Jet Tomography: Unveiling the Secrets of QCD Matter

AGH seminar

Martin Rybar

February 7, 2025

Physics of HI collisions

Study of the nature&properties of hot and dense QCD matter ⇒ QCD laboratory

Heavy Ion Collisions at LHC

- LHC provides collision of heavy-ions since 2010
 - Pb+Pb, Xe+Xe, p+Pb (O+O and p+O expected in 24/25)
 - CME from 2.76 TeV to 5.36 TeV for Pb+Pb and 5.44 TeV for Xe+Xe

What do we measure?

Translates to anisotropies in particle production

Properties of Quark-gluon plasma

Are they affected? ⇒ microscopic properties of plasma & study of strong force

Proton-Proton reference

We need reference, "standard candles" for our measurements.

Heavy ion physicists love ratios!

⇒ recording also proton-proton collisions at the same collision energy as Pb+Pb

Busy LHC collisions: pp

by Florian Bechtel and Peter Schleper

Busy LHC collisions: pileup

Busy LHC collisions: Pb+Pb

Geometry of HI collision

- Particle production is expected to scale with number of binary nucleon-nucleon collisions.
 - Soft processes scales with #participants
 - Hard processes with #binary collisions

Geometry of HI collision

• Collision centrality is measured using transverse energy deposited in forward calorimeters.

Jets in HI

Specific reconstructions to deal with large background.

Jets in HI

Many different observables ⇔ each observable is sensitive to different aspects of energy loss.

Inclusive Jet Suppression

Courtesy of Martin S.

Do we understand the geometry?

Z bosons:

Inclusive supresion

Inclusive supresion

Role of flavour in quenching

Mass of heavy quarks as additional relevant scale.

Parton mass: $\Delta E_{u,d,s} > \Delta E_c > \Delta E_b$

Quark vs. Gluon color factor Different fragmentation

Color charge: $\Delta E_g > \Delta E_{u,d,s}$

Role of flavour in quenching

Role of flavour in quenching

Why jet substructure?

• Jets are not point-like but complex & multiscale objects.

Why jet substructure in HI?

• Jets are not point-like but complex & multiscale objects.

- We can use various jet substructure observables to probe different regimes.
 - What are the properties and degrees of freedom of QGP at length scales between point-like partons and hydrodynamic modes?
 - How does the color charge interact and lose energy?
 - What are the effective scales of the interactions determining the energy loss?

"Conventional" jet made of particles/tracks/towers/clusters

Fragmentation functions, track-jet correlations and jet shapes(can be extended to large angles).

Focusing on hard substructure...

"Conventional" jet made of particles/tracks/towers/clusters

De-clustered & groomed jet with SoftDrop

Fragmentation functions, track-jet correlations and jet shapes (can be extended to large angles). Declustering follow the splitting evolution; grooming parameters ⇔ affects physics.

"Conventional" jet made of particles/tracks/towers/clusters

De-clustered & groomed jet with SoftDrop

Re-clustered jet from smaller jets

Fragmentation functions, track-jet correlations and jet shapes

Declustering follow the splitting evolution; grooming parameters ⇔ affects physics.

Large-R jets designed for boosted W/Z/t; focus on hard structure; sub-jets.

"Conventional" jet made of particles/tracks/towers/clusters

Radius dependence of dijet momentum balance

jet and some global event property

Missing transverse momentum calculculated in jet events.

Modification of Radial Profile

- Jets are broader in more central collisions at low p_{τ} .
- Significant suppression of yields of particles $p_{\tau} > 4$ GeV outside the jet core.

Radial profile

Dependence of suppression on jet structure?

J. Casalderrey-Solana, Y. Mehtar-Tani, C. A. Salgado, K. Tywoniuk, Phys. Lett. B725 (2013) 357

Can be addressed by measurement of jet R_{AA} as a function of their sub-structure.

Classifying parton splittings with Soft-Drop

• Classifying *R* =0.4 jets using angular separation of the hardest splitting

Drawing by Dhanush Hangal

Jet pT is not groomed!

30

Classifying parton splittings with Soft-Drop

• Fully corrected & absolutely normalized cross-sections & yields.

Classifying parton splittings with Soft-Drop

• Fully corrected & absolutely normalized cross-sections & yields.

Suppression vs parton splittings

r_g

Jet p_{T} dependence of the suppression

arXiv:2211.11470

Lack of p_{T} dependence of R_{AA} for jets with similar structure

Jet p_{T} dependence of the suppression

arXiv:2211.11470

Full picture: small & large jets

• Addressing transition from color-coherence to decoherence...

Re-clustered large-*R***jets**

Overall jets are suppressed in by factor ~2 (except red points) in central Pb+Pb.

Full picture: small & large jets

• Addressing transition from color-coherence to decoherence...

Full picture: small & large jets

• Addressing transition from color-coherence to decoherence...

Radial scan

 Comparison of inclusive jets for different jet radii → recovery + medium response vs flavour fraction + more resolved structure.

Radial scan

• Comparison of inclusive jets from different experiments.

Tension between result...

- Larger systematics
- Charged vs full jet?
- 2.76 TeV vs 5.02 TeV & slightly different phase-space can not explain the difference.
- Lower-level details & comparison is needed.

47

Dijet imbalance

Dijet imbalance

Phys. Rev. C 107 (2023) 054908

R-dependence of dijet imbalance

• Larger dijets are more balanced in p_{τ} .

50

• R-dependent suppression only seen mainly for low-xJ values. arXiv:2407.18796

Angular scan using EW boson tagged "jets"

- EW bosons tag the parton kinematics and flavour.
- Way to understand medium response.
- Wake & diffusion Wake are hot topics

Angular scan using EW boson tagged "jets"

Courtesy of Yeonju Go

Angular scan using EW boson tagged "jets"

Where are we?

We know:

- Medium-induced gluon radiation ⇒ soft particle production at large angles.
- Energy loss: 100 GeV gluon jet ~ 15 GeV & q~2 GeV²/fm
- Color coherence is important
- Initial parton color charge is important

We want to know:

- Quantitative understanding of color coherence phenomena and medium response
- Better understanding of space-time structure of radiative processes.
- Understand limits in applicability of certain descriptions.
- Better understand specific aspects of hadron formation.

No nuclear overlap

What will happen?

P. Steinberg

Ultra peripheral collisions

Nucleus with Z of 82 traveling at ultra relativistic speeds ⇒ lorentz contracted

Very strong EM fields: B~O(10¹⁵ T)

⇒ source of nearly-real high energy photons

⇒ powerful QED laboratory & precision QCD & BSM searches

Why is scattering of light interesting?

Light-by-light scattering

Run: 366994 Event: 453765663 2018-11-26 18:32:03 CEST

Light-by-light scattering

- Not allowed classically, but possible in QED
- Very rare process $O(\alpha^4) \rightarrow$ not observed in laser experiments

Photon has significant hadronic component

Courtesy of A. Angerami

 What is the size of modification of the PDF for nucleons inside nuclei?

 What is the size of modification of the PDF for nucleons inside nuclei?

000000

Gluon emission

 Can we see onset of gluon saturation or
□ = non-linear QCD effects?

- Can we see onset of gluon saturation or non-linear QCD effects?
- What is the size of modification of the PDF for nucleons inside nuclei?
- Pb+p ⇒ γ+p interactions

Significant gaps in our knowledge of nuclear PDFs.

- Significant gaps in our knowledge of nuclear PDFs.
- Three recent ATLAS measurements will help to fill the gap.
- Dijets and ttbar in p+Pb and in dijets in UPC.

- Significant gaps in our knowledge of nuclear PDFs.
- Three recent ATLAS measurements will help to fill the gap.
- Dijets and ttbar in p+Pb and in dijets in UPC.

a hadronic state ⇒ "Resolved" contribution

Photon fluctuates into

Proxy for Q² $H_T =$ $M_{jets}e^{+y_{jets}}$ $z_{\gamma} = -$ \$<u>NN</u> $M_{jets}e^{-y_{jets}}$ x_A $\sqrt{S_{NN}}$ ~photon energy fraction ~target energy fraction

Photonuclear Jet Production: Prospects

Dead-cone effect

- Large systematic uncertainties ⇔ not competitive ⇒ work on significant improvements
- Almost pure quark jet sample
 - Allow for precision measurement of jet structure
- Flavour tagging
 - Heavy flavour jets will help to constrain nPDFs
 - Study of dead cone effect
 - Cross-section sensitive to BSM

Challenges in jet structure measurements

- Push towards larger phase space: lower energy and various/larger radius.
- Large UE contribution from soft particles.
- Combinatorial background from independent hard scatterings.
- For calorimetric measurement:
 - Jet energy calibration and uncertainties for every new jet "collection".... different radius, subjects, and constituents.
- Role of ISR@FSR
- Choice of setting in grooming...
 - Sensitive to modeling and subtraction.
 - Need to understand biases we introduce.

Observables and analysis procedure

Measurement of yields of re-clustered R=1.0 jets as function of p_T, angular separation, and k_t splitting scale:

$$\Delta R_{12} = \sqrt{\Delta y_{12}^2 + \Delta \phi_{12}^2}, \ \sqrt{d_{12}} = \min(p_{\mathrm{T}_1}, p_{\mathrm{T}_2}) \times \Delta R_{12}$$

• Jet suppression is evaluated using modification factor R_{AA} .

Raw sub-jet multiplicity
Observables and analysis procedure

Measurement of yields of re-clustered R=1.0 jets as function of p_T, angular separation, and k_t splitting scale:

$$\Delta R_{12} = \sqrt{\Delta y_{12}^2 + \Delta \phi_{12}^2}, \ \sqrt{d_{12}} = \min(p_{\mathrm{T}_1}, p_{\mathrm{T}_2}) \times \Delta R_{12}$$

• Jet suppression is evaluated using modification factor R_{AA} .

Raw sub-jet multiplicity

Observables and analysis procedure

• Measurement of yields of re-clustered R=1.0 jets as function of p_{T} , angular separation, and k_t splitting scale:

$$\Delta R_{12} = \sqrt{\Delta y_{12}^2 + \Delta \phi_{12}^2}, \ \sqrt{d_{12}} = \min(p_{\mathrm{T}_1}, p_{\mathrm{T}_2}) \times \Delta R_{12}$$

• Jet suppression is evaluated using modification factor R_{AA} .

Raw sub-jet multiplicity

Re-clustered jets vs substructure

- Significant change of the R_{AA} magnitude between jets with single sub-jet and and those with more complex substructure.
- The R_{AA} sharply decreases followed by flattening.

75

arXiv:2301.05606

Re-clustered jets vs substructure

- The R_{AA} sharply decreases followed by flattening.
- Similar observation for suppression as function of angular separation.

Where does the energy flows?

• Study of correlation of missing p_{T} evaluated with tracks in various p_{T} bins with jets.

Where does the energy flows?

• Study of correlation of missing p_{T} evaluated with tracks in various p_{T} bins with jets.

78

Where does the energy flows?

• Study of correlation of missing p_{T} evaluated with tracks in various p_{T} bins with jets.

Modification of Radial Profile

- Jets are broader in more central collisions at low p_{T} .
- Significant suppression of yields of particles $p_{T} > 4$ GeV outside the jet core.

Modification of Radial Profile

- Smallest modification seen in the jet core.
- The enhancement increases with decreasing p_{T} .

Radial profile

Full picture: small & large jets

• Addressing transition from color-coherence to decoherence...

Example of description

Courtesy of Martin S.

R-dependence of dijet imbalance

R-dependent suppression only seen mainly for low-x, values.

85

arXiv:2407.18796