Probing anomalous electromagnetic moments of tau lepton with ultraperipheral heavy-ion collisions at the LHC

Mateusz Dyndał*

CERN, Geneva, Switzerland

Mariola Kłusek-Gawenda[†] and Antoni Szczurek^{c§}

Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland

Matthias Schott[¶]

Johannes Gutenberg University, Mainz, Germany

(based on <u>arXiv:2002.05503</u> [hep-ph])

"Bialasowka" HEP Seminar, 5 Jun 2020

Outline

- Ultraperipheral collisions (UPC)
- Anomalous (electro-)magnetic moments of tau lepton
- Towards calculating Pb+Pb \rightarrow Pb+Pb+ τ τ reaction
- Tau decays and detector considerations
- Reaching ultimate precision: $yy \rightarrow l+l$ cross-section ratios
- Sensitivity of existing and future LHC data on a_{τ}

Ultraperipheral collisions

- Boosted nuclei are intense source of (quasi-real) photons
- Equivalent photon flux
 - Q ~ 1/R ~ 0.06 GeV
 - $\int s_{NN} = 5.02 \text{ TeV}$ \rightarrow Lorentz factor $\gamma \sim 2700$
 - $E_{max} \preccurlyeq \gamma/R \sim 80 \text{ GeV}_{UPC \text{ MEASURE}}$
 - Each flux scales with Z²

- PHOTONUCLEAR DEMETS vo Cim. 2 (1925) 143]
- Various types of interactions possible:

Photon-photon collisions in HI

- Photon-photon production mechanism has recently become intense field of research
 - Probing strong-field QED, QGP(?) and BSM effects!

5 Jun 2020

Anomalous (electro-)magnetic moments of tau lepton

- τ anomalous electromagnetic moments
 - Poorly constrained experimentally so far (short tau lifetime of ~10⁻¹³ s)
 - Can be sensitive to BSM effects
- Anomalous magnetic moment [a_τ = (g_τ-2)/2]
 - Theory value: a_tth = 0.00117721 ± 0.00000005 (dominated by Schwinger term)
 - Strongest experimental constraints from DELPHI (LEP): -0.052 < a_τ < 0.013 (95% CL)
- Electric dipole moment [d_τ]
 - Highly suppressed in SM (arises at three-loop): $|d_{\tau}^{th}| < 10^{-34} \, e \cdot cm$
 - Most stringent constraints on d_{τ} set by Belle: Re(d_{τ}) = (1.15±1.70)×10⁻¹⁷ e·cm and Im(d_{τ}) = (-0.83±0.86)×10⁻¹⁷ e·cm

BSM effects

- Certain BSM effect can affect a_τ:
 - Supersymmetry predicts ~(m_τ/m_µ)² ~280x BSM enhancement of a_τ wrt a_µ (note tension in a_µ ...) (but a_µ measurement precision is extremely good...)
 - Models with TeV-scale leptoquarks [see 1806.10155]

- CP-violating effects in the lepton sector can create anomalous τ EDM:
 - Extra dimensions
 - Seesaw model
 - 2HDM
 - Models with scalar leptoquarks
 - ...

5 Jun 2020

LEP (DELPHI) constraints on a_{τ}

• Strongest experimental constraints on a_{τ} are set by DELPHI (LEP2)

Precision tau physics at the LHC: example

- 2.7 σ LEP puzzle of R=B(W $\rightarrow \tau v$)/B(W $\rightarrow \mu v$)=1.070±0.026
- Recent ATLAS studies: using top-pair events as clean probe for W's to measure the ratio of prompt to delayed muons from tau decays
 - Result 0.992 ± 0.013 is twice more precise than LEP and in agreement with lepton universality

Ideas behind this study

- Check the sensitivity of $yy \rightarrow \tau \tau$ process in LHC Pb+Pb collisions on a_{τ} (and d_{τ})
- Consider (semi-)leptonic ditau decays (for clean possible measurement)
- Explore differential distributions for better sensitivity
- Explore the ratio to yy→ee (µµ) process for cancellation of uncertainties (both theoretical and experimental)
- Providing alternative study to recent work that uses Effective Field Theory [Beresford, Liu <u>arXiv:1908.05180</u>]→

Calculations

• We use standard approach to fold the elementary cross section with initial photon fluxes:

$$\sigma \left(AA \to AA\ell^{+}\ell^{-}; \sqrt{s_{AA}}\right) = \int \sigma \left(\gamma\gamma \to \ell^{+}\ell^{-}; W_{\gamma\gamma}\right) N(\omega_{1}, \boldsymbol{b_{1}}) N(\omega_{2}, \boldsymbol{b_{2}}) S_{abs}^{2}(\boldsymbol{b}) \\ \times \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} \, dY_{\ell\ell} \, d\overline{b}_{x} \, d\overline{b}_{y} \, d^{2}b \,.$$

$$(2.1)$$

 Elementary cross section has explicit dependence on photon-τ vertex function:

$$i\Gamma_{\mu}^{(\gamma\ell\ell)}(p',p) = -ie\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i}{2m_{\ell}}\sigma_{\mu\nu}q^{\nu}F_{2}(q^{2}) + \frac{1}{2m_{\ell}}\gamma^{5}\sigma_{\mu\nu}q^{\nu}F_{3}(q^{2})\right]$$
$$= a_{\tau} (q^{2}=0) = d_{\tau}*2m_{\tau}/e (q^{2}=0)$$

Elementary cross section

FIG. 1: Elementary cross section for $\gamma \gamma \rightarrow \tau^+ \tau^-$ process as a function of $W_{\gamma\gamma} = m_{\tau\tau}$ (left) and as a function of $z = \cos \theta$ for $W_{\gamma\gamma} = 15$ GeV (right).

Nuclear cross sections

- Comparison of total nuclear cross section dependence on a_{τ} with Effective Field Theory (EFT) approach [arXiv:1908.05180]
 - Cross section minimum (at negative $a_\tau)$ happens at much higher values of a_τ in EFT
 - Significantly stronger cross section dependence on a_τ (at small a_τ values) is observed with EFT

Nuclear cross sections

- We also compare SM results (a_{τ} =0) with STARlight
 - Got 20% higher xs than SL due to extra

 $|b_{1}| > R_{Pb}$ and $|b_{2}| > R_{Pb}$

requirements applied in SL photon fluxes

Potentially large theory modeling uncertainties? → Build the ratios!

Tau decays

- Use Pythia8.243 for tau decays & FSR
 - No spin correlations since this feature is "buggy" in Pythia8 for $yy \rightarrow \tau \tau$ process
- Event selection:
 - Consider at least one leptonic tau decay ($p_T(l)>4$ GeV, $|\eta(l)|<2.5$)
 - No standard tau reconstruction algorithms are applicable at such low p_T -> categorize events wrt charged-particle multiplicity (p_T > 200 MeV and |η|<2.5) -> lepton+1ch or lepton+3ch

selection dedicated for ATLAS/CMS detectors

Apply extra cut pt(l,ch) > 1 GeV in lepton+1ch to suppress ee/µµ background

Tau decays

- Interesting correlations between tau kinematics and outgoing charged particle kinematics within the fiducial volume
 - $p_{\rm T}$ of the outgoing lepton is very smeared wrt initial tau $p_{\rm T}$
 - Angular variables (eg system rapidity) in reasonable correlation with initial τ-τ kinematics

A note about possible background

- $yy \rightarrow qq$ (esp. cc and bb)
 - Reducible with extra track veto, lepton isolation, ...)
- yy→ll+FSR
 - Can be fully suppressed with p_T(l,ch) > 1 GeV cut
- Photonuclear
 - Inclusive photonuclear: reducible with no neutron in Zero Degree Calorimeter cuts (not considered in this work)
 - Exclusive photonuclear, e.g. Upsilon \rightarrow HF+X: should be reducible with lepton isolation
 - + calorimeter cluster counting

a_{τ} dependence on fiducial cross section

- Provided for representative values of a_{τ}

- 3D cross section weights $[m_{\tau\tau}, y_{\tau\tau}, \cos(\theta^*)]$ are available

a_{τ} value	σ_{fid} [nb]	Expected events	Expected events
		$(L_{int} = 2 \text{ nb}^{-1}, C = 0.8)$	$(L_{int} = 20 \text{ nb}^{-1}, C = 0.8)$
-0.1	4770	7650	76 500
-0.05	3330	5350	53 500
-0.02	3060	4900	49 000
0 (SM)	3145	5050	50 500
+0.02	3445	5500	55 000
+0.05	4350	6950	69 500
+0.1	7225	11550	115 500

• Non-zero a_{τ} can also change **shape** of kinematic distributions

 Checked many distributions, it seems pt(lead. lep) has the strongest dependence ¹⁰⁴

 ¹⁰⁴

 ¹⁰⁴

 ¹⁰⁴

 ¹⁰⁴

Ratio to $yy \rightarrow ee (yy \rightarrow \mu\mu)$ process

- yy→ee/µµ events selected in similar fiducial region
 - p_T(l) > 4 GeV, |η(l)| < 2.5</p>
- Ratio (SM) is below 5% and decreases with p_T(lead. lep)

Ratio to $yy \rightarrow ee (yy \rightarrow \mu\mu)$ process

- 20% (STARlight vs this work) cross-section difference can be suppressed to ~5% when taking the ratio
- This can be further improved by reweighting $m_{\mbox{\scriptsize ll}}$ shape in the fiducial region
 - Then the $R_{\rm l}$ values agree within 1%

a_{τ} expected sensitivity @ LHC

- Using RooFit for statistical analysis
 - Assuming 80% reconstruction efficiency in the fiducial region
 - Assuming 5% or 1% systematic, and 2 nb⁻¹ (current ATLAS/CMS dataset) or 20 nb⁻¹ (dataset expected at High Luminosity LHC)
- Expected limits ~x2 better than World's best results (with existing Run 2 data),
 ~x4 better @HL-LHC
 - But: the limits are ~x2 worse than those from arXiv:1908.05180 (EFT approach)

Summary

- Calculations for Pb+Pb \rightarrow Pb+Pb+ $\tau \tau$ cross section dependence on a_{τ} (and d_{τ}) at LHC energies are provided
- Exploration of the kinematic shape variations and the ratio to ee ($\mu\mu$) process, as function of pt(lead. lep)
 - Allows to reach ultimate experimental precision (cancellation of uncertainties etc.)
- Expected limits on a_τ ~x2 better with existing Run 2 ATLAS/CMS data (wrt current best experimental limits), ~x4 better @HL-LHC
 - Expected limits on d_τ competitive with current best experimental limits
 - \rightarrow should be improved at Belle-II
- Significant difference observed wrt Effective Field Theory (EFT) calculations
 - Much stronger cross section dependence on a_τ is observed with EFT
 - This can point to some issue with EFT approach and clearly needs further study by EFT experts

Backup

Compatibility with a_{τ} dependence used by DELPHI

- Relative total cross section variations (ee) from DELPHI (examples):
 - dσ/σ = ±10-12%
 for a_τ = ±0.04
 - $d\sigma/\sigma = \pm 3\%$ for $a_{\tau} = \pm 0.01$
- Relative total cross section variations (Pb+Pb) from this study:
 - $d\sigma/\sigma = \pm 10\%$ for $a_{\tau} = \pm 0.04$
 - dσ/σ = ±3%
 for a_τ = ±0.01
- Good agreement with DELPHI's calculations!

EFT approach

$$\begin{split} \tilde{a}_{\tau} &= \frac{2m_{\tau}}{e} \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Re} \left[\cos \theta_{\mathrm{W}} C_{lB}^{33} - \sin \theta_{\mathrm{W}} C_{lW}^{33} \right], \\ \tilde{d}_{\tau} &= \frac{\sqrt{2}v}{\Lambda^2} \operatorname{Im} \left[\cos \theta_{\mathrm{W}} C_{lB}^{33} - \sin \theta_{\mathrm{W}} C_{lW}^{33} \right], \end{split}$$

$$v = 246 \text{ GeV}$$

 $\sin \theta_{\rm W}$ is the weak mixing angle.

l.