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Background

Chiral spirals belong to a broad range of mean fields that are used to study
pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]

Study of pion condensation throughout the years:

Presented a self consistent solution that agreed with bulk properties of nuclear
matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]

Investigation in various kinds of pion condensed phases in an effective chiral
models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]

Pion condensed phase as a new possible phase of matter.
[W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

3 / 30



Background

Chiral spirals belong to a broad range of mean fields that are used to study
pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]

Study of pion condensation throughout the years:

Presented a self consistent solution that agreed with bulk properties of nuclear
matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]

Investigation in various kinds of pion condensed phases in an effective chiral
models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]

Pion condensed phase as a new possible phase of matter.
[W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

3 / 30



Background

Chiral spirals belong to a broad range of mean fields that are used to study
pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]

Study of pion condensation throughout the years:

Presented a self consistent solution that agreed with bulk properties of nuclear
matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]

Investigation in various kinds of pion condensed phases in an effective chiral
models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]

Pion condensed phase as a new possible phase of matter.
[W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

3 / 30



Background

Chiral spirals belong to a broad range of mean fields that are used to study
pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]

Study of pion condensation throughout the years:

Presented a self consistent solution that agreed with bulk properties of nuclear
matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]

Investigation in various kinds of pion condensed phases in an effective chiral
models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]

Pion condensed phase as a new possible phase of matter.
[W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

3 / 30



Background

Chiral spirals belong to a broad range of mean fields that are used to study
pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]

Study of pion condensation throughout the years:

Presented a self consistent solution that agreed with bulk properties of nuclear
matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]

Investigation in various kinds of pion condensed phases in an effective chiral
models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]

Pion condensed phase as a new possible phase of matter.
[W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

3 / 30



Background

Investigations into periodic chiral fields [M. Sadzikowski and W. Broniowski, Phys. Lett.

B 488, 63 (2000), arXiv:hep-ph/0003282.] , [M. Sadzikowski, Phys. Lett. B 642, 238 (2006),

arXiv:hep-ph/0609186.]

And many more by Fukushima, Maedan, Partyka, Heinz, Giacosa, Rischke,
Buballa and others.

The prime focus in past was the possibility of inhomogeneous condensates
being the real ground state of matter.

Potential practical application was on Pulsars, although current
considerations seem to rule out this possibility.
[O. Papadopoulos and A. Schmitt, Phys. Rev. D 111, 034010 (2025)]
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Chiral symmetry and chiral models

The symmetry between left and right handed fermions is called the chiral
symmetry.

One such example would be the NJL model with scalar and pseudoscalar
condensates [S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).]

L = iℏψ̄ �∂ψ + G
[
(ψ̄ψ)2︸ ︷︷ ︸

scalar (σ̂)

+ (ψ̄iγ5ψ)
2︸ ︷︷ ︸

pseudoscalar (π̂)

]
. (1)

( �A = Aµγ
µ and the γ matrices are taken here in the Dirac representation.)

The UA(1) chiral transformation of fields is given by

ψ(x) → e−iγ5
α
2 ψ(x)
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Chiral spirals

We consider Dirac particles that interact with some externally given mean
field for scalar and pseudoscalar condensates.

Such systems are governed by the dynamical equation given below[
iℏ γµ∂µ − σ − iγ5π

]
ψ(x) = 0, (2)

In chiral spirals we assume a periodic form for the mean fields given as,

σ = M cos (ϕ) , π = M sin (ϕ) . (3)

Where, one may proceed with two kinds of forms for ϕ,

q · x
ℏ

where q is momentum (4)

κ · x where κ is a Wave vector (5)

We choose the former.
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Why Spirals?

Figure: Spiral nature of the scalar and pseudoscalar condensate
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Ansatz to solve chiral spirals

The forms of the condensate turns our dynamical equation into a Dirac-like
equation given as, [

iℏ γµ∂µ −Me iγ5(q·x)/ℏ
]
ψ(x) = 0. (6)

Fortunately, the equation of motion can be solved exactly by the following
ansatz, [F. Dautry and E. M. Nyman, Nuclear Physics A 319, 323 (1979).]

ψ± (x) = exp

(
− iγ5

2

q · x
ℏ

)
χ± (p) e∓ip·x/ℏ, (7)

This eliminates all space dependence in the Dirac-like equation and reduces
the problem to an eigenvalue problem which can be solved analytically.
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Ansatz to solve chiral spirals

Using the Pauli matrices, τ , we write

“Positive” energies︷ ︸︸ ︷(
M − 1

2τ · q τ · p
τ · p −M − 1

2τ · q

)
,

“Negative” Energies︷ ︸︸ ︷(
−M + 1

2τ · q τ · p
τ · p M + 1

2τ · q

)
. (8)

We assume q to be along the z-axis and find the eigenvalues.

The eigenvalues give the energy spectrum which features a split in energy for
different spins (q > 0),

E (r)
p =

√
p2 + q2/4 +M2 + (−1)r−1 q

√
M2 + (p3)2 (r = 1, 2). (9)

We use, E
∥
p =

√
M2 + (p3)2 to simplify the equations.

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

9 / 30



Ansatz to solve chiral spirals

Using the Pauli matrices, τ , we write

“Positive” energies︷ ︸︸ ︷(
M − 1

2τ · q τ · p
τ · p −M − 1

2τ · q

)
,

“Negative” Energies︷ ︸︸ ︷(
−M + 1

2τ · q τ · p
τ · p M + 1

2τ · q

)
. (8)

We assume q to be along the z-axis and find the eigenvalues.

The eigenvalues give the energy spectrum which features a split in energy for
different spins (q > 0),

E (r)
p =

√
p2 + q2/4 +M2 + (−1)r−1 q

√
M2 + (p3)2 (r = 1, 2). (9)

We use, E
∥
p =

√
M2 + (p3)2 to simplify the equations.

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

9 / 30



Ansatz to solve chiral spirals

Using the Pauli matrices, τ , we write

“Positive” energies︷ ︸︸ ︷(
M − 1

2τ · q τ · p
τ · p −M − 1

2τ · q

)
,

“Negative” Energies︷ ︸︸ ︷(
−M + 1

2τ · q τ · p
τ · p M + 1

2τ · q

)
. (8)

We assume q to be along the z-axis and find the eigenvalues.

The eigenvalues give the energy spectrum which features a split in energy for
different spins (q > 0),

E (r)
p =

√
p2 + q2/4 +M2 + (−1)r−1 q

√
M2 + (p3)2 (r = 1, 2). (9)

We use, E
∥
p =

√
M2 + (p3)2 to simplify the equations.

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

9 / 30



Ansatz to solve chiral spirals

Using the Pauli matrices, τ , we write

“Positive” energies︷ ︸︸ ︷(
M − 1

2τ · q τ · p
τ · p −M − 1

2τ · q

)
,

“Negative” Energies︷ ︸︸ ︷(
−M + 1

2τ · q τ · p
τ · p M + 1

2τ · q

)
. (8)

We assume q to be along the z-axis and find the eigenvalues.

The eigenvalues give the energy spectrum which features a split in energy for
different spins (q > 0),

E (r)
p =

√
p2 + q2/4 +M2 + (−1)r−1 q

√
M2 + (p3)2 (r = 1, 2). (9)

We use, E
∥
p =

√
M2 + (p3)2 to simplify the equations.

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

9 / 30



Ansatz to solve chiral spirals

Using the Pauli matrices, τ , we write

“Positive” energies︷ ︸︸ ︷(
M − 1

2τ · q τ · p
τ · p −M − 1

2τ · q

)
,

“Negative” Energies︷ ︸︸ ︷(
−M + 1

2τ · q τ · p
τ · p M + 1

2τ · q

)
. (8)

We assume q to be along the z-axis and find the eigenvalues.

The eigenvalues give the energy spectrum which features a split in energy for
different spins (q > 0),

E (r)
p =

√
p2 + q2/4 +M2 + (−1)r−1 q

√
M2 + (p3)2 (r = 1, 2). (9)

We use, E
∥
p =

√
M2 + (p3)2 to simplify the equations.

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413

9 / 30



Energy spectrum of the system

0 2 4 6 8 10

q/M

0
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(r
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p
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p = 0
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Figure: Energy to Mass ratio, E
(r)
p /M plotted as a function of q/M for two different

values of spin
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The split in the spectrum naturally creates polarization!

One spinor is less energetic than the other, this could be a natural
mechanism of spin polarization.

To study spin polarization in a quantum context we require Wigner functions.

The spinors may be used to compute the Wigner function with ease.

Thus, we deviate from our predecessors and compute spinors instead of
propagators.
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The spinors

The positive and negative energy spinors are given as follows,

χ
(r)
± (p) = N

(r)
±



E (r)
p ±(−1)rE∥

p ∓ q
2

p1+ip2

± p3

M+(−1)rE
∥
p

±E (r)
p ±(−1)rE∥

p ∓ q
2

p1+ip2
p3

M+(−1)rE
∥
p

1


. (10)

Where the factor N
(r)
± has been added to normalize the spinors to,

χ
(r)†

+ (p)χ (r)
+ (p) = 2E (r)

p , χ
(r)†

− (p)χ (r)
− (p) = 2E (r)

p . (11)
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2∑
r=1

1

2E
(r)
p

[
χ

(r)
+, a(p)χ

(r)†

+, b(p) + χ
(r)
−, a(−p)χ(r)†

−, b(−p)
]
= δab. (12)
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The spinor fields

The general field is thus given as,

ψ(x) =
∑
r=1,2

∫
d3p

(2πℏ)3/2

1√
2E

(r)
p

[
u(r)(p, x)br (p)e−

i
ℏ p·x + v (r)(p, x)c∗r (p)e

i
ℏ p·x

]
,

(13)

with,

u(r)(p, x) = exp

(
− iγ5

2

q · x
ℏ

)
χ

(r)
+ (p), (14)

v (r)(p, x) = exp

(
− iγ5

2

q · x
ℏ

)
χ

(r)
− (p). (15)

At this point these are mere classical fields. If these fields manage to satisfy the
canonical commutation relations, it would be very useful.

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413
14 / 30



The spinor fields

The general field is thus given as,

ψ(x) =
∑
r=1,2

∫
d3p

(2πℏ)3/2

1√
2E

(r)
p

[
u(r)(p, x)br (p)e−

i
ℏ p·x + v (r)(p, x)c∗r (p)e

i
ℏ p·x

]
,

(13)

with,

u(r)(p, x) = exp

(
− iγ5

2

q · x
ℏ

)
χ

(r)
+ (p), (14)

v (r)(p, x) = exp

(
− iγ5

2

q · x
ℏ

)
χ

(r)
− (p). (15)

At this point these are mere classical fields. If these fields manage to satisfy the
canonical commutation relations, it would be very useful.

(Sudip K. Kar (ITP JU)) Chiral spirals
AGH University, May 16, 2025 Based on ArXiv:2504.03413
14 / 30



Quantization of the spinor fields

The field operator defined in previous slide satisfies the canonical equal-time
(anti-)commutation relations,

{ψa(t, x), ψ†
b(t, y)} = δabδ

(3)(x − y), (16)

{ψa(t, x), ψb(t, y)} = {ψ†
a(t, x), ψ

†
b(t, y)} = 0, (17)

Provided that the creation and annihilation operators satisfy the
(anti-)commutation relations{

br (p), b†s (p
′)
}
=

{
cr (p), c†s (p

′)
}
= δ(3) (p − p′) δrs , (18)

{br (p), bs(p′)} =
{
b†r (p), b

†
s (p

′)
}
= 0

{cr (p), cs(p′)} =
{
c†r (p), c

†
s (p

′)
}
= 0. (19)
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The p → 0 limit

The p → 0 limit reveals the relationship between the index (r) and the direction
of spin polarization.

With p = (p1, p2, p3) = (|p| sin θ cosϕ, |p| sin θ sinϕ, |p| cos θ), where θ ∈ [0, π]
and ϕ ∈ [0, 2π] are the polar and azimuthal angles, respectively, One may take the
|p| → 0 limit, to get the following spinors,

χ
(1)
+ (p → 0) = − sgn(cos θ)

√
2M + q


0
1
0
0

 , “Down” (20)

χ
(2)
+ (p → 0) = e−iϕ

√
|2M − q|


1
0
0
0

 , “Up” (21)
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The p → 0 limit

χ
(1)
− (p → 0) = e−iϕ sgn(cos θ)

√
2M + q


0
0
1
0

 , “Down” (22)

χ
(2)
− (p → 0) =

√
|2M − q|


0
0
0
1

 . “Up” (23)
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The q → 0 (homogeneous) limit

The q → 0 limit is important for comparison with other expressions found in the
literature. In this limit, the eigenvalues reduce to,

E (p) =
√
M2 + p2 (24)

The q → 0 limit of eigenvalues is straightforward.
The eigenvectors become,

χ
(r)
± (p, q → 0) =

√
(p1)2 + (p2)2

2E
∥
p



√
E(p)±(−1)r E

∥
p

√
E
∥
p +(−1)r M

p1+ip2

±(−1)r p3√
E(p)±(−1)r E

∥
p

√
E
∥
p +(−1)r M

±(−1)r
p3

√
E(p)±(−1)r E

∥
p

(p1+ip2)

√
E
∥
p +(−1)r M√

E
∥
p +(−1)r M√

E(p)±(−1)r E
∥
p



(25)

This does not match with the traditional free Dirac case!
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The q → 0 (homogeneous) limit

The free Dirac limit is realized when a linear combination of these spinors is
taken.

Using the matrices U and V we represent these linear combinations,

χ
(r)
+ (p,q = 0) = U rr ′ur

′

d (p) χ
(r)
− (p,q = 0) = V rr ′v r ′

d (p) (26)

In addition, we find that U†U = V †V = 1.

This deeply affects the q → 0 limit of the axial current.
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Wigner functions

The Wigner functions are quasi-probablility distribution functions that are used to
describe phase space of quantum mechanical systems. For spin-1/2 systems this
looks like,

Wab(x , k) =

∫
d4y

(2πℏ)4
e−

ik·y
ℏ

〈
ψ̄b

(
x +

y

2

)
ψa

(
x − y

2

)〉
. (27)

The non-zero expectation values are,〈
b†s (p

′)br (p)
〉
= δsrδ

(3)(p′ − p)f (E (r)
p −µr ), (28)〈

c†s (p
′)cr (p)

〉
= δsrδ

(3) (p′ − p) f (E (r)
p +µ̄r ), (29)

For simplification, we abbreviate this to,

f (E (r)
p −µr ) = f (r)

p , f (E (r)
p +µ̄r ) = f̄ (r)

p , (30)

Where, µr = µB + (−1)r−1µs for particles
and µ̄r = µB − (−1)r−1µs for antiparticles.
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Where, µr = µB + (−1)r−1µs for particles
and µ̄r = µB − (−1)r−1µs for antiparticles.
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Wigner functions

It also useful to rewrite, Eqs. (28-29) in a matrix notation,〈
b†s (p

′)br (p)
〉
= δ(3) (p′ − p) fp(1 + ζp · τ )sr , (31)〈

c†s (p
′)cr (p)

〉
= δ(3) (p′ − p) f̄p(1 + ζ̄p · τ )sr . (32)

where

ζp = (0, 0, ζp), ζp =
δfp
2fp

=
f

(1)
p − f

(2)
p

f
(1)
p + f

(2)
p

. (33)

and

fp =
1

2
(f (1)

p + f (2)
p ), δfp = f (1)

p − f (2)
p , (34)
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Clifford algebra decomposition of the Wigner function

The gamma matrices satisfy the Clifford algebra,

{γµ, γν} = 2ηµν14×4 (35)

This allows one to decompose any 4× 4 matrix into to a linear combination of
the matrices, Γ = {1, γ5, γµ, γµγ5,Σµν}, where Σµν = i

2 [γ
µ, γν ]

Thus the Wigner function may be expressed as follows
[D. Vasak, M. Gyulassy, and H. T. Elze, Annals Phys. 173, 462 (1987)],

Wab =

[
F + iγ5P + γµVµ + γµγ5Aµ +

1

2
ΣµνSµν

]
ab

. (36)

Each component in this decomposition can be obtained by taking the trace of the
product of the Wigner function and the corresponding element of the basis set Γ.

These components can be integrated over the four momentum space to give
currents.
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Vector and Pseudovector Currents

Computation of these currents reveal that the space-like part of the Vector
currents vanish leaving only the time-like component non-zero,

V 0(x) =

∫
d4k V0(x , k) =

2∑
r=1

∫
d3k

(2πℏ)3

(
f

(r)
k − f̄

(r)
k

)
. (37)

Similarly, for the axial part, the time like component and two of the space-like
component vanish,

A3(x) =

∫
d4k A3(x , k) =

2∑
r=1

∫
d3k

(2πℏ)3

(−1)r E
∥
k

E
(r)
k

[
1 +

(−1)r−1 q

2E
∥
k

](
f

(r)
k + f̄

(r)
k

)
.

(38)

The expression above agrees with the formula obtained in [M. Kutschera, W. Broniowski,

and A. Kotlorz, Nuclear Physics A 516, 566 (1990).] up to the internal degrees of freedom
connected with flavor and color.
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Variation of A3(x) with inhomogeneity factor q
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Figure: Third component of the axial vector as a function of the inhomogeneity factor q
for different values of effective masses at constant chemical potential and temperature of
µ = 0.1 GeV and T = 0.15 GeV, respectively.
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Variation of A3(x) with baryon chemical potential
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Figure: Third component of the axial vector as a function of the chemical potential µ for
different values of temperature at constant mass and inhomogeneity factor of
M = 0.3 GeV and q = 0.1 GeV, respectively.
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Twist of spin polarization in q → 0 (homogeneous) limit

The scalar, pseudoscalar and vector component agree with free Dirac case in the
q → 0 limit
The axial vector component in the q → 0 disagrees with free Dirac case.
This situation is identical to the one faced when taking the degenerate limit of a
non degenerate theory.
Since in the q → 0 limit the eigenvectors are actually linear combination of the
free Dirac spinors, the net effect is to twist the spin polarization direction.

Expected result in the free Dirac case

ζp = (0, 0, 1) (39)

Twisted polarization

ζp = − 1

E
∥
p (Ep +M)

(
p1p3, p2p3, E∥2

p + EpM

)
(40)
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Semiclassical expansion of the Wigner function

In the case of the periodic chiral condensate considered in this work, the
semiclassical expansion leads to the equation
[W. Florkowski, J. Hufner, S. Klevansky, and L. Neise, Annals of Physics 245, 445–463 (1996).][(

kµ +
iℏ
2
∂µ

)
γµ − σ(x) +

iℏ
2
∂µσ(x)∂

µ
k

−iγ5π(x)−
ℏ
2
γ5∂µπ(x)∂

µ
k

]
W (x , k) = 0. (41)
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Semiclassical expansion of the Wigner function
the decomposition of the Wigner function defined by Eq. (36), leads to a system
of coupled equations of the form:

KµVµ − σF + πP =
iℏ
2

[
(∂µπ)

(
∂
µ
k P

)
− (∂µσ)

(
∂
µ
k F

) ]
, (42)

− iKµAµ − σP − πF = −
iℏ
2

[
(∂µπ)

(
∂
µ
k F

)
+ (∂µσ)

(
∂
µ
k P

) ]
, (43)

KµF + iKνSνµ − σVµ + iπAµ =
iℏ
2

[
i (∂νπ)

(
∂
ν
k Aµ

)
− (∂νσ)

(
∂
ν
k Vµ

) ]
, (44)

iKµP − Kν S̃νµ − σAµ + iπVµ =
iℏ
2

[
i (∂νπ)

(
∂
ν
k V

µ) − (∂νσ)
(
∂
ν
k A

µ) ]
, (45)

i
(
KµVν−KνVµ)−ϵ

µντσKτAσ−πS̃µν +σSµν =

iℏ
2

[
(∂γσ)

(
∂
γ
k Sµν)−(∂γπ)

(
∂
γ
k S̃µν

) ]
. (46)

Here, Kµ = kµ + iℏ
2 ∂

µ and S̃ is the dual tensor to the tensor S, namely

S̃µν =
1

2
ϵµναβSαβ . (47)
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Semiclassical expansion of the Wigner function

within the semiclassical expansion, one solves these equations by expanding all the
coefficients of the Wigner function as a series in ℏ,

C = C(0) + ℏC(1) + ℏ2C(2) + ... , (48)

where C is one of the coefficients from the set {F ,P,Vµ,Aµ,Sµν}.
This when applied to the first dynamical equation yields,

kµVµ
(0) − σ(0)F(0) + π(0)P(0) = 0 (49)

upto first order in ℏ.

A quick check of the case with k = (k0, 0) and q ̸= 0 shows that the equation is
not satisfied.

q = 0 does however fulfill the equation.
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Summary

We obtained the spinors for chiral spirals by solving the eigenvalues equation
present in the literature.

The canonical quantization of these fields was verified, thus ensuring their
applicability in quantum cases.

The Wigner function and all its components were computed exactly.

The vector and axial current were extracted from these components and then
used to compute currents.

The q → 0 limit of the vector and axial vector currents were analyzed, the
axial vector current, in particular, displayed a curious twist from the expected
free case.

The computed exact functions were shown to disagree with the semiclassical
expansion.

Thank You!
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Normalisation for the spinors

N
(r)
± =

√
2E

(r)
p

1 +
(
E

(r)
p ± (−1)r E

∥
p ∓ q

2

)2

(p1)2 + (p2)2


−1/2 1 + (p3)2(

M + (−1)r E
∥
p

)2


−1/2

.

(50)
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Non-degenerate to degenerate reduction

To see why this is not something unusual, consider the following example,(
1 ϵ
ϵ 1

)
has eigenvectors given by |1± ϵ⟩ = 1√

2

(
1
±1

)
(51)

The expectation values, ⟨1 + ϵ|τ 3|1 + ϵ⟩ and ⟨1− ϵ|τ 3|1− ϵ⟩ are zero

(Here, τz =

(
1 0
0 −1

)
).

which in the ϵ→ 0 limit becomes,(
1 0
0 1

)
which has eigenvectors given by |1⟩1 =

(
1
0

)
, |1⟩2 =

(
0
1

)
(52)

and compute the same expectation value as the previous case to obtain,

1⟨1|τ 3|1⟩1 = 1 2⟨1|τ 3|1⟩2 = −1 (53)
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