to all orders), with self-interactions neglected
- Monopole kinematics based on simplified model with **back-to-back monopole production** and **sampled momentum**:

$$\frac{d\sigma_{FPA}(|p|)}{d\sigma_{FPA}(0)} = \exp\left[-4/\omega\left(\sqrt{m^2 + |p|^2} - m\right)\right]$$

- Same model as used by MoEDAL
- Exploring only $g = 1g_D$
- Detector simulation
 - Benefits from previous ATLAS *pp* searches
 - Includes descriptions of monopole acceleration in the detector magnetic field, ionisation energy losses in matter and δ-electron production along the monopole trajectory

Event properties

19 / 28

Beam-induced background characteristics

ATLAS, JINST 8 (2013) P07004

Offline event selection

- $\begin{array}{l} \bullet \ \ \mathsf{N}_{\mathrm{tracks}} \leq 1 \\ \\ \bullet \ \ \mathsf{N}_{\mathrm{topo-clusters}} \leq 1 \end{array}$ Remove **collision**

background

- $N_{\text{PixelCl}} > 150$ and $N_{\text{IBLCl}} > 50$ → suppress **beam-induced background**
- Fraction of Pixel clusters from a single module $f_{\rm leading-module} < 0.9 \rightarrow$ suppress events from noisy Pixel modules

Offline event selection

- Final background-discriminating variable based on azimuthal correlations between Pixel clusters
- Calculate "transverse thrust" using Pixel clusters:

$$T = \frac{1}{n_{PixCL}} \sum_{i=i}^{n_{PixCL}} |\hat{r}_i \cdot \hat{n}|$$

- $\hat{r_i}$ unit vector of cluster orientation in the lab frame
- \hat{n} direction which maximizes thrust
- Require T > 0.95

Background estimation

- Background: **Beam-induced-background** (BIB) characterised by particles almost parallel to the beam line, especially one with small radial range
- Fully data-driven background estimation method
- Events in CR2 are used to extrapolate the background contribution from CR1 to SR cross-checked in VR

Region	SR	VR	CR1	CR2			
Trigger		signal		ZDC XOR			
$n_{\sf trk}$		≤ 1		≤ 1			
n_{TC}		≤ 1		1–3 (incl. at least 1 OOT)			
n_{PixCI}		> 150		> 150			
n _{IBLCI}		> 50		> 50			
$f_{\rm leading-module}$		< 0.9		< 0.9			
T	> 0.95	0.87 - 0.95	≤ 0.87	—			

Background estimation

- CR2-based background estimate adequately describes the data
- Enhanced event activity at $\phi_T \approx 0$ and $\phi_T \approx \pi$ characteristic for BIB
- Background estimate in SR: 4 \pm 4 events

XnXn correction

• Need to correct signal Monte Carlo (0n0n) for XnXn requirement in the data:

$$p_{XnXn}^{eff} = (2 \cdot f_{0nXn} \cdot p_{EMPU} + f_{XnXn}) \cdot (1 + f_{diss})$$

Phys. Rev. C 104 (2021) 024906

JHEP 06 (2023) 182

- f_{0nXn} and f_{XnXn} derived from SuperChic 4.2
- $f_{diss} =$ 0.13 derived from $\gamma\gamma \rightarrow l^+l^-$ events
- p_{EMPU} estimated to be 0.038 for signal trigger
- Cross-checked with dilepton events in three rapidity bins

Systematic uncertainties

- Detector material modelling: alternative geometries with increased detector material: $<1\% \rightarrow 20\%$ effect
- δ-electrons propagation range: low energy δ-electrons evolution simulated only down to some kinetic energy threshold: <3% effect
- δ -electrons production modelling: dE/dx formulas for ionisation by monopoles have $\pm 3\%$ uncertainty in analysis kinematic region \rightarrow reducing δ -electrons production rate by 3%: 2-5% effect
- Luminosity (3.5%, preliminary)

Pixel noise modelling:

mismodelling observed while comparing "empty" events with neutrino-gun MC \rightarrow pixel cluster overlay applied: <1% effect

Calorimeter noise modelling: procedure similar to pixel noise modelling: ~ 1% effect

• XnXn weight modelling (20%): covers data/MC differences observed for $\gamma\gamma \rightarrow l^+l^-$ production and differences between nominal (SuperChic) and alternative models for f_{0nXn} and f_{XnXn} (STARlight MC, Gamma-UPC MC)

Mass point [GeV]	20	30	40	50	60	70	90	100	120	150
Relative sig. yield var.	0.21	0.22	0.21	0.22	0.22	0.22	0.22	0.24	0.30	0.38

Results

- 3 events in SR, consistent with background estimate of 4 \pm 4 events
- Cross-section upper limits computed using the CL_s method for $q_m = 1g_D$, in mass range between 20 and 150 GeV and assuming the FPA model
- Better sensitivity compared to MoEDAL by at least order of magnitude
- Excluded magnetic monopoles with mass < 120 GeV

Summary

- The first ATLAS result using 2023 Pb+Pb data and the first ATLAS search for magnetic monopoles in Pb+Pb collisions
- A novel method devised by ATLAS for searches of $M\bar{M}$ in Pb+Pb UPC data presented
- Search relying on semi-classical FPA model with $q_m = 1g_D$
- Main focus on the Pixel detector activity, "transverse thrust" as primary background-discriminating variable
- Crucial role of ZDC in triggering \rightarrow XnXn correction required to properly describe the data
- Largest systematic uncertainty contribution from alternative detector geometries and XnXn correction
- Data-driven background estimate of 4 \pm 4 events with 3 events observed
- The best cross-section upper limits for $M\bar{M}$ in mass range between 20 and 150 GeV are set
- Future directions: trigger improvements, higher magnetic charges, MVA methods, unconventional tracking
- This new approach can be further explored for other similar searches (HIPs)

Research project partly supported by program "Excellence initiative - research university" for the AGH University of Krakow, grant no 9722

Backup

EM breakup fractions

Signal MC control plots

n_{PixCI}

CR control plots

CR control plots

VR control plots

FPA monopoles average p_T

