

Universal properties of elastic pp cross section from the ISR to the LHC

Michał Praszałowicz

(Jagiellonian University, Krakow)

Scaling properties of elastic pp (pp) cross-section.

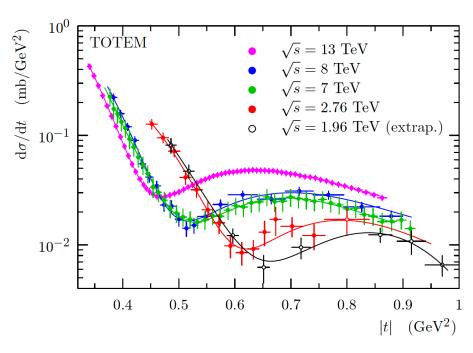
Michał Praszałowicz

"Białasówka" 7.10.2022.

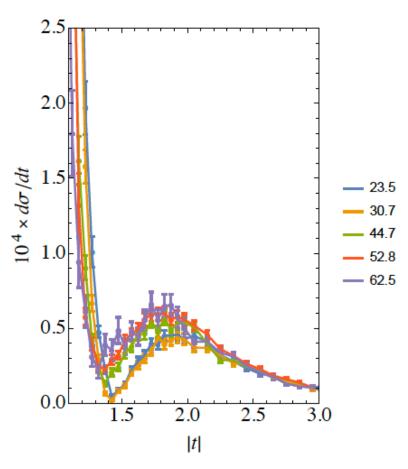
Scaling laws of elastic proton-proton scattering differential cross sections
Cristian Baldenegro (Rome U.),
Michal Praszalowicz (Jagiellonian U.),
Christophe Royon (Kansas U.),
Anna M. Stasto (Penn State U.) (Jun 3, 2024)
Phys.Lett.B 856 (2024) 138960 • e-Print: 2406.01737 [hep-ph]

Michal Praszalowicz (Jagiellonian U.), in preparation

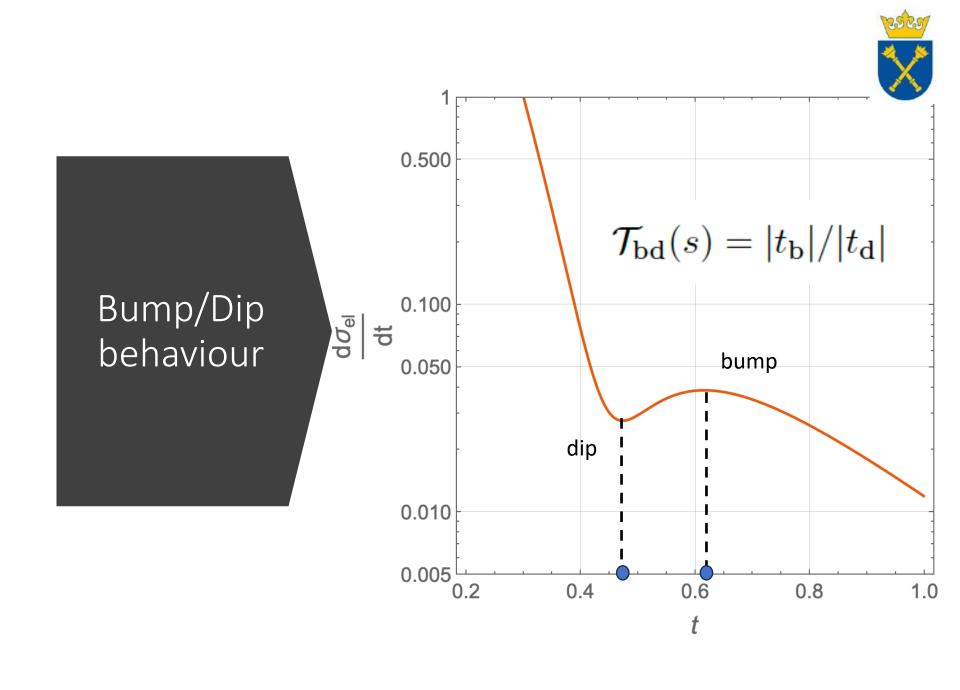
Differential elastic cross-sections



V.M. Abazov [TOTEM and D0] PRL 102 (2020) 062003 (Royon odderon paper)



LHC ISR



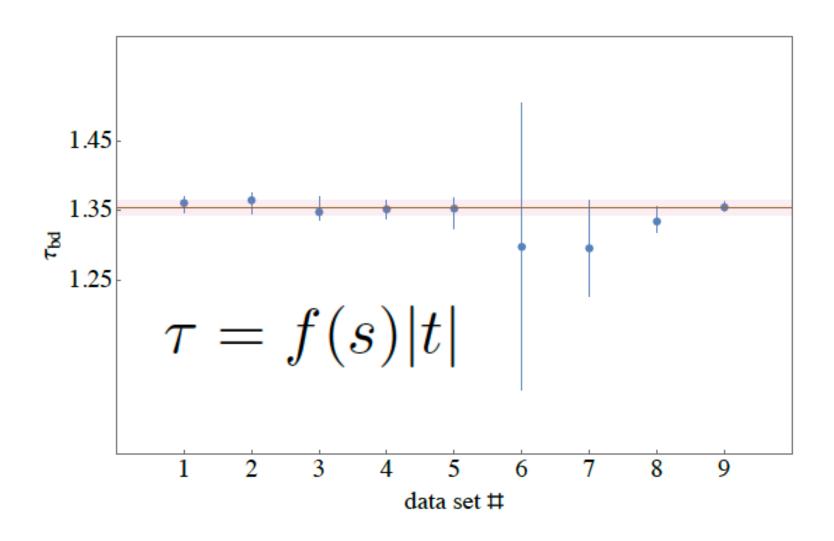
An observation

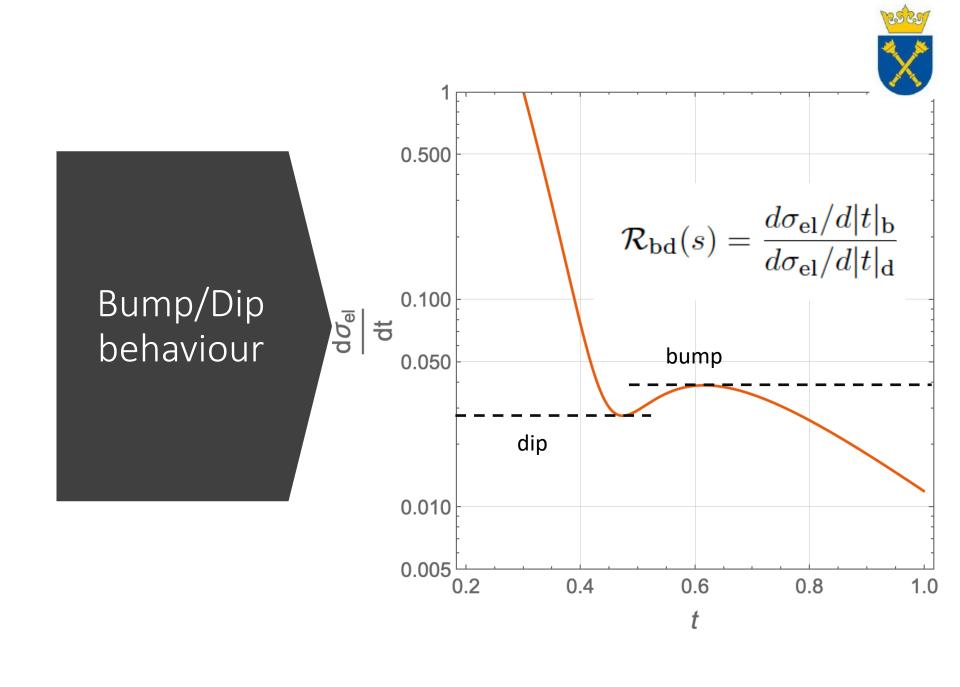
Phys.Lett.B 856 (2024) 138960

$$\mathcal{T}_{\mathrm{bd}}(s) = |t_{\mathrm{b}}|/|t_{\mathrm{d}}|$$

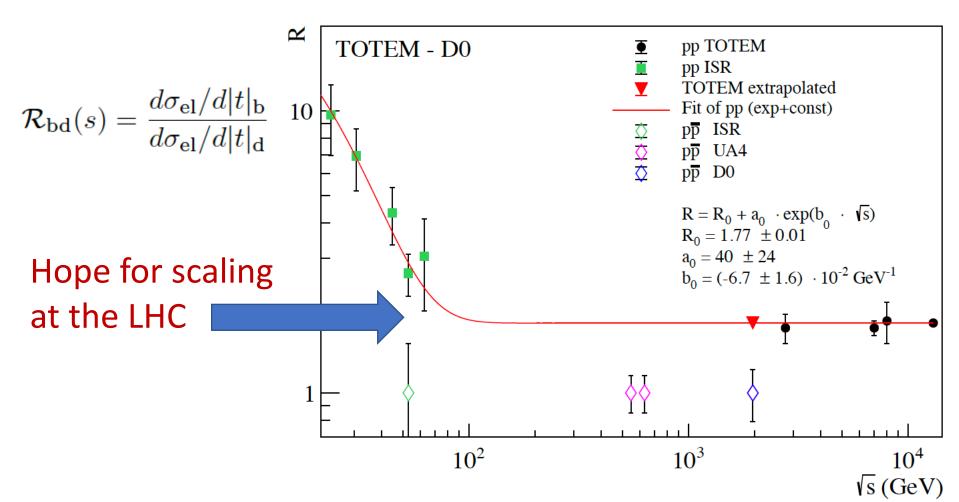
	#	W	dip		bump		ratios	
			$ t _{ m d}$	error	$ t _{ m b}$	error	$t_{ m b}/t_{ m d}$	error
LHC [TeV]	9	13.00	0.471	$+0.002 \\ -0.003$	0.6377	+0.0006 -0.0006	1.355	$+0.008 \\ -0.005$
	8	8.00	0.525	$+0.002 \\ -0.004$	0.700	$+0.010 \\ -0.008$	1.335	$+0.021 \\ -0.016$
	7	7.00	0.542	$^{+0.012}_{-0.013}$	0.702	$+0.034 \\ -0.034$	1.296	$+0.069 \\ -0.069$
	6	2.76	0.616	$^{+0.001}_{-0.002}$	0.800	$^{+0.127}_{-0.127}$	1.298	$^{+0.206}_{-0.206}$
ISR [GeV]	5	62.50	1.350	$^{+0.011}_{-0.011}$	1.826	$+0.016 \\ -0.039$	1.353	$+0.016 \\ -0.029$
	4	52.81	1.369	$+0.006 \\ -0.006$	1.851	$+0.014 \\ -0.018$	1.352	$^{+0.012}_{-0.014}$
	3	44.64	1.388	$+0.003 \\ -0.007$	1.871	$+0.031 \\ -0.015$	1.348	$+0.023 \\ -0.011$
	2	30.54	1.434	$+0.001 \\ -0.004$	1.957	$+0.013 \\ -0.028$	1.365	$^{+0.010}_{-0.020}$
	1	23.46	1.450	$+0.005 \\ -0.004$	1.973	$+0.011 \\ -0.018$	1.361	$+0.009 \\ -0.013$

An observation





Bump/Dip behaviour



V.M. Abazov [TOTEM and D0] PRL 102 (2020) 062003 (Royon odderon paper)

ISR - a bit of history

Nuclear Physics B59 (1973) 231-236 North-Holland Publishing Company

GEOMETRIC SCALING, MULTIPLICITY DISTRIBUTIONS AND CROSS SECTIONS

J DIAS DE DEUS

The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Received 8 March 1973

Abstract From a geometric picture of hadrons as extended objects we arrive at some universal features of high energy collisions. In this approach the mean multiplicity, as a function of s and the KNO scaling function are universal, and asymptotically the ratio $\sigma_{\rm elastic}/\sigma_{\rm total}$ is expected to be the same for all processes

Cross-sections

Impact parameter space (Barone, Predazzi):

$$egin{array}{lll} \sigma_{
m el} &=& \int d^2 oldsymbol{b} \left[1-e^{-\Omega(s,b)+i\chi(s,b)}
ight]^2, \ \sigma_{
m tot} &=& 2\int d^2 oldsymbol{b} \, \operatorname{Re} \left[1-e^{-\Omega(s,b)+i\chi(s,b)}
ight], \ \sigma_{
m inel} &=& \int d^2 oldsymbol{b} \, \left[1-\left|e^{-\Omega(s,b)}
ight|^2
ight]. \end{array}$$

Geometric scaling

$$\Omega(s,b) = \Omega(b/R(s))$$

Opacity is a function of one varible, and R(s) grows with energy. Changing variable

$$\boldsymbol{b} \to \boldsymbol{B} = \boldsymbol{b}/R(s)$$

$$\sigma_{\text{inel}} = R^2(s) \int d^2 \boldsymbol{B} \left[1 - \left| e^{-\Omega(B)} \right|^2 \right]$$

Immediate consequences

$$\sigma_{\text{el}} = \int d^2 \boldsymbol{b} \left| 1 - e^{-\Omega(s,b) + i\chi(\boldsymbol{b})} \right|^2,$$

$$\sigma_{\text{tot}} = 2 \int d^2 \boldsymbol{b} \operatorname{Re} \left[1 - e^{-\Omega(s,b) + i\chi(\boldsymbol{b})} \right],$$

$$\sigma_{\text{inel}} = \int d^2 \boldsymbol{b} \left[1 - \left| e^{-\Omega(s,b)} \right|^2 \right].$$

Immediate consequences

$$\sigma_{\text{el}} = R^{2}(s) \int d^{2}\boldsymbol{B} \left| 1 - e^{-\Omega(B)} \right|^{2}$$

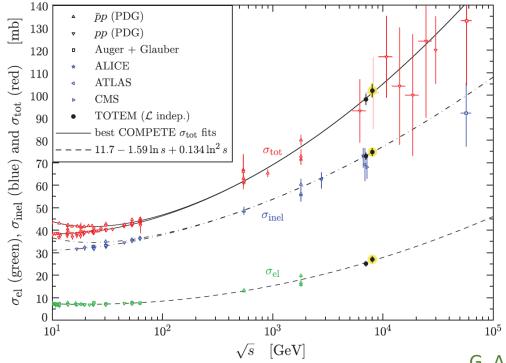
$$\sigma_{\text{tot}} = 2R^{2}(s) \int d^{2}\boldsymbol{B} \operatorname{Re} \left[1 - e^{-\Omega(B)} \right]$$

$$\sigma_{\text{inel}} = R^{2}(s) \int d^{2}\boldsymbol{B} \left[1 - \left| e^{-\Omega(B)} \right|^{2} \right]$$

If we neglect χ (indeed ρ parameter is small), then all cross-sections have the same energy dependence.

Scaling at the LHC?

	elastic	inelastic	total	ρ
ISR	$W^{0.1142\pm0.0034}$	$W^{0.1099\pm0.0012}$	$W^{0.1098\pm0.0012}$	0.02 - 0.095
LHC	$W^{0.2279\pm0.0228}$	$W^{0.1465\pm0.0133}$	$W^{0.1729\pm0.0163}$	0.15 - 0.10



G. Antchev [TOTEM] PRL 111 (2013) 012001

$$T_{\rm el}(s,t) = \int d^2 \mathbf{b} \, e^{-i \, \mathbf{b} \mathbf{q}} T_{\rm el}(s,b)$$

$$= \frac{1}{2} \int_0^\infty db^2 T_{\rm el}(s,b) \int_0^{2\pi} d\varphi e^{-i b q \cos \varphi}$$

$$= \pi \int_0^\infty db^2 T_{\rm el}(s,b) J_0(bq).$$

$$s\sigma_{\text{tot}}(s) = 2\operatorname{Im}\tilde{T}_{\text{el}}(s,0)$$

Construct amplitude that exhibits GS, gives correct energy dependence of σ_{tot}

$$\sigma_{\rm el}(s) = \frac{1}{4\pi s^2} \int dt \left| \tilde{T}_{\rm el}(s,t) \right|^2$$

$$s\sigma_{\text{tot}}(s) = 2\operatorname{Im}\tilde{T}_{\text{el}}(s,0)$$

Construct amplitude that exhibits GS, gives correct energy dependence of σ_{tot}

$$\sigma_{\rm el}(s) = \frac{1}{4\pi s^2} \int dt \left| \tilde{T}_{\rm el}(s,t) \right|^2$$

$$\tilde{T}_{\rm el}(s,\tau) \sim isR^2(s)\Phi(\tau)$$

$$\tau = |t|R^2(s)$$

$$\sigma_{\rm tot}(s) \sim R^2(s)$$

Nuclear Physics B71 (1974) 481-492

SCALING LAW FOR THE ELASTIC DIFFERENTIAL CROSS SECTION IN pp SCATTERING FROM GEOMETRIC SCALING*

A.J. BURAS and J. DIAS de DEUS

The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen φ, Denmark

Received 6 December 1973

Abstract: Plots of $(1/\sigma_{\rm in}^2) {\rm d}\sigma_{\rm el}/{\rm d} \mid t \mid \equiv \Phi(\tau,s)$ as a function of $\tau \equiv \mid t \mid \sigma_{\rm in}$ are shown to scale in the NAL-ISR energy region. Such scaling is shown to be a consequence of geometric scaling for the inelastic overlap function $G_{\rm in}(\beta = \pi b^2/\sigma_{\rm in})$ in the limit $\rho = {\rm Re}A/{\rm Im}A \to 0$ and in the case of $\sigma_{\rm in} \sim (\ln s)^2$ is equivalent to the scaling proposed by Auberson, Kinoshita and Martin. A possible relation to the KNO multiplicity scaling is indicated.

$$\tau = \sigma_{\rm inel}(s) |t| = R^2(s) |t| \times {\rm const.}$$

Vol. B9 (1978) ACTA PHYSICA POLONICA No 2

DIPS, ZEROS AND LARGE |t| BEHAVIOUR OF THE ELASTIC AMPLITUDE

By J. DIAS DE DEUS*

Physics Department, University of Wuppertal, Germany and CFMC-Instituto Nacional de Investigação Científica, Lisboa, Portugal

AND P. KROLL

Physics Department, University of Wuppertal

(Received September 9, 1977)

$$\sigma_{\rm tot}(s) \sim R^2(s)$$

$$\tau = \sigma_{\rm inel}(s) |t| = R^2(s) |t| \times {\rm const.}$$

$$\frac{d\sigma_{\text{el}}}{d|t|} \sim \left| \int_{0}^{\infty} db^{2} A_{\text{el}}(b^{2}, s) J_{0}\left(b\sqrt{|t|}\right) \right|^{2}$$

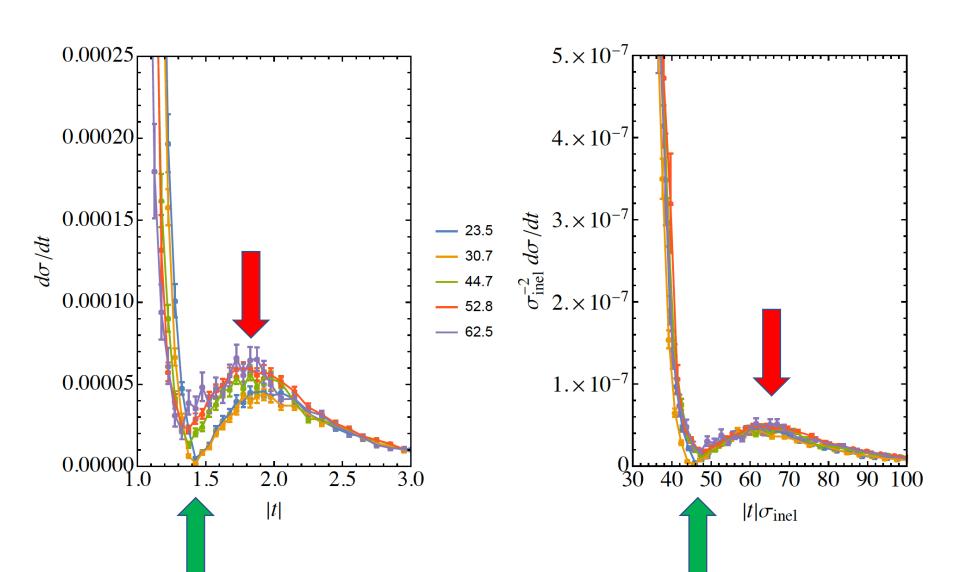
$$= \left| \sigma_{\text{inel}}(s) \int_{0}^{\infty} d\left(b^{2} / \sigma_{\text{inel}}(s)\right) A_{\text{el}}(b^{2} / \sigma_{\text{inel}}(s)) J_{0}\left(\sqrt{\tau} b / \sqrt{\sigma_{\text{inel}}(s)}\right) \right|^{2}$$

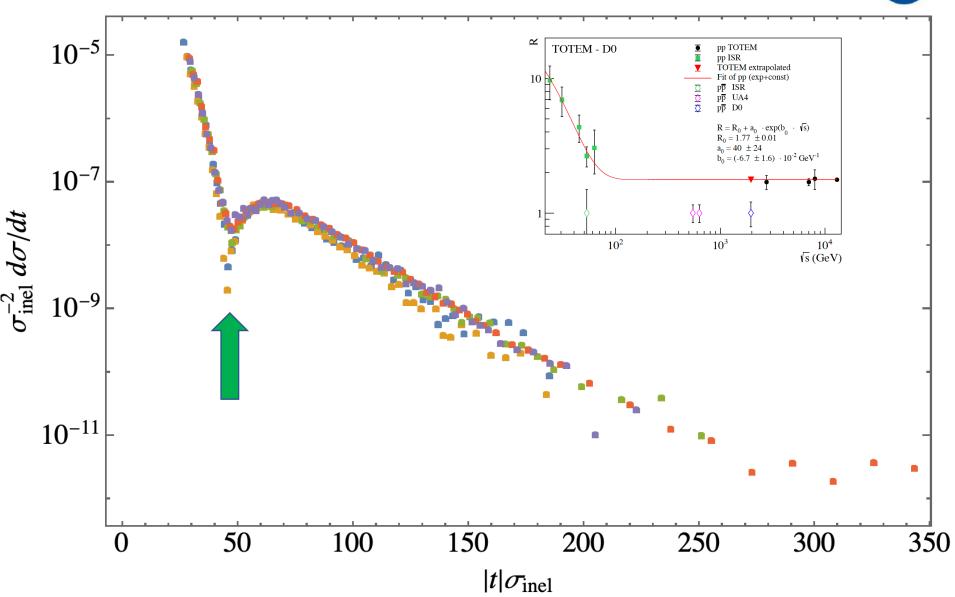
$$= \sigma_{\text{inel}}^{2}(s) \left| \int_{0}^{\infty} dB^{2} A_{\text{el}}(B^{2}) J_{0}\left(B\sqrt{\tau}\right) \right|^{2}$$

$$= \sigma_{\text{inel}}^{2}(s) \Phi_{\tau}^{2}(\tau).$$

$$\tau = \sigma_{\rm inel}(s) |t| = R^2(s) |t| \times {\rm const.}$$

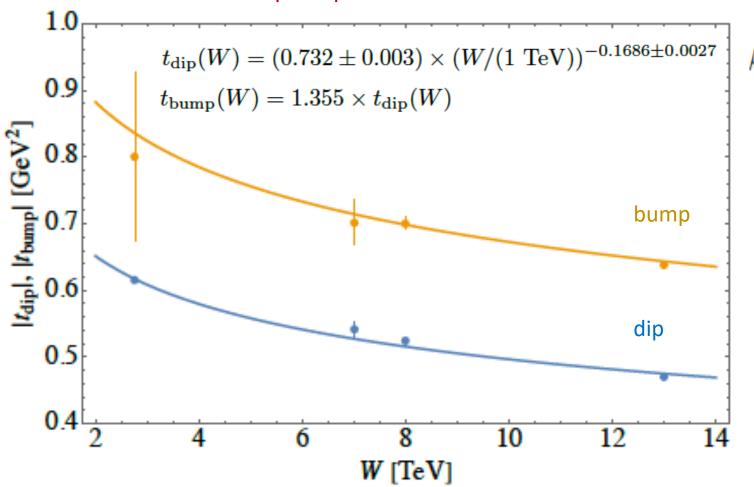
$$\frac{1}{\sigma_{\text{inel}}^2(s)} \frac{d\sigma_{\text{el}}}{d|t|}(s,t) = \Phi^2(\tau)$$





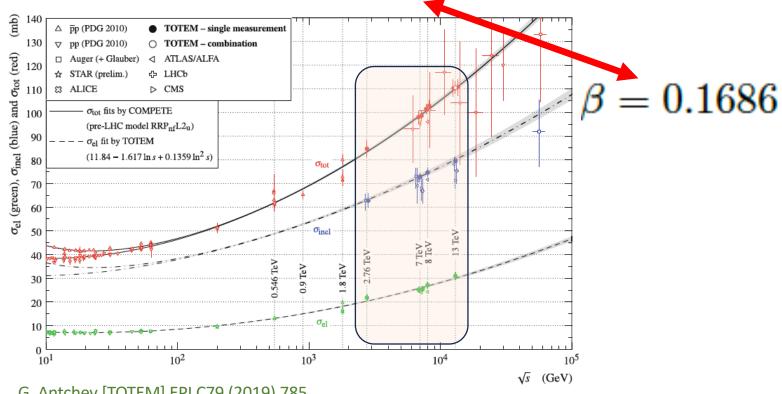
Scaling variable at the LHC

The fact that $t_{\text{bump}}/t_{\text{dip}}$ = const. implies: $\tau = f(s)|t|$



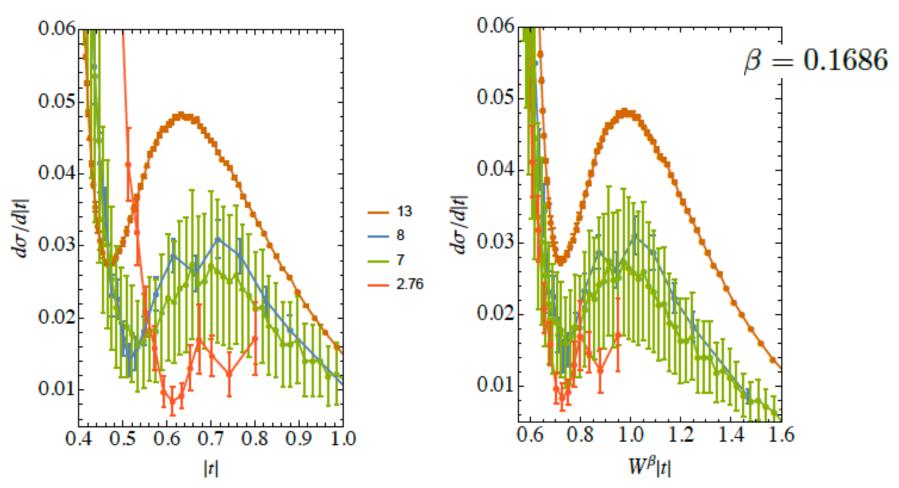
 $\beta = 0.1686$

	elastic	inelastic	total	elastic inelastic	ρ
ISR	$W^{0.1142\pm0.0034}$	$W^{0.1099\pm0.0012}$	$W^{0.1098\pm0.0012}$	$W^{0.0043\pm0.0036}$	0.02 - 0.095
LHC	$W^{0.2279\pm0.0228}$	$W^{0.1465\pm0.0133}$	$W^{0.1729\pm0.0163}$	$W^{0.0814\pm0.0264}$	0.15 - 0.10



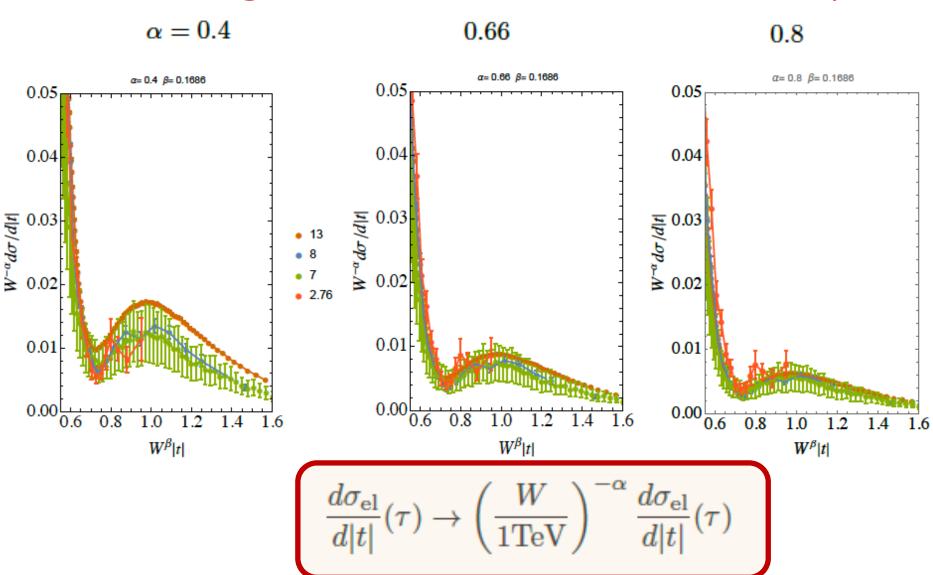
G. Antchev [TOTEM] EPJ C79 (2019) 785

Scaling at the LHC – first step



Bump and dip positions are superimposed. Now we have to superimpose bump and dip values.

Scaling at the LHC – second step



$$s\sigma_{\text{tot}}(s) = 2\operatorname{Im}\tilde{T}_{\text{el}}(s,0)$$

Construct amplitude that exhibits GS, gives correct energy dependence of σ_{tot}

$$\sigma_{\rm el}(s) = \frac{1}{4\pi s^2} \int dt \left| \tilde{T}_{\rm el}(s,t) \right|^2$$

$$\tilde{T}_{\rm el}(s,\tau) \sim isR^2(s)\Phi(\tau)$$

$$\tau = |t|R^2(s)$$

$$\sigma_{\rm tot}(s) \sim R^2(s)$$

$$s\sigma_{\text{tot}}(s) = 2\operatorname{Im}\tilde{T}_{\text{el}}(s,0)$$

$$\sigma_{\rm el}(s) = \frac{1}{4\pi s^2} \int dt \left| \tilde{T}_{\rm el}(s,t) \right|^2 \qquad \tilde{T}_{\rm el}(u,t) \simeq \tilde{T}_{\rm el}(-s,t) = \tilde{T}_{\rm el}^*(s,t)$$

Construct amplitude that exhibits GS, gives correct energy dependence of σ_{tot} and satisfies crossing

$$\tilde{T}_{\rm el}(u,t) \simeq \tilde{T}_{\rm el}(-s,t) = \tilde{T}_{\rm el}^*(s,t)$$

$$\tilde{T}_{el}(s,\tau) = isR^2(-is)\Phi\left[|t|R^2(-is)\right]$$

Identifying Real and Imaginary parts

Use rapidity: $y = \ln s$ observe $-is = e^{y-i\pi/2}$ and expand

$$R^{2}(-is) \rightarrow R^{2}\left(y - i\frac{\pi}{2}\right) \simeq R^{2}(y) - i\frac{\pi}{2}\frac{dR^{2}(y)}{dy}$$

As a result, one gets:

$$\operatorname{Im} \tilde{T}_{el}(s,\tau) = sR^{2}(y)\Phi[\tau]$$

$$\operatorname{Re} \tilde{T}_{el}(s,\tau) = s\frac{\pi}{2}\frac{dR^{2}(y)}{dy}\frac{d}{d\tau}\left(\tau\Phi[\tau]\right)$$

Use rapidity: $y = \ln s$ observe $-is = e^{y-i\pi/2}$ and expand

$$R^{2}(-is) \rightarrow R^{2}\left(y - i\frac{\pi}{2}\right) \simeq R^{2}(y) - i\frac{\pi}{2}\frac{dR^{2}(y)}{dy}$$

As a result, one gets:

$$\operatorname{Im} \tilde{T}_{\text{el}}(s,\tau) = sR^{2}(y)\Phi[\tau]$$

$$\operatorname{Re} \tilde{T}_{\text{el}}(s,\tau) = s\frac{\pi}{2}\frac{dR^{2}(y)}{dy}\frac{d}{d\tau}\left(\tau\Phi[\tau]\right)$$

$$\rho(y) = \frac{\pi}{2}\frac{dR^{2}(y)/dy}{R^{2}(y)}$$

$$\rho(y) = \frac{\pi}{2} \frac{dR^2(y)/dy}{R^2(y)}$$

parameter free prediction!

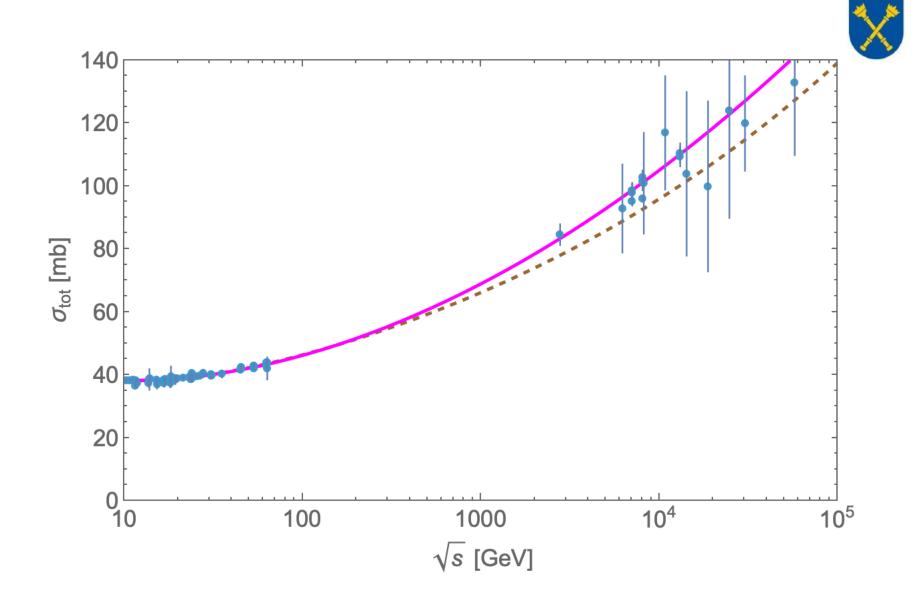
Parametrizations of sigma_tot

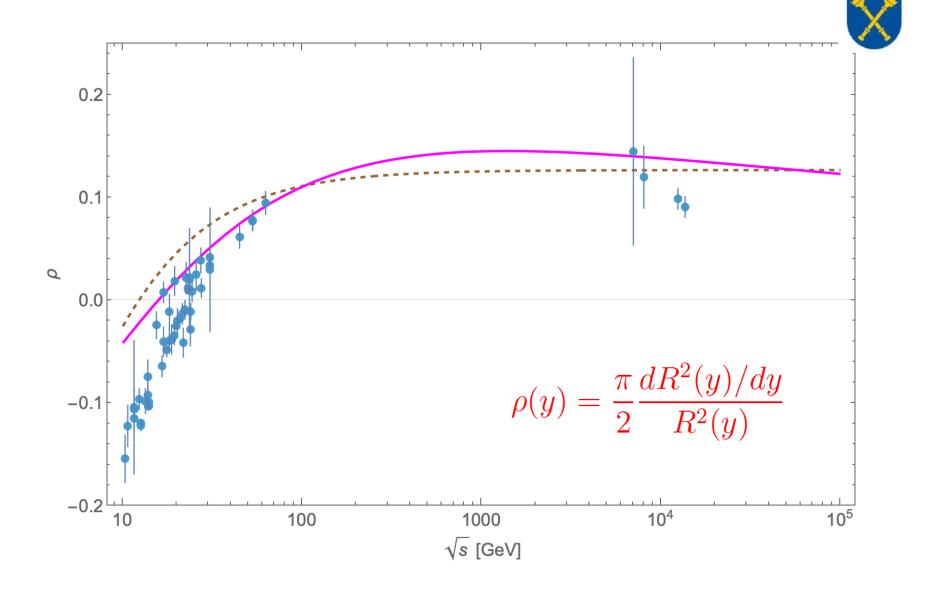
COMPETE@PDG2010

$$\sigma_{\text{tot}}^{\text{PDG}}(s) = Z + C \ln^2 \left(\frac{s}{s_0}\right) + Y_1 \left(\frac{s}{s_1}\right)^{-\eta_1} - Y_2 \left(\frac{s}{s_1}\right)^{-\eta_2}$$

Donnachie & Landshoff

$$\sigma_{\text{tot}}^{\text{DL}}(s) = A \left(\frac{s}{s_1}\right)^{\alpha} + B \left(\frac{s}{s_1}\right)^{\beta}$$



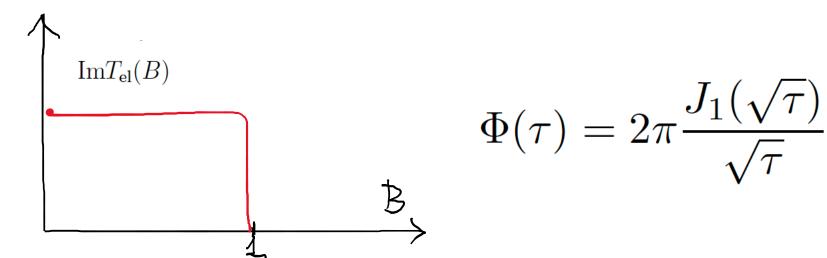


Dips and bumps

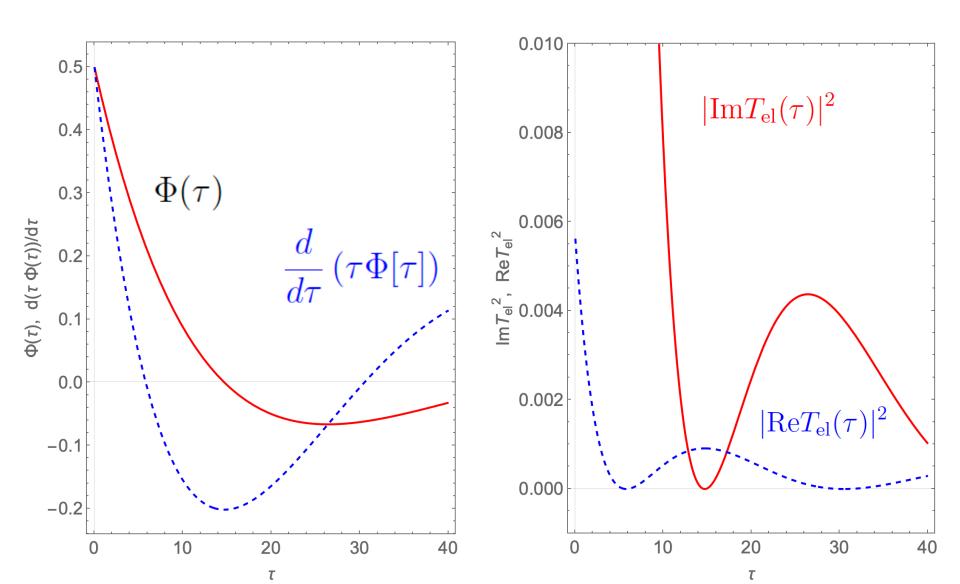
Function $\Phi[\tau]$ has a zero, which corresponds to a dip

$$\operatorname{Im} \tilde{T}_{el}(\tau) = 2\pi s R^{2}(s) \int_{0}^{\infty} dB^{2} \operatorname{Im} T_{el}(B) J_{0}(B\sqrt{\tau})$$

For a hard disc one can compute this integral analytically



Dips and Bumps



Dips and bumps

$$\Phi[\tau_{\text{dip}}] = 0 \to \text{Im } \tilde{T}_{\text{el}}(s, \tau_{\text{dip}}) = 0$$

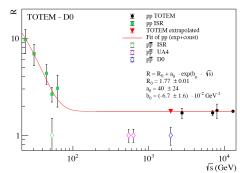
$$\text{Re } \tilde{T}_{\text{el}}(s, \tau_{\text{dip}}) = s \frac{\pi}{2} \frac{dR^2(y)}{dy} \frac{d}{d\tau} \Phi[\tau_{\text{dip}}]$$

$$\frac{d}{d\tau}\Phi[\tau_{\text{bump}}] = 0 \to \text{Im } \tilde{T}_{\text{el}}(s, \tau_{\text{dip}}) = sR^2(y)\Phi[\tau_{\text{bump}}]$$

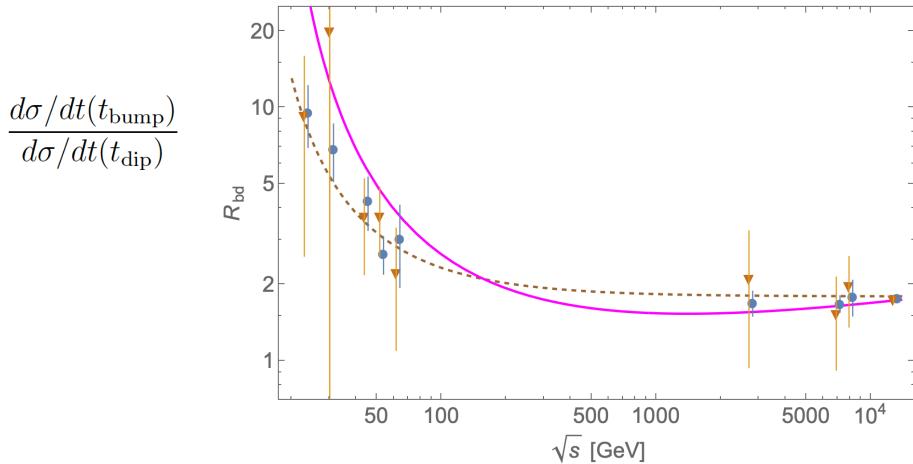
$$\text{Re } \tilde{T}_{\text{el}}(s, \tau_{\text{dip}}) = s\frac{\pi}{2}\frac{dR^2(y)}{dy}\Phi[\tau_{\text{bump}}]$$

$$\frac{d\sigma/dt(t_{\text{bump}})}{d\sigma/dt(t_{\text{dip}})} = c_0 \frac{1 + \rho^2(y)}{\rho^2(y)} \qquad c_0 = \frac{\Phi^2[\tau_{\text{bump}}]}{(\tau_{\text{dip}} \frac{d}{d\tau} \Phi[\tau_{\text{dip}}])^2}$$

$$c_0 = \frac{\Phi^2[\tau_{\text{bump}}]}{\left(\tau_{\text{dip}}\frac{d}{d\tau}\Phi[\tau_{\text{dip}}]\right)^2}$$



Ratio bump to dip



COMPETE

A. Donnachie (Manchester U.), P.V. Landshoff (CERN) Phys.Lett.B 296 (1992) 227-232

Total elastic cross section

Assuming GS holds everywhere

$$\sigma_{\rm el}(s) = \frac{1}{4\pi R^2(y)} \left[R^4(y) \int d\tau \Phi^2[\tau] + \left(\frac{\pi}{2} \frac{dR^2(y)}{dy} \right)^2 \int d\tau \left(\frac{d}{d\tau} \left(\tau \Phi[\tau] \right) \right)^2 \right]$$

$$= \frac{R^2(y)}{4\pi} \left(1 + c_1 \rho^2(y) \right) \times \int d\tau \Phi^2[\tau] \qquad c_1 = \frac{\int d\tau \left(\frac{d}{d\tau} \left(\tau \Phi[\tau] \right) \right)^2}{\int d\tau \Phi^2[\tau]}$$

- ISR: rho is very small, does not influence energy behavior
- LHC: rho is larger but almost constant, does not change energy behavior either

Total elastic cross section

Assuming exponential diffractive peak (no dips and bumps)

$$\frac{\sigma_{\rm el}(s)}{\sigma_{\rm tot}(s)} \sim \frac{\sigma_{\rm tot}(s)}{B(s)} \left(1 + \rho^2(s)\right)$$

Works within a few %. However, if $\sigma_{tot}(s) \neq B(s)$ GS is violated.

Asymptotically (M.M. Block, Phys. Rept. (2006))

$$\sigma_{\rm tot}(s)/B(s) \to {\rm const.}$$

Summary

- Bump to dip position ratio is constant from ISR to LHC
- Universal scaling variable $\tau \sim \sigma_{\text{tot}}(s) |t| = R^2(y) |t|$
- Crossing and GS and expansion

$$R^2\left(y - i\frac{\pi}{2}\right) \simeq R^2(y) - i\frac{\pi}{2}\frac{dR^2(y)}{dy}$$

- Parameter free prediction for rho parameter
- Dip and bump structure understood in terms of sig_tot and its derivative
- Main properties of total and differential cross-sections
 <u>at all energies</u> in the dip bump region
 explained from a simple and intuitive picture based on GS
- But still approximate, total elastic x-section is not reproduced
 GSV at small t