Exact Wigner function for chiral spirals

by Sudip Kumar Kar¹ Collaborators: Samapan Bhadury ,Wojciech Florkowski and Valeriya Mykhaylova

¹Institute of Theoretical Physics, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Kraków, Poland

AGH University, May 16, 2025

Based on ArXiv:2504.03413

Background

Chiral spirals

- Solutions to chiral spirals
- Wigner functions
- Twist in polarization
- Breakdown of semiclassical expansion

Background

• Chiral spirals

- Solutions to chiral spirals
- Wigner functions
- Twist in polarization
- Breakdown of semiclassical expansion

- Background
- Chiral spirals
- Solutions to chiral spirals
- Wigner functions
- Twist in polarization
- Breakdown of semiclassical expansion

- Background
- Chiral spirals
- Solutions to chiral spirals
- Wigner functions
- Twist in polarization
- Breakdown of semiclassical expansion

- Background
- Chiral spirals
- Solutions to chiral spirals
- Wigner functions
- Twist in polarization
- Breakdown of semiclassical expansion

- Background
- Chiral spirals
- Solutions to chiral spirals
- Wigner functions
- Twist in polarization
- Breakdown of semiclassical expansion

- Chiral spirals belong to a broad range of mean fields that are used to study pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]
- Study of pion condensation throughout the years:
 - Presented a self consistent solution that agreed with bulk properties of nuclear matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981)]
 - Investigation in various kinds of pion condensed phases in an effective chiral models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990)]
 - Pion condensed phase as a new possible phase of matter.
 [W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

- Chiral spirals belong to a broad range of mean fields that are used to study pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]
- Study of pion condensation throughout the years:
 - Presented a self consistent solution that agreed with bulk properties of nuclear matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]
 - Investigation in various kinds of pion condensed phases in an effective chiral models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]
 - Pion condensed phase as a new possible phase of matter.
 [W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

- Chiral spirals belong to a broad range of mean fields that are used to study pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]
- Study of pion condensation throughout the years:
 - Presented a self consistent solution that agreed with bulk properties of nuclear matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]
 - Investigation in various kinds of pion condensed phases in an effective chiral models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]
 - Pion condensed phase as a new possible phase of matter.
 [W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

- Chiral spirals belong to a broad range of mean fields that are used to study pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]
- Study of pion condensation throughout the years:
 - Presented a self consistent solution that agreed with bulk properties of nuclear matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]
 - Investigation in various kinds of pion condensed phases in an effective chiral models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]
 - Pion condensed phase as a new possible phase of matter.
 [W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

- Chiral spirals belong to a broad range of mean fields that are used to study pion condensation.[V. Schon and M. Thies, arXiv:hep-th/0008175.]
- Study of pion condensation throughout the years:
 - Presented a self consistent solution that agreed with bulk properties of nuclear matter [B. Banerjee, N. Glendenning, and M. Gyulassy, Nuclear Physics A 361, 326 (1981).]
 - Investigation in various kinds of pion condensed phases in an effective chiral models [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).]
 - Pion condensed phase as a new possible phase of matter.
 [W. Broniowski, A. Kotlorz, and M. Kutschera, Acta Phys. Polon. B 22, 145 (1991).]

- Investigations into periodic chiral fields [M. Sadzikowski and W. Broniowski, Phys. Lett. B 488, 63 (2000), arXiv:hep-ph/0003282.], [M. Sadzikowski, Phys. Lett. B 642, 238 (2006), arXiv:hep-ph/0609186.]
- And many more by Fukushima, Maedan, Partyka, Heinz, Giacosa, Rischke, Buballa and others.
- The prime focus in past was the possibility of inhomogeneous condensates being the real ground state of matter.
- Potential practical application was on Pulsars, although current considerations seem to rule out this possibility.

- Investigations into periodic chiral fields [M. Sadzikowski and W. Broniowski, Phys. Lett. B 488, 63 (2000), arXiv:hep-ph/0003282.], [M. Sadzikowski, Phys. Lett. B 642, 238 (2006), arXiv:hep-ph/0609186.]
- And many more by Fukushima, Maedan, Partyka, Heinz, Giacosa, Rischke, Buballa and others.
- The prime focus in past was the possibility of inhomogeneous condensates being the real ground state of matter.

• Potential practical application was on Pulsars, although current considerations seem to rule out this possibility.

- Investigations into periodic chiral fields [M. Sadzikowski and W. Broniowski, Phys. Lett. B 488, 63 (2000), arXiv:hep-ph/0003282.], [M. Sadzikowski, Phys. Lett. B 642, 238 (2006), arXiv:hep-ph/0609186.]
- And many more by Fukushima, Maedan, Partyka, Heinz, Giacosa, Rischke, Buballa and others.
- The prime focus in past was the possibility of inhomogeneous condensates being the real ground state of matter.

• Potential practical application was on Pulsars, although current considerations seem to rule out this possibility.

- Investigations into periodic chiral fields [M. Sadzikowski and W. Broniowski, Phys. Lett. B 488, 63 (2000), arXiv:hep-ph/0003282.], [M. Sadzikowski, Phys. Lett. B 642, 238 (2006), arXiv:hep-ph/0609186.]
- And many more by Fukushima, Maedan, Partyka, Heinz, Giacosa, Rischke, Buballa and others.
- The prime focus in past was the possibility of inhomogeneous condensates being the real ground state of matter.
- Potential practical application was on Pulsars, although current considerations seem to rule out this possibility.

Chiral symmetry and chiral models

- The symmetry between left and right handed fermions is called the chiral symmetry.
- One such example would be the NJL model with scalar and pseudoscalar condensates [S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).]

$$\mathcal{L} = i\hbar\bar{\psi}\,\partial\!\!\!/\psi + G\Big[\underbrace{(\bar{\psi}\psi)^2}_{\text{scalar}\ (\hat{\sigma})} + \underbrace{(\bar{\psi}i\gamma_5\psi)^2}_{\text{pseudoscalar}\ (\hat{\pi})}\Big].$$
(1)

(${\cal A}={\cal A}_{\mu}\gamma^{\mu}$ and the γ matrices are taken here in the Dirac representation.)

• The $U_A(1)$ chiral transformation of fields is given by

$$\psi(x) \to e^{-i\gamma_5 \frac{\alpha}{2}} \psi(x)$$

Chiral symmetry and chiral models

- The symmetry between left and right handed fermions is called the chiral symmetry.
- One such example would be the NJL model with scalar and pseudoscalar condensates [S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).]

$$\mathcal{L} = i\hbar\bar{\psi}\,\partial\!\!\!/\psi + G\Big[\underbrace{(\bar{\psi}\psi)^2}_{\text{scalar}(\hat{\sigma})} + \underbrace{(\bar{\psi}i\gamma_5\psi)^2}_{\text{pseudoscalar}(\hat{\pi})}\Big].$$
(1)

(${\cal A}={\cal A}_{\mu}\gamma^{\mu}$ and the γ matrices are taken here in the Dirac representation.)

• The $U_A(1)$ chiral transformation of fields is given by

$$\psi(x) \to e^{-i\gamma_5 \frac{\alpha}{2}} \psi(x)$$

Chiral symmetry and chiral models

- The symmetry between left and right handed fermions is called the chiral symmetry.
- One such example would be the NJL model with scalar and pseudoscalar condensates [S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).]

$$\mathcal{L} = i\hbar\bar{\psi}\,\partial\!\!\!/\psi + G\Big[\underbrace{(\bar{\psi}\psi)^2}_{\text{scalar}(\hat{\sigma})} + \underbrace{(\bar{\psi}i\gamma_5\psi)^2}_{\text{pseudoscalar}(\hat{\pi})}\Big].$$
(1)

(${\not \! A}={\cal A}_{\mu}\gamma^{\mu}$ and the γ matrices are taken here in the Dirac representation.)

• The $U_A(1)$ chiral transformation of fields is given by

$$\psi(x) \to e^{-i\gamma_5 \frac{\alpha}{2}} \psi(x)$$

• We consider Dirac particles that interact with some externally given mean field for scalar and pseudoscalar condensates.

• Such systems are governed by the dynamical equation given below

$$\left[i\hbar\gamma_{\mu}\partial^{\mu} - \sigma - i\gamma_{5}\pi\right]\psi(x) = 0, \qquad (2)$$

• In chiral spirals we assume a periodic form for the mean fields given as,

$$\sigma = M \cos(\phi), \qquad \pi = M \sin(\phi). \tag{3}$$

• Where, one may proceed with two kinds of forms for ϕ ,

$$\frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar} \text{ where } \boldsymbol{q} \text{ is momentum}$$

$$\boldsymbol{\kappa} \cdot \boldsymbol{x} \text{ where } \boldsymbol{\kappa} \text{ is a Wave vector}$$
(5)

- We consider Dirac particles that interact with some externally given mean field for scalar and pseudoscalar condensates.
- Such systems are governed by the dynamical equation given below

$$\left[i\hbar\gamma_{\mu}\partial^{\mu}-\sigma-i\gamma_{5}\pi\right]\psi(x)=0, \tag{2}$$

In chiral spirals we assume a periodic form for the mean fields given as,

$$\sigma = M \cos(\phi), \qquad \pi = M \sin(\phi). \tag{3}$$

• Where, one may proceed with two kinds of forms for ϕ ,

$$\frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar} \text{ where } \boldsymbol{q} \text{ is momentum}$$

$$\boldsymbol{\kappa} \cdot \boldsymbol{x} \text{ where } \boldsymbol{\kappa} \text{ is a Wave vector}$$
(5)

- We consider Dirac particles that interact with some externally given mean field for scalar and pseudoscalar condensates.
- Such systems are governed by the dynamical equation given below

$$\left[i\hbar\gamma_{\mu}\partial^{\mu}-\sigma-i\gamma_{5}\pi\right]\psi(x)=0, \tag{2}$$

• In chiral spirals we assume a periodic form for the mean fields given as,

$$\sigma = M\cos(\phi), \qquad \pi = M\sin(\phi). \tag{3}$$

• Where, one may proceed with two kinds of forms for ϕ ,

$$\frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar} \text{ where } \boldsymbol{q} \text{ is momentum}$$

$$\boldsymbol{\kappa} \cdot \boldsymbol{x} \text{ where } \boldsymbol{\kappa} \text{ is a Wave vector}$$

$$(5)$$

- We consider Dirac particles that interact with some externally given mean field for scalar and pseudoscalar condensates.
- Such systems are governed by the dynamical equation given below

$$\left[i\hbar\gamma_{\mu}\partial^{\mu}-\sigma-i\gamma_{5}\pi\right]\psi(x)=0, \tag{2}$$

• In chiral spirals we assume a periodic form for the mean fields given as,

$$\sigma = M\cos(\phi), \qquad \pi = M\sin(\phi). \tag{3}$$

• Where, one may proceed with two kinds of forms for ϕ ,

$$\frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar} \text{ where } \boldsymbol{q} \text{ is momentum}$$

$$\boldsymbol{\kappa} \cdot \boldsymbol{x} \text{ where } \boldsymbol{\kappa} \text{ is a Wave vector}$$

$$(5)$$

Figure: Spiral nature of the scalar and pseudoscalar condensate

Ansatz to solve chiral spirals

• The forms of the condensate turns our dynamical equation into a Dirac-like equation given as,

$$\left[i\hbar\gamma_{\mu}\partial^{\mu} - Me^{i\gamma_{5}(\boldsymbol{q}\cdot\boldsymbol{x})/\hbar}\right]\psi(\boldsymbol{x}) = 0.$$
(6)

• Fortunately, the equation of motion can be solved exactly by the following ansatz, [F. Dautry and E. M. Nyman, Nuclear Physics A 319, 323 (1979).]

$$\psi_{\pm}(\mathbf{x}) = \exp\left(-\frac{i\gamma_5}{2}\frac{\mathbf{q}\cdot\mathbf{x}}{\hbar}\right)\chi_{\pm}(\mathbf{p})\,e^{\pm i\mathbf{p}\cdot\mathbf{x}/\hbar},\tag{7}$$

• This eliminates all space dependence in the Dirac-like equation and reduces the problem to an eigenvalue problem which can be solved analytically.

• The forms of the condensate turns our dynamical equation into a Dirac-like equation given as,

$$\left[i\hbar\gamma_{\mu}\partial^{\mu} - Me^{i\gamma_{5}(\boldsymbol{q}\cdot\boldsymbol{x})/\hbar}\right]\psi(\boldsymbol{x}) = 0.$$
(6)

• Fortunately, the equation of motion can be solved exactly by the following ansatz, [F. Dautry and E. M. Nyman, Nuclear Physics A 319, 323 (1979).]

$$\psi_{\pm}(\mathbf{x}) = \exp\left(-\frac{i\gamma_5}{2}\frac{\mathbf{q}\cdot\mathbf{x}}{\hbar}\right)\chi_{\pm}(\mathbf{p})\,e^{\pm i\mathbf{p}\cdot\mathbf{x}/\hbar},\tag{7}$$

• This eliminates all space dependence in the Dirac-like equation and reduces the problem to an eigenvalue problem which can be solved analytically.

• The forms of the condensate turns our dynamical equation into a Dirac-like equation given as,

$$\left[i\hbar\gamma_{\mu}\partial^{\mu} - Me^{i\gamma_{5}(\boldsymbol{q}\cdot\boldsymbol{x})/\hbar}\right]\psi(\boldsymbol{x}) = 0.$$
(6)

• Fortunately, the equation of motion can be solved exactly by the following ansatz, [F. Dautry and E. M. Nyman, Nuclear Physics A 319, 323 (1979).]

$$\psi_{\pm}(\mathbf{x}) = \exp\left(-\frac{i\gamma_5}{2}\frac{\mathbf{q}\cdot\mathbf{x}}{\hbar}\right)\chi_{\pm}(\mathbf{p})\,e^{\pm i\mathbf{p}\cdot\mathbf{x}/\hbar},\tag{7}$$

• This eliminates all space dependence in the Dirac-like equation and reduces the problem to an eigenvalue problem which can be solved analytically.

$$\underbrace{\begin{pmatrix} M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & -M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}^{\text{"Negative" Energies}}, \qquad \underbrace{\begin{pmatrix} -M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}_{K}.$$
(8)

• We assume **q** to be along the *z*-axis and find the eigenvalues.

• The eigenvalues give the energy spectrum which features a split in energy for different spins (q > 0),

$$E_{\boldsymbol{p}}^{(r)} = \sqrt{\boldsymbol{p}^2 + q^2/4 + M^2 + (-1)^{r-1} q \sqrt{M^2 + (p^3)^2}} \qquad (r = 1, 2).$$
(9)

We use, $E_{p}^{\parallel} = \sqrt{M^2 + (p^3)^2}$ to simplify the equations.

$$\underbrace{\begin{pmatrix} M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & -M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}^{\text{"Positive" energies}}, \qquad \underbrace{\begin{pmatrix} M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}_{\boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}.$$
 (8)

• We assume **q** to be along the *z*-axis and find the eigenvalues.

• The eigenvalues give the energy spectrum which features a split in energy for different spins (q > 0),

$$E_{\boldsymbol{p}}^{(r)} = \sqrt{\boldsymbol{p}^2 + q^2/4 + M^2 + (-1)^{r-1} q \sqrt{M^2 + (p^3)^2}} \qquad (r = 1, 2).$$
(9)

We use, $E_p^{\parallel} = \sqrt{M^2 + (p^3)^2}$ to simplify the equations.

$$\underbrace{\begin{pmatrix} M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & -M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}^{\text{"Negative" Energies}}, \qquad \underbrace{\begin{pmatrix} -M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}_{\boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}.$$
 (8)

• We assume **q** to be along the *z*-axis and find the eigenvalues.

 The eigenvalues give the energy spectrum which features a split in energy for different spins (q > 0),

$$E_{\boldsymbol{p}}^{(r)} = \sqrt{\boldsymbol{p}^2 + q^2/4 + M^2 + (-1)^{r-1} q \sqrt{M^2 + (p^3)^2}} \qquad (r = 1, 2).$$
(9)

We use, $E_{p}^{\parallel} = \sqrt{M^2 + (p^3)^2}$ to simplify the equations.

$$\underbrace{\begin{pmatrix} M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & -M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}^{\text{"Negative" Energies}}, \qquad \underbrace{\begin{pmatrix} -M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}_{\boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}.$$
 (8)

- We assume **q** to be along the *z*-axis and find the eigenvalues.
- The eigenvalues give the energy spectrum which features a split in energy for different spins (q > 0),

$$E_{\boldsymbol{p}}^{(r)} = \sqrt{\boldsymbol{p}^2 + q^2/4 + M^2 + (-1)^{r-1} q \sqrt{M^2 + (p^3)^2}} \qquad (r = 1, 2).$$
(9)

We use, $E_{p}^{\parallel} = \sqrt{M^{2} + (p^{3})^{2}}$ to simplify the equations.

$$\underbrace{\begin{pmatrix} M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & -M - \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}^{\text{"Positive" energies}}, \qquad \underbrace{\begin{pmatrix} -M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} & \boldsymbol{\tau} \cdot \boldsymbol{p} \\ \boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}_{\boldsymbol{\tau} \cdot \boldsymbol{p} & M + \frac{1}{2}\boldsymbol{\tau} \cdot \boldsymbol{q} \end{pmatrix}}.$$
 (8)

- We assume **q** to be along the *z*-axis and find the eigenvalues.
- The eigenvalues give the energy spectrum which features a split in energy for different spins (q > 0),

$$E_{\boldsymbol{p}}^{(r)} = \sqrt{\boldsymbol{p}^2 + q^2/4 + M^2 + (-1)^{r-1} q \sqrt{M^2 + (p^3)^2}} \qquad (r = 1, 2).$$
(9)

We use, $E_{\boldsymbol{p}}^{\parallel} = \sqrt{M^2 + (p^3)^2}$ to simplify the equations.

Energy spectrum of the system

Figure: Energy to Mass ratio, $E_p^{(r)}/M$ plotted as a function of q/M for two different values of spin

- One spinor is less energetic than the other, this could be a natural mechanism of spin polarization.
- To study spin polarization in a quantum context we require Wigner functions.
- The spinors may be used to compute the Wigner function with ease.
- Thus, we deviate from our predecessors and compute spinors instead of propagators.

- One spinor is less energetic than the other, this could be a natural mechanism of spin polarization.
- To study spin polarization in a quantum context we require Wigner functions.
- The spinors may be used to compute the Wigner function with ease.
- Thus, we deviate from our predecessors and compute spinors instead of propagators.

- One spinor is less energetic than the other, this could be a natural mechanism of spin polarization.
- To study spin polarization in a quantum context we require Wigner functions.
- The spinors may be used to compute the Wigner function with ease.
- Thus, we deviate from our predecessors and compute spinors instead of propagators.
- One spinor is less energetic than the other, this could be a natural mechanism of spin polarization.
- To study spin polarization in a quantum context we require Wigner functions.
- The spinors may be used to compute the Wigner function with ease.
- Thus, we deviate from our predecessors and compute spinors instead of propagators.

The positive and negative energy spinors are given as follows,

$$\chi_{\pm}^{(r)}(\boldsymbol{p}) = N_{\pm}^{(r)} \begin{pmatrix} \frac{E_{\boldsymbol{p}}^{(r)} \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel} \mp \frac{q}{2}}{p^{1+ip^{2}}} \\ \pm \frac{p^{3}}{M + (-1)^{r} E_{\boldsymbol{p}}^{\parallel}} \\ \pm \frac{E_{\boldsymbol{p}}^{(r)} \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel} \mp \frac{q}{2}}{p^{1+ip^{2}}} \frac{p^{3}}{M + (-1)^{r} E_{\boldsymbol{p}}^{\parallel}} \end{pmatrix}.$$
(10)

Where the factor $N_{\pm}^{(r)}$ has been added to normalize the spinors to,

$$\chi_{+}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{+}^{(r)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}^{(r)}, \qquad \chi_{-}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{-}^{(r)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}^{(r)}.$$
(11)

The positive and negative energy spinors are given as follows,

$$\chi_{\pm}^{(r)}(\boldsymbol{p}) = N_{\pm}^{(r)} \begin{pmatrix} \frac{E_{\boldsymbol{p}}^{(r)} \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel} \mp \frac{q}{2}}{p^{1+ip^{2}}} \\ \pm \frac{p^{3}}{M+(-1)^{r} E_{\boldsymbol{p}}^{\parallel}} \\ \pm \frac{E_{\boldsymbol{p}}^{(r)} \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel} \mp \frac{q}{2}}{p^{1+ip^{2}}} \frac{p^{3}}{M+(-1)^{r} E_{\boldsymbol{p}}^{\parallel}} \end{pmatrix}.$$
(10)

Where the factor $N_{\pm}^{(r)}$ has been added to normalize the spinors to,

$$\chi_{+}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{+}^{(r)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}^{(r)}, \qquad \chi_{-}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{-}^{(r)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}^{(r)}.$$
(11)

Orthogonality of the spinors is given as,

Chiral spiral	Free Dirac case
$\chi_{+}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{+}^{(s)}(\boldsymbol{p})=2E_{\boldsymbol{p}}^{(r)}\delta^{rs}$	$u^{(r)^{\dagger}}(\boldsymbol{p})u^{(s)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}\delta^{rs}$
$\chi_{-}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{-}^{(s)}(\boldsymbol{p})=2E_{\boldsymbol{p}}^{(r)}\delta^{rs}$	$v^{(r)^{\dagger}}(\boldsymbol{p})v^{(s)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}\delta^{rs}$
$\chi_{+}^{\left(r ight) ^{\dagger }}(oldsymbol{p})\chi_{-}^{\left(s ight) }(-oldsymbol{p})=0$	$u^{(r)^{\dagger}}(\boldsymbol{p})v^{(s)}(-\boldsymbol{p})=0$
$\chi_{-}^{(r)^{\dagger}}(-oldsymbol{p})\chi_{+}^{(s)}(oldsymbol{p})=0$	$v^{(r)^{\dagger}}(-\boldsymbol{p})u^{(s)}(\boldsymbol{p})=0$
$ar{\chi}_{+}^{(r)}(m{p})\chi_{-}^{(s)}(m{p})=0$	$ar{u}^{(r)}(oldsymbol{p})v^{(s)}(oldsymbol{p})=0$
$ar{\chi}_{-}^{(r)}(m{p})\chi_{+}^{(s)}(m{p})=0$	$ar{v}^{(r)}(oldsymbol{p})u^{(s)}(oldsymbol{p})=0$

While the completeness is given as (a and b are spinor indices),

$$\sum_{r=1}^{2} \frac{1}{2E_{\boldsymbol{\rho}}^{(r)}} \left[\chi_{+,\,a}^{(r)}(\boldsymbol{\rho}) \chi_{+,\,b}^{(r)\dagger}(\boldsymbol{\rho}) + \chi_{-,\,a}^{(r)}(-\boldsymbol{\rho}) \chi_{-,\,b}^{(r)\dagger}(-\boldsymbol{\rho}) \right] = \delta_{ab}.$$
 (12)

Orthogonality of the spinors is given as,

Chiral spiral	Free Dirac case
$\chi_{+}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{+}^{(s)}(\boldsymbol{p})=2E_{\boldsymbol{p}}^{(r)}\delta^{rs}$	$u^{(r)^{\dagger}}(\boldsymbol{p})u^{(s)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}\delta^{rs}$
$\chi_{-}^{(r)^{\dagger}}(\boldsymbol{p})\chi_{-}^{(s)}(\boldsymbol{p})=2E_{\boldsymbol{p}}^{(r)}\delta^{rs}$	$v^{(r)^{\dagger}}(\boldsymbol{p})v^{(s)}(\boldsymbol{p}) = 2E_{\boldsymbol{p}}\delta^{rs}$
$\chi_{+}^{\left(r ight) ^{\dagger }}(oldsymbol{p})\chi_{-}^{\left(s ight) }(-oldsymbol{p})=0$	$u^{(r)^{\dagger}}(\boldsymbol{p})v^{(s)}(-\boldsymbol{p})=0$
$\chi_{-}^{(r)^{\dagger}}(-oldsymbol{p})\chi_{+}^{(s)}(oldsymbol{p})=0$	$v^{(r)^{\dagger}}(-\boldsymbol{p})u^{(s)}(\boldsymbol{p})=0$
$ar{\chi}_{+}^{(r)}(m{p})\chi_{-}^{(s)}(m{p})=0$	$ar{u}^{(r)}(oldsymbol{p})v^{(s)}(oldsymbol{p})=0$
$ar{\chi}_{-}^{(r)}(m{p})\chi_{+}^{(s)}(m{p})=0$	$ar{v}^{(r)}(oldsymbol{p})u^{(s)}(oldsymbol{p})=0$

While the completeness is given as (a and b are spinor indices),

$$\sum_{r=1}^{2} \frac{1}{2E_{\boldsymbol{\rho}}^{(r)}} \left[\chi_{+,\,\boldsymbol{a}}^{(r)}(\boldsymbol{\rho}) \chi_{+,\,\boldsymbol{b}}^{(r)^{\dagger}}(\boldsymbol{\rho}) + \chi_{-,\,\boldsymbol{a}}^{(r)}(-\boldsymbol{\rho}) \chi_{-,\,\boldsymbol{b}}^{(r)^{\dagger}}(-\boldsymbol{\rho}) \right] = \delta_{\boldsymbol{a}\boldsymbol{b}}.$$
 (12)

The spinor fields

The general field is thus given as,

$$\psi(\mathbf{x}) = \sum_{r=1,2} \int \frac{d^3 p}{(2\pi\hbar)^{3/2}} \frac{1}{\sqrt{2E_{\boldsymbol{\rho}}^{(r)}}} \Big[u^{(r)}(\boldsymbol{\rho}, \mathbf{x}) b_r(\boldsymbol{\rho}) e^{-\frac{i}{\hbar}\boldsymbol{\rho}\cdot\boldsymbol{x}} + v^{(r)}(\boldsymbol{\rho}, \mathbf{x}) c_r^*(\boldsymbol{\rho}) e^{\frac{i}{\hbar}\boldsymbol{\rho}\cdot\boldsymbol{x}} \Big],$$
(13)

with,

$$u^{(r)}(\boldsymbol{p}, \boldsymbol{x}) = \exp\left(-\frac{i\gamma_5}{2} \frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar}\right) \chi^{(r)}_+(\boldsymbol{p}),$$
(14)
$$v^{(r)}(\boldsymbol{p}, \boldsymbol{x}) = \exp\left(-\frac{i\gamma_5}{2} \frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar}\right) \chi^{(r)}_-(\boldsymbol{p}).$$
(15)

At this point these are mere classical fields. If these fields manage to satisfy the canonical commutation relations, it would be very useful.

The spinor fields

The general field is thus given as,

$$\psi(\mathbf{x}) = \sum_{r=1,2} \int \frac{d^3 p}{(2\pi\hbar)^{3/2}} \frac{1}{\sqrt{2E_{\boldsymbol{\rho}}^{(r)}}} \Big[u^{(r)}(\boldsymbol{\rho}, \mathbf{x}) b_r(\boldsymbol{\rho}) e^{-\frac{i}{\hbar}\boldsymbol{\rho}\cdot\boldsymbol{x}} + v^{(r)}(\boldsymbol{\rho}, \mathbf{x}) c_r^*(\boldsymbol{\rho}) e^{\frac{i}{\hbar}\boldsymbol{\rho}\cdot\boldsymbol{x}} \Big],$$
(13)

with,

$$u^{(r)}(\boldsymbol{p}, \boldsymbol{x}) = \exp\left(-\frac{i\gamma_5}{2} \frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar}\right) \chi_+^{(r)}(\boldsymbol{p}), \tag{14}$$

$$\boldsymbol{v}^{(r)}(\boldsymbol{p}, \boldsymbol{x}) = \exp\left(-\frac{r\gamma_5}{2} \frac{\boldsymbol{q} \cdot \boldsymbol{x}}{\hbar}\right) \chi_{-}^{(r)}(\boldsymbol{p}). \tag{15}$$

At this point these are mere classical fields. If these fields manage to satisfy the canonical commutation relations, it would be very useful.

• The field operator defined in previous slide satisfies the canonical equal-time (anti-)commutation relations,

$$\{\psi_{a}(t,\boldsymbol{x}),\psi_{b}^{\dagger}(t,\boldsymbol{y})\} = \delta_{ab}\delta^{(3)}(\boldsymbol{x}-\boldsymbol{y}),$$
(16)

$$\{\psi_{a}(t,\boldsymbol{x}),\psi_{b}(t,\boldsymbol{y})\}=\{\psi_{a}^{\dagger}(t,\boldsymbol{x}),\psi_{b}^{\dagger}(t,\boldsymbol{y})\}=0,$$
(17)

• Provided that the creation and annihilation operators satisfy the (anti-)commutation relations

$$\{b_r(\boldsymbol{p}), b_s^{\dagger}(\boldsymbol{p}')\} = \{c_r(\boldsymbol{p}), c_s^{\dagger}(\boldsymbol{p}')\} = \delta^{(3)}(\boldsymbol{p} - \boldsymbol{p}')\delta_{rs},$$
(18)
$$\{b_r(\boldsymbol{p}), b_s(\boldsymbol{p}')\} = \{b_r^{\dagger}(\boldsymbol{p}), b_s^{\dagger}(\boldsymbol{p}')\} = 0$$

$$\{c_r(\boldsymbol{p}), c_s(\boldsymbol{p}')\} = \{c_r^{\dagger}(\boldsymbol{p}), c_s^{\dagger}(\boldsymbol{p}')\} = 0.$$
(19)

• The field operator defined in previous slide satisfies the canonical equal-time (anti-)commutation relations,

$$\{\psi_{a}(t,\boldsymbol{x}),\psi_{b}^{\dagger}(t,\boldsymbol{y})\} = \delta_{ab}\delta^{(3)}(\boldsymbol{x}-\boldsymbol{y}), \qquad (16)$$

$$\{\psi_{a}(t,\boldsymbol{x}),\psi_{b}(t,\boldsymbol{y})\}=\{\psi_{a}^{\dagger}(t,\boldsymbol{x}),\psi_{b}^{\dagger}(t,\boldsymbol{y})\}=0,$$
(17)

• Provided that the creation and annihilation operators satisfy the (anti-)commutation relations

$$\{b_r(\boldsymbol{p}), b_s^{\dagger}(\boldsymbol{p}')\} = \{c_r(\boldsymbol{p}), c_s^{\dagger}(\boldsymbol{p}')\} = \delta^{(3)}(\boldsymbol{p} - \boldsymbol{p}') \delta_{rs},$$

$$\{b_r(\boldsymbol{p}), b_s(\boldsymbol{p}')\} = \{b_r^{\dagger}(\boldsymbol{p}), b_s^{\dagger}(\boldsymbol{p}')\} = 0$$

$$\{c_r(\boldsymbol{p}), c_s(\boldsymbol{p}')\} = \{c_r^{\dagger}(\boldsymbol{p}), c_s^{\dagger}(\boldsymbol{p}')\} = 0.$$

$$(19)$$

The $oldsymbol{p} ightarrow 0$ limit

The $\boldsymbol{p} \to 0$ limit reveals the relationship between the index (r) and the direction of spin polarization.

With $\boldsymbol{p} = (p^1, p^2, p^3) = (|\boldsymbol{p}| \sin \theta \cos \phi, |\boldsymbol{p}| \sin \theta \sin \phi, |\boldsymbol{p}| \cos \theta)$, where $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$ are the polar and azimuthal angles, respectively, One may take the $|\boldsymbol{p}| \to 0$ limit, to get the following spinors,

$$\chi_{+}^{(1)}(\boldsymbol{p} \to 0) = -\operatorname{sgn}(\cos\theta)\sqrt{2M+q} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad \text{``Down''}$$
(20)

$$\chi_{+}^{(2)}(\mathbf{p} \to 0) = e^{-i\phi}\sqrt{|2M-q|} \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}, \quad \text{`'Up''}$$
 (21)

The $\boldsymbol{p} ightarrow 0$ limit

The $\boldsymbol{p} \to 0$ limit reveals the relationship between the index (r) and the direction of spin polarization.

With $\boldsymbol{p} = (p^1, p^2, p^3) = (|\boldsymbol{p}| \sin \theta \cos \phi, |\boldsymbol{p}| \sin \theta \sin \phi, |\boldsymbol{p}| \cos \theta)$, where $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$ are the polar and azimuthal angles, respectively, One may take the $|\boldsymbol{p}| \rightarrow 0$ limit, to get the following spinors,

$$\chi_{+}^{(1)}(\boldsymbol{p} \to 0) = -\operatorname{sgn}(\cos\theta)\sqrt{2M+q} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad \text{"Down"}$$
(20)
$$\chi_{+}^{(2)}(\boldsymbol{p} \to 0) = e^{-i\phi}\sqrt{|2M-q|} \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \text{"Up"}$$
(21)

The $\boldsymbol{p} ightarrow 0$ limit

The $p \rightarrow 0$ limit reveals the relationship between the index (r) and the direction of spin polarization.

With $\boldsymbol{p} = (p^1, p^2, p^3) = (|\boldsymbol{p}| \sin \theta \cos \phi, |\boldsymbol{p}| \sin \theta \sin \phi, |\boldsymbol{p}| \cos \theta)$, where $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$ are the polar and azimuthal angles, respectively. One may take the $|\boldsymbol{p}| \rightarrow 0$ limit, to get the following spinors,

$$\chi_{+}^{(1)}(\boldsymbol{p} \to 0) = -\operatorname{sgn}(\cos\theta)\sqrt{2M+q} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad \text{"Down"}$$
(20)

$$\chi_{+}^{(2)}(\boldsymbol{p} \to 0) = e^{-i\phi}\sqrt{|2M-q|} \begin{pmatrix} 1\\ 0\\ 0\\ 0 \\ 0 \end{pmatrix}, \quad \text{`'Up''}$$
(21)

The $\boldsymbol{p} ightarrow 0$ limit

The $p \rightarrow 0$ limit reveals the relationship between the index (r) and the direction of spin polarization.

With $\boldsymbol{p} = (p^1, p^2, p^3) = (|\boldsymbol{p}| \sin \theta \cos \phi, |\boldsymbol{p}| \sin \theta \sin \phi, |\boldsymbol{p}| \cos \theta)$, where $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi]$ are the polar and azimuthal angles, respectively. One may take the $|\boldsymbol{p}| \rightarrow 0$ limit, to get the following spinors,

$$\chi_{+}^{(1)}(\boldsymbol{p} \to 0) = -\operatorname{sgn}(\cos\theta)\sqrt{2M+q} \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad \text{"Down"}$$
(20)

$$\chi_{+}^{(2)}(\boldsymbol{p} \to 0) = e^{-i\phi}\sqrt{|2M-q|} \begin{pmatrix} 1\\ 0\\ 0\\ 0 \\ 0 \end{pmatrix}, \quad \text{``Up''}$$
(21)

$$\chi_{-}^{(1)}(\boldsymbol{p} \to 0) = e^{-i\phi} \operatorname{sgn}(\cos\theta) \sqrt{2M+q} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad \text{"Down"} \quad (22)$$
$$\chi_{-}^{(2)}(\boldsymbol{p} \to 0) = \sqrt{|2M-q|} \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \quad \text{"Up"} \quad (23)$$

$$\chi_{-}^{(1)}(\boldsymbol{p} \to 0) = e^{-i\phi} \operatorname{sgn}(\cos\theta) \sqrt{2M+q} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad \text{"Down"} \quad (22)$$
$$\chi_{-}^{(2)}(\boldsymbol{p} \to 0) = \sqrt{|2M-q|} \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}, \quad \text{"Up"} \quad (23)$$

The $q \rightarrow 0$ limit is important for comparison with other expressions found in the literature. In this limit, the eigenvalues reduce to,

$$E(\boldsymbol{p}) = \sqrt{M^2 + \boldsymbol{p}^2} \tag{24}$$

The $q \rightarrow 0$ limit of eigenvalues is straightforward. The eigenvectors become,

$$\chi_{\pm}^{(r)}(p,q\to 0) = \sqrt{\frac{(p^1)^2 + (p^2)^2}{2E_p^{\parallel}}} \begin{pmatrix} \frac{\sqrt{E(p)\pm(-1)^r E_p^{\parallel}}\sqrt{E_p^{\parallel}+(-1)^r M}}{p^{1+ip^2}} \\ \pm (-1)^r \frac{p^3}{\sqrt{E(p)\pm(-1)^r E_p^{\parallel}}\sqrt{E_p^{\parallel}+(-1)^r M}} \\ \pm (-1)^r \frac{p^3\sqrt{E(p)\pm(-1)^r E_p^{\parallel}}}{(p^1+ip^2)\sqrt{E_p^{\parallel}+(-1)^r M}} \\ \frac{\sqrt{E_p^{\parallel}+(-1)^r M}}{\sqrt{E(p)\pm(-1)^r E_p^{\parallel}}} \end{pmatrix}$$

This does not match with the traditional free Dirac case!

(Sudip K. Kar (ITP JU))

The $q \rightarrow 0$ limit is important for comparison with other expressions found in the literature. In this limit, the eigenvalues reduce to,

$$E(\boldsymbol{p}) = \sqrt{M^2 + \boldsymbol{p}^2} \tag{24}$$

The $q \rightarrow 0$ limit of eigenvalues is straightforward. The eigenvectors become,

$$\chi_{\pm}^{(r)}(\boldsymbol{p}, q \to 0) = \sqrt{\frac{(p^1)^2 + (p^2)^2}{2E_p^{\parallel}}} \begin{pmatrix} \frac{\sqrt{E(\boldsymbol{p}) \pm (-1)^r E_p^{\parallel}} \sqrt{E_p^{\parallel} + (-1)^r M}}{p^{1 + ip^2}} \\ \pm (-1)^r \frac{p^3}{\sqrt{E(\boldsymbol{p}) \pm (-1)^r E_p^{\parallel}} \sqrt{E_p^{\parallel} + (-1)^r M}} \\ \pm (-1)^r \frac{p^3 \sqrt{E(\boldsymbol{p}) \pm (-1)^r E_p^{\parallel}}}{(p^{1 + ip^2}) \sqrt{E_p^{\parallel} + (-1)^r M}} \\ \frac{\sqrt{E_p^{\parallel} + (-1)^r M}}{\sqrt{E(\boldsymbol{p}) \pm (-1)^r E_p^{\parallel}}} \end{pmatrix}$$

This does not match with the traditional free Dirac case!

(Sudip K. Kar (ITP JU))

The $q \rightarrow 0$ limit is important for comparison with other expressions found in the literature. In this limit, the eigenvalues reduce to,

$$E(\boldsymbol{p}) = \sqrt{M^2 + \boldsymbol{p}^2} \tag{24}$$

The $q \rightarrow 0$ limit of eigenvalues is straightforward. The eigenvectors become,

$$\chi_{\pm}^{(r)}(\boldsymbol{p}, \boldsymbol{q} \to 0) = \sqrt{\frac{(\boldsymbol{p}^{1})^{2} + (\boldsymbol{p}^{2})^{2}}{2E_{\boldsymbol{p}}^{\parallel}}} \begin{pmatrix} \frac{\sqrt{E(\boldsymbol{p}) \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel}} \sqrt{E_{\boldsymbol{p}}^{\parallel} + (-1)^{r} M}}{p^{1} + ip^{2}} \\ \pm (-1)^{r} \frac{p^{3}}{\sqrt{E(\boldsymbol{p}) \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel}} \sqrt{E_{\boldsymbol{p}}^{\parallel} + (-1)^{r} M}} \\ \pm (-1)^{r} \frac{p^{3} \sqrt{E(\boldsymbol{p}) \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel}}}{(p^{1} + ip^{2}) \sqrt{E_{\boldsymbol{p}}^{\parallel} + (-1)^{r} M}} \\ \frac{\sqrt{E_{\boldsymbol{p}}^{\parallel} + (-1)^{r} M}}{\sqrt{E(\boldsymbol{p}) \pm (-1)^{r} E_{\boldsymbol{p}}^{\parallel}}} \end{pmatrix}$$

This does not match with the traditional free Dirac case!

(Sudip K. Kar (ITP JU))

(25)

The $q \rightarrow 0$ limit is important for comparison with other expressions found in the literature. In this limit, the eigenvalues reduce to,

$$E(\boldsymbol{p}) = \sqrt{M^2 + \boldsymbol{p}^2} \tag{24}$$

The $q \rightarrow 0$ limit of eigenvalues is straightforward. The eigenvectors become,

$$\chi_{\pm}^{(r)}(\mathbf{p}, \mathbf{q} \to 0) = \sqrt{\frac{(\mathbf{p}^{1})^{2} + (\mathbf{p}^{2})^{2}}{2E_{\mathbf{p}}^{\parallel}}} \begin{pmatrix} \frac{\sqrt{E(\mathbf{p}) \pm (-1)^{r} E_{\mathbf{p}}^{\parallel}} \sqrt{E_{\mathbf{p}}^{\parallel} + (-1)^{r} M}}{p^{1} + ip^{2}} \\ \pm (-1)^{r} \frac{p^{3}}{\sqrt{E(\mathbf{p}) \pm (-1)^{r} E_{\mathbf{p}}^{\parallel}} \sqrt{E_{\mathbf{p}}^{\parallel} + (-1)^{r} M}} \\ \pm (-1)^{r} \frac{p^{3} \sqrt{E(\mathbf{p}) \pm (-1)^{r} E_{\mathbf{p}}^{\parallel}}}{(p^{1} + ip^{2}) \sqrt{E_{\mathbf{p}}^{\parallel} + (-1)^{r} M}} \\ \frac{\sqrt{E_{\mathbf{p}}^{\parallel} + (-1)^{r} M}}{\sqrt{E(\mathbf{p}) \pm (-1)^{r} E_{\mathbf{p}}^{\parallel}}} \end{pmatrix}$$

This does not match with the traditional free Dirac case!

(Sudip K. Kar (ITP JU))

(25)

- The free Dirac limit is realized when a linear combination of these spinors is taken.
- Using the matrices U and V we represent these linear combinations,

$$\chi_{+}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = U^{rr'} u_{d}^{r'}(\boldsymbol{p}) \qquad \chi_{-}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = V^{rr'} v_{d}^{r'}(\boldsymbol{p})$$
(26)

- In addition, we find that $U^{\dagger}U = V^{\dagger}V = 1$.
- This deeply affects the $q \rightarrow 0$ limit of the axial current.

- The free Dirac limit is realized when a linear combination of these spinors is taken.
- Using the matrices U and V we represent these linear combinations,

$$\chi_{+}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = U^{rr'} u_{d}^{r'}(\boldsymbol{p}) \qquad \chi_{-}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = V^{rr'} v_{d}^{r'}(\boldsymbol{p})$$
(26)

- In addition, we find that $U^{\dagger}U = V^{\dagger}V = 1$.
- This deeply affects the $q \rightarrow 0$ limit of the axial current.

- The free Dirac limit is realized when a linear combination of these spinors is taken.
- Using the matrices U and V we represent these linear combinations,

$$\chi_{+}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = U^{rr'} u_{d}^{r'}(\boldsymbol{p}) \qquad \chi_{-}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = V^{rr'} v_{d}^{r'}(\boldsymbol{p})$$
(26)

• In addition, we find that $U^{\dagger}U = V^{\dagger}V = 1$.

• This deeply affects the $q \rightarrow 0$ limit of the axial current.

- The free Dirac limit is realized when a linear combination of these spinors is taken.
- Using the matrices U and V we represent these linear combinations,

$$\chi_{+}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = U^{rr'} u_{d}^{r'}(\boldsymbol{p}) \qquad \chi_{-}^{(r)}(\boldsymbol{p}, \boldsymbol{q}=0) = V^{rr'} v_{d}^{r'}(\boldsymbol{p})$$
(26)

- In addition, we find that $U^{\dagger}U = V^{\dagger}V = 1$.
- This deeply affects the $q \rightarrow 0$ limit of the axial current.

The Wigner functions are quasi-probablility distribution functions that are used to describe phase space of quantum mechanical systems. For spin-1/2 systems this looks like,

$$W_{ab}(x,k) = \int \frac{d^4y}{(2\pi\hbar)^4} e^{-\frac{ik\cdot y}{\hbar}} \left\langle \bar{\psi}_b \left(x + \frac{y}{2} \right) \psi_a \left(x - \frac{y}{2} \right) \right\rangle.$$
(27)

The non-zero expectation values are,

$$\left\langle b_{s}^{\dagger}(\boldsymbol{p}')b_{r}(\boldsymbol{p})\right\rangle = \delta_{sr}\delta^{(3)}(\boldsymbol{p}'-\boldsymbol{p})f(E_{\boldsymbol{p}}^{(r)}-\mu_{r}),$$
(28)

$$\langle c_s^{\dagger}(\boldsymbol{p}')c_r(\boldsymbol{p})\rangle = \delta_{sr}\delta^{(3)}(\boldsymbol{p}'-\boldsymbol{p})f(E_{\boldsymbol{p}}^{(r)}+\bar{\mu}_r),$$
 (29)

For simplification, we abbreviate this to,

$$f(E_{p}^{(r)} - \mu_{r}) = f_{p}^{(r)}, \qquad f(E_{p}^{(r)} + \bar{\mu}_{r}) = \bar{f}_{p}^{(r)}, \tag{30}$$

Where, $\mu_r = \mu_B + (-1)^{r-1} \mu_s$ for particles and $\bar{\mu}_r = \mu_B - (-1)^{r-1} \mu_s$ for antiparticles.

The Wigner functions are quasi-probablility distribution functions that are used to describe phase space of quantum mechanical systems. For spin-1/2 systems this looks like,

$$W_{ab}(x,k) = \int \frac{d^4y}{(2\pi\hbar)^4} e^{-\frac{ik\cdot y}{\hbar}} \left\langle \bar{\psi}_b \left(x + \frac{y}{2} \right) \psi_a \left(x - \frac{y}{2} \right) \right\rangle.$$
(27)

The non-zero expectation values are,

$$\left\langle b_{s}^{\dagger}(\boldsymbol{p}')b_{r}(\boldsymbol{p})\right\rangle = \delta_{sr}\delta^{(3)}(\boldsymbol{p}'-\boldsymbol{p})f(E_{\boldsymbol{p}}^{(r)}-\mu_{r}),$$
 (28)

$$\langle c_s^{\dagger}(\boldsymbol{p}')c_r(\boldsymbol{p})\rangle = \delta_{sr}\delta^{(3)}(\boldsymbol{p}'-\boldsymbol{p})f(E_{\boldsymbol{p}}^{(r)}+\bar{\mu}_r),$$
 (29)

For simplification, we abbreviate this to,

$$f(E_{p}^{(r)}-\mu_{r}) = f_{p}^{(r)}, \qquad f(E_{p}^{(r)}+\bar{\mu}_{r}) = \bar{f}_{p}^{(r)}, \tag{30}$$

Where, $\mu_r = \mu_B + (-1)^{r-1} \mu_s$ for particles and $\bar{\mu}_r = \mu_B - (-1)^{r-1} \mu_s$ for antiparticles.

The Wigner functions are quasi-probablility distribution functions that are used to describe phase space of quantum mechanical systems. For spin-1/2 systems this looks like,

$$W_{ab}(x,k) = \int \frac{d^4 y}{(2\pi\hbar)^4} e^{-\frac{ik \cdot y}{\hbar}} \left\langle \bar{\psi}_b \left(x + \frac{y}{2} \right) \psi_a \left(x - \frac{y}{2} \right) \right\rangle.$$
(27)

The non-zero expectation values are,

$$\left\langle b_{s}^{\dagger}(\boldsymbol{p}')b_{r}(\boldsymbol{p})\right\rangle = \delta_{sr}\delta^{(3)}(\boldsymbol{p}'-\boldsymbol{p})f(E_{\boldsymbol{p}}^{(r)}-\mu_{r}),$$
 (28)

$$\left\langle c_{s}^{\dagger}(\boldsymbol{p}')c_{r}(\boldsymbol{p})\right\rangle = \delta_{sr}\delta^{(3)}\left(\boldsymbol{p}'-\boldsymbol{p}\right)f(E_{\boldsymbol{p}}^{(r)}+\bar{\mu}_{r}),\tag{29}$$

For simplification, we abbreviate this to,

$$f(E_{p}^{(r)} - \mu_{r}) = f_{p}^{(r)}, \qquad f(E_{p}^{(r)} + \bar{\mu}_{r}) = \bar{f}_{p}^{(r)}, \tag{30}$$

Where, $\mu_r = \mu_B + (-1)^{r-1} \mu_s$ for particles and $\bar{\mu}_r = \mu_B - (-1)^{r-1} \mu_s$ for antiparticles.

The Wigner functions are quasi-probablility distribution functions that are used to describe phase space of quantum mechanical systems. For spin-1/2 systems this looks like,

$$W_{ab}(x,k) = \int \frac{d^4y}{(2\pi\hbar)^4} e^{-\frac{ik\cdot y}{\hbar}} \left\langle \bar{\psi}_b \left(x + \frac{y}{2} \right) \psi_a \left(x - \frac{y}{2} \right) \right\rangle.$$
(27)

The non-zero expectation values are,

$$\left\langle b_{s}^{\dagger}(\boldsymbol{p}')b_{r}(\boldsymbol{p})\right\rangle = \delta_{sr}\delta^{(3)}(\boldsymbol{p}'-\boldsymbol{p})f(E_{\boldsymbol{p}}^{(r)}-\mu_{r}),$$
 (28)

$$\left\langle c_{s}^{\dagger}(\boldsymbol{p}')c_{r}(\boldsymbol{p})\right\rangle = \delta_{sr}\delta^{(3)}\left(\boldsymbol{p}'-\boldsymbol{p}\right)f(E_{\boldsymbol{p}}^{(r)}+\bar{\mu}_{r}),\tag{29}$$

For simplification, we abbreviate this to,

$$f(E_{\rho}^{(r)} - \mu_r) = f_{\rho}^{(r)}, \qquad f(E_{\rho}^{(r)} + \bar{\mu}_r) = \bar{f}_{\rho}^{(r)}, \tag{30}$$

Where, $\mu_r = \mu_B + (-1)^{r-1} \mu_{\mathfrak{s}}$ for particles and $\bar{\mu}_r = \mu_B - (-1)^{r-1} \mu_{\mathfrak{s}}$ for antiparticles.

It also useful to rewrite, Eqs. (28-29) in a matrix notation,

$$\langle b_s^{\dagger}(\boldsymbol{p}') b_r(\boldsymbol{p}) \rangle = \delta^{(3)} \left(\boldsymbol{p}' - \boldsymbol{p} \right) f_{\boldsymbol{p}} (1 + \zeta_{\boldsymbol{p}} \cdot \tau)_{sr},$$

$$\langle c_s^{\dagger}(\boldsymbol{p}') c_r(\boldsymbol{p}) \rangle = \delta^{(3)} \left(\boldsymbol{p}' - \boldsymbol{p} \right) \bar{f}_{\boldsymbol{p}} (1 + \bar{\zeta}_{\boldsymbol{p}} \cdot \tau)_{sr}.$$

$$(31)$$

where

$$\zeta_{\rho} = (0, 0, \zeta_{\rho}), \quad \zeta_{\rho} = \frac{\delta f_{\rho}}{2f_{\rho}} = \frac{f_{\rho}^{(1)} - f_{\rho}^{(2)}}{f_{\rho}^{(1)} + f_{\rho}^{(2)}}.$$
 (3)

and

$$f_{\boldsymbol{p}} = \frac{1}{2} (f_{\boldsymbol{p}}^{(1)} + f_{\boldsymbol{p}}^{(2)}), \quad \delta f_{\boldsymbol{p}} = f_{\boldsymbol{p}}^{(1)} - f_{\boldsymbol{p}}^{(2)}, \tag{34}$$

It also useful to rewrite, Eqs. (28-29) in a matrix notation,

$$\langle b_s^{\dagger}(\boldsymbol{p}')b_r(\boldsymbol{p})\rangle = \delta^{(3)}\left(\boldsymbol{p}'-\boldsymbol{p}\right)f_{\boldsymbol{p}}(1+\zeta_{\boldsymbol{p}}\cdot\boldsymbol{\tau})_{sr},$$
(31)

$$\langle c_s^{\dagger}(\boldsymbol{p}')c_r(\boldsymbol{p})\rangle = \delta^{(3)}\left(\boldsymbol{p}'-\boldsymbol{p}\right)\bar{f}_{\boldsymbol{p}}(1+\bar{\zeta}_{\boldsymbol{p}}\cdot\boldsymbol{\tau})_{sr}.$$
 (32)

where

$$\zeta_{\boldsymbol{p}} = (0, 0, \zeta_{\boldsymbol{p}}), \quad \zeta_{\boldsymbol{p}} = \frac{\delta f_{\boldsymbol{p}}}{2f_{\boldsymbol{p}}} = \frac{f_{\boldsymbol{p}}^{(1)} - f_{\boldsymbol{p}}^{(2)}}{f_{\boldsymbol{p}}^{(1)} + f_{\boldsymbol{p}}^{(2)}}.$$
(33)

and

$$f_{\boldsymbol{p}} = \frac{1}{2} (f_{\boldsymbol{p}}^{(1)} + f_{\boldsymbol{p}}^{(2)}), \quad \delta f_{\boldsymbol{p}} = f_{\boldsymbol{p}}^{(1)} - f_{\boldsymbol{p}}^{(2)}, \tag{34}$$

The gamma matrices satisfy the Clifford algebra,

$$\{\gamma^{\mu},\gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbf{1}_{4\times4} \tag{35}$$

This allows one to decompose any 4 × 4 matrix into to a linear combination of the matrices, $\Gamma = \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5, \Sigma_{\mu\nu}\}$, where $\Sigma_{\mu\nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu]$ Thus the Wigner function may be expressed as follows [D. Vasak, M. Gyulassy, and H. T. Elze, Annals Phys. 173, 462 (1987)],

$$W_{ab} = \left[\mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma_\mu \gamma_5 \mathcal{A}^\mu + \frac{1}{2} \Sigma_{\mu\nu} \mathcal{S}^{\mu\nu} \right]_{ab}.$$
 (36)

Each component in this decomposition can be obtained by taking the trace of the product of the Wigner function and the corresponding element of the basis set Γ .

The gamma matrices satisfy the Clifford algebra,

$$\{\gamma^{\mu},\gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbf{1}_{4\times4} \tag{35}$$

This allows one to decompose any 4 × 4 matrix into to a linear combination of the matrices, $\Gamma = \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5, \Sigma_{\mu\nu}\}$, where $\Sigma_{\mu\nu} = \frac{i}{2}[\gamma^\mu, \gamma^\nu]$ Thus the Wigner function may be expressed as follows [D. Vasak, M. Gyulassy, and H. T. Elze, Annals Phys. 173, 462 (1987)],

$$W_{ab} = \left[\mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma_\mu \gamma_5 \mathcal{A}^\mu + \frac{1}{2} \Sigma_{\mu\nu} \mathcal{S}^{\mu\nu} \right]_{ab}.$$
 (36)

Each component in this decomposition can be obtained by taking the trace of the product of the Wigner function and the corresponding element of the basis set Γ .

The gamma matrices satisfy the Clifford algebra,

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu} \mathbf{1}_{4\times 4} \tag{35}$$

This allows one to decompose any 4 × 4 matrix into to a linear combination of the matrices, $\Gamma = \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5, \Sigma_{\mu\nu}\}$, where $\Sigma_{\mu\nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu]$ Thus the Wigner function may be expressed as follows [D. Vasak, M. Gyulassy, and H. T. Elze, Annals Phys. 173, 462 (1987)],

$$W_{ab} = \left[\mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma_\mu \gamma_5 \mathcal{A}^\mu + \frac{1}{2} \Sigma_{\mu\nu} \mathcal{S}^{\mu\nu} \right]_{ab}.$$
 (36)

Each component in this decomposition can be obtained by taking the trace of the product of the Wigner function and the corresponding element of the basis set Γ .

The gamma matrices satisfy the Clifford algebra,

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu} \mathbf{1}_{4\times 4} \tag{35}$$

This allows one to decompose any 4 × 4 matrix into to a linear combination of the matrices, $\Gamma = \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5, \Sigma_{\mu\nu}\}$, where $\Sigma_{\mu\nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu]$ Thus the Wigner function may be expressed as follows [D. Vasak, M. Gyulassy, and H. T. Elze, Annals Phys. 173, 462 (1987)],

$$W_{ab} = \left[\mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma_\mu \gamma_5 \mathcal{A}^\mu + \frac{1}{2} \Sigma_{\mu\nu} \mathcal{S}^{\mu\nu} \right]_{ab}.$$
 (36)

Each component in this decomposition can be obtained by taking the trace of the product of the Wigner function and the corresponding element of the basis set Γ .

The gamma matrices satisfy the Clifford algebra,

$$\{\gamma^{\mu},\gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbf{1}_{4\times4} \tag{35}$$

This allows one to decompose any 4 × 4 matrix into to a linear combination of the matrices, $\Gamma = \{1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5, \Sigma_{\mu\nu}\}$, where $\Sigma_{\mu\nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu]$ Thus the Wigner function may be expressed as follows [D. Vasak, M. Gyulassy, and H. T. Elze, Annals Phys. 173, 462 (1987)],

$$W_{ab} = \left[\mathcal{F} + i\gamma_5 \mathcal{P} + \gamma_\mu \mathcal{V}^\mu + \gamma_\mu \gamma_5 \mathcal{A}^\mu + \frac{1}{2} \Sigma_{\mu\nu} \mathcal{S}^{\mu\nu} \right]_{ab}.$$
 (36)

Each component in this decomposition can be obtained by taking the trace of the product of the Wigner function and the corresponding element of the basis set Γ .

Computation of these currents reveal that the space-like part of the Vector currents vanish leaving only the time-like component non-zero,

$$V^{0}(x) = \int d^{4}k \, \mathcal{V}^{0}(x,k) = \sum_{r=1}^{2} \int \frac{d^{3}k}{(2\pi\hbar)^{3}} \left(f_{k}^{(r)} - \bar{f}_{k}^{(r)} \right). \tag{37}$$

Similarly, for the axial part, the time like component and two of the space-like component vanish,

$$\mathcal{A}^{3}(x) = \int d^{4}k \,\mathcal{A}^{3}(x,k) = \sum_{r=1}^{2} \int \frac{d^{3}k}{(2\pi\hbar)^{3}} \frac{(-1)^{r} E_{k}^{\parallel}}{E_{k}^{(r)}} \left[1 + \frac{(-1)^{r-1} q}{2E_{k}^{\parallel}} \right] \left(f_{k}^{(r)} + \bar{f}_{k}^{(r)} \right)$$
(38)

The expression above agrees with the formula obtained in [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).] up to the internal degrees of freedom connected with flavor and color. Computation of these currents reveal that the space-like part of the Vector currents vanish leaving only the time-like component non-zero,

$$V^{0}(x) = \int d^{4}k \, \mathcal{V}^{0}(x,k) = \sum_{r=1}^{2} \int \frac{d^{3}k}{(2\pi\hbar)^{3}} \left(f_{k}^{(r)} - \bar{f}_{k}^{(r)} \right). \tag{37}$$

Similarly, for the axial part, the time like component and two of the space-like component vanish,

$$A^{3}(x) = \int d^{4}k \,\mathcal{A}^{3}(x,k) = \sum_{r=1}^{2} \int \frac{d^{3}k}{(2\pi\hbar)^{3}} \frac{(-1)^{r} E_{k}^{\parallel}}{E_{k}^{(r)}} \left[1 + \frac{(-1)^{r-1} q}{2E_{k}^{\parallel}} \right] \left(f_{k}^{(r)} + \bar{f}_{k}^{(r)} \right)$$
(38)

The expression above agrees with the formula obtained in [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).] up to the internal degrees of freedom connected with flavor and color.
Computation of these currents reveal that the space-like part of the Vector currents vanish leaving only the time-like component non-zero,

$$V^{0}(x) = \int d^{4}k \, \mathcal{V}^{0}(x,k) = \sum_{r=1}^{2} \int \frac{d^{3}k}{(2\pi\hbar)^{3}} \left(f_{k}^{(r)} - \bar{f}_{k}^{(r)} \right). \tag{37}$$

Similarly, for the axial part, the time like component and two of the space-like component vanish,

$$\mathcal{A}^{3}(x) = \int d^{4}k \,\mathcal{A}^{3}(x,k) = \sum_{r=1}^{2} \int \frac{d^{3}k}{(2\pi\hbar)^{3}} \frac{(-1)^{r} E_{k}^{\parallel}}{E_{k}^{(r)}} \left[1 + \frac{(-1)^{r-1} q}{2E_{k}^{\parallel}} \right] \left(f_{k}^{(r)} + \bar{f}_{k}^{(r)} \right)$$
(38)

The expression above agrees with the formula obtained in [M. Kutschera, W. Broniowski, and A. Kotlorz, Nuclear Physics A 516, 566 (1990).] up to the internal degrees of freedom connected with flavor and color.

Variation of $A^{3}(x)$ with inhomogeneity factor q

Figure: Third component of the axial vector as a function of the inhomogeneity factor q for different values of effective masses at constant chemical potential and temperature of $\mu = 0.1$ GeV and T = 0.15 GeV, respectively.

Variation of $A^{3}(x)$ with baryon chemical potential

Figure: Third component of the axial vector as a function of the chemical potential μ for different values of temperature at constant mass and inhomogeneity factor of M = 0.3 GeV and q = 0.1 GeV, respectively.

The scalar, pseudoscalar and vector component agree with free Dirac case in the $q \rightarrow 0$ limit

The axial vector component in the $q \rightarrow 0$ disagrees with free Dirac case. This situation is identical to the one faced when taking the degenerate limit of non-degenerate theory.

Since in the $q \rightarrow 0$ limit the eigenvectors are actually linear combination of the free Dirac spinors, the net effect is to twist the spin polarization direction.

Expected result in the free Dirac case

$$\boldsymbol{\zeta_p}=(0,0,1)$$

Fwisted polarization

$$\zeta_{p} = -rac{1}{E_{p}^{\parallel}(E_{p}+M)} \left(p^{1}p^{3}, \, p^{2}p^{3}, \, E_{p}^{\parallel 2} + E_{p}M
ight)$$

The scalar, pseudoscalar and vector component agree with free Dirac case in the $q \rightarrow 0$ limit

The axial vector component in the q
ightarrow 0 disagrees with free Dirac case.

This situation is identical to the one faced when taking the degenerate limit of a non degenerate theory.

Since in the $q \rightarrow 0$ limit the eigenvectors are actually linear combination of the free Dirac spinors, the net effect is to twist the spin polarization direction.

Expected result in the free Dirac case

$$\boldsymbol{\zeta_p}=(0,0,1)$$

Twisted polarization

$$\boldsymbol{\zeta_p} = -\frac{1}{E_p^{\parallel}(E_p + M)} \left(p^1 p^3, \ p^2 p^3, \ E_p^{\parallel 2} + E_p M \right)$$

The scalar, pseudoscalar and vector component agree with free Dirac case in the $q \rightarrow 0$ limit

The axial vector component in the q
ightarrow 0 disagrees with free Dirac case.

This situation is identical to the one faced when taking the degenerate limit of a non degenerate theory.

Since in the $q \rightarrow 0$ limit the eigenvectors are actually linear combination of the free Dirac spinors, the net effect is to twist the spin polarization direction.

Expected result in the free Dirac case

$$oldsymbol{\zeta_p}=(0,0,1)$$

Twisted polarizatior

$$\zeta_{\boldsymbol{p}} = -\frac{1}{E_{\boldsymbol{p}}^{\parallel}(E_{\boldsymbol{p}}+M)} \left(\boldsymbol{p}^{1}\boldsymbol{p}^{3}, \, \boldsymbol{p}^{2}\boldsymbol{p}^{3}, \, E_{\boldsymbol{p}}^{\parallel 2} + E_{\boldsymbol{p}}M \right)$$

(Sudip K. Kar (ITP JU))

The scalar, pseudoscalar and vector component agree with free Dirac case in the $q \rightarrow 0$ limit

The axial vector component in the q
ightarrow 0 disagrees with free Dirac case.

This situation is identical to the one faced when taking the degenerate limit of a non degenerate theory.

Since in the $q \rightarrow 0$ limit the eigenvectors are actually linear combination of the free Dirac spinors, the net effect is to twist the spin polarization direction.

Expected result in the free Dirac case

$$oldsymbol{\zeta_{p}}=(0,0,1)$$

(39)

Twisted polarization

$$\zeta_{p} = -rac{1}{E_{p}^{\parallel}(E_{p}+M)} \left(p^{1}p^{3}, \, p^{2}p^{3}, \, E_{p}^{\parallel 2} + E_{p}M
ight)$$

The scalar, pseudoscalar and vector component agree with free Dirac case in the $q \rightarrow 0$ limit

The axial vector component in the q
ightarrow 0 disagrees with free Dirac case.

This situation is identical to the one faced when taking the degenerate limit of a non degenerate theory.

Since in the $q \rightarrow 0$ limit the eigenvectors are actually linear combination of the free Dirac spinors, the net effect is to twist the spin polarization direction.

Expected result in the free Dirac case

$$\zeta_{oldsymbol{
ho}}=(0,0,1)$$

(39)

(40)

Twisted polarization

$$\zeta_{oldsymbol{
ho}} = -rac{1}{E^{\parallel}_{
ho}(E_{oldsymbol{
ho}}+M)} \left(
ho^1
ho^3, \
ho^2
ho^3, \ E^{\parallel 2}_{
ho} + E_{oldsymbol{
ho}} M
ight)$$

In the case of the periodic chiral condensate considered in this work, the semiclassical expansion leads to the equation

[W. Florkowski, J. Hufner, S. Klevansky, and L. Neise, Annals of Physics 245, 445-463 (1996).]

$$\begin{bmatrix} \left(k^{\mu} + \frac{i\hbar}{2}\partial^{\mu}\right)\gamma_{\mu} - \sigma(x) + \frac{i\hbar}{2}\partial_{\mu}\sigma(x)\partial_{k}^{\mu} \\ -i\gamma_{5}\pi(x) - \frac{\hbar}{2}\gamma_{5}\partial_{\mu}\pi(x)\partial_{k}^{\mu} \end{bmatrix} W(x,k) = 0.$$
(41)

Semiclassical expansion of the Wigner function

the decomposition of the Wigner function defined by Eq. (36), leads to a system of coupled equations of the form:

$$\mathcal{K}^{\mu}\mathcal{V}_{\mu} - \sigma\mathcal{F} + \pi\mathcal{P} = \frac{i\hbar}{2} \Big[\left(\partial_{\mu}\pi\right) \left(\partial_{k}^{\mu}\mathcal{P}\right) - \left(\partial_{\mu}\sigma\right) \left(\partial_{k}^{\mu}\mathcal{F}\right) \Big],\tag{42}$$

$$-i\mathcal{K}^{\mu}\mathcal{A}_{\mu} - \sigma\mathcal{P} - \pi\mathcal{F} = -\frac{i\hbar}{2} \Big[\left(\partial_{\mu}\pi\right) \left(\partial_{k}^{\mu}\mathcal{F}\right) + \left(\partial_{\mu}\sigma\right) \left(\partial_{k}^{\mu}\mathcal{P}\right) \Big],\tag{43}$$

$$K_{\mu}\mathcal{F} + iK^{\nu}\mathcal{S}_{\nu\mu} - \sigma\mathcal{V}_{\mu} + i\pi\mathcal{A}_{\mu} = \frac{i\hbar}{2} \Big[i\left(\partial_{\nu}\pi\right) \left(\partial_{k}^{\nu}\mathcal{A}_{\mu}\right) - \left(\partial_{\nu}\sigma\right) \left(\partial_{k}^{\nu}\mathcal{V}_{\mu}\right) \Big],\tag{44}$$

$$i\mathcal{K}^{\mu}\mathcal{P} - \mathcal{K}_{\nu}\tilde{\mathcal{S}}^{\nu\mu} - \sigma\mathcal{A}^{\mu} + i\pi\mathcal{V}^{\mu} = \frac{i\hbar}{2} \Big[i\left(\partial_{\nu}\pi\right) \left(\partial_{k}^{\nu}\mathcal{V}^{\mu}\right) - \left(\partial_{\nu}\sigma\right) \left(\partial_{k}^{\nu}\mathcal{A}^{\mu}\right) \Big],\tag{45}$$

$$i(K^{\mu}\mathcal{V}^{\nu}-K^{\nu}\mathcal{V}^{\mu})-\epsilon^{\mu\nu\tau\sigma}K_{\tau}\mathcal{A}_{\sigma}-\pi\tilde{\mathcal{S}}^{\mu\nu}+\sigma\mathcal{S}^{\mu\nu}=\frac{i\hbar}{2}\Big[\left(\partial_{\gamma}\sigma\right)\left(\partial_{k}^{\gamma}\mathcal{S}^{\mu\nu}\right)-\left(\partial_{\gamma}\pi\right)\left(\partial_{k}^{\gamma}\tilde{\mathcal{S}}^{\mu\nu}\right)\Big].$$
(46)

Here, $K^{\mu} = k^{\mu} + \frac{i\hbar}{2}\partial^{\mu}$ and \tilde{S} is the dual tensor to the tensor S, namely

$$\tilde{S}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} S_{\alpha\beta}.$$
(47)

Semiclassical expansion of the Wigner function

the decomposition of the Wigner function defined by Eq. (36), leads to a system of coupled equations of the form:

$$\mathcal{K}^{\mu}\mathcal{V}_{\mu} - \sigma\mathcal{F} + \pi\mathcal{P} = \frac{i\hbar}{2} \Big[\left(\partial_{\mu}\pi \right) \left(\partial_{k}^{\mu}\mathcal{P} \right) - \left(\partial_{\mu}\sigma \right) \left(\partial_{k}^{\mu}\mathcal{F} \right) \Big], \tag{42}$$

$$-i\mathcal{K}^{\mu}\mathcal{A}_{\mu} - \sigma\mathcal{P} - \pi\mathcal{F} = -\frac{i\hbar}{2} \Big[\left(\partial_{\mu}\pi\right) \left(\partial_{k}^{\mu}\mathcal{F}\right) + \left(\partial_{\mu}\sigma\right) \left(\partial_{k}^{\mu}\mathcal{P}\right) \Big],\tag{43}$$

$$\mathcal{K}_{\mu}\mathcal{F} + i\mathcal{K}^{\nu}\mathcal{S}_{\nu\mu} - \sigma\mathcal{V}_{\mu} + i\pi\mathcal{A}_{\mu} = \frac{i\hbar}{2} \Big[i\left(\partial_{\nu}\pi\right)\left(\partial_{k}^{\nu}\mathcal{A}_{\mu}\right) - \left(\partial_{\nu}\sigma\right)\left(\partial_{k}^{\nu}\mathcal{V}_{\mu}\right) \Big],\tag{44}$$

$$i\mathcal{K}^{\mu}\mathcal{P} - \mathcal{K}_{\nu}\tilde{\mathcal{S}}^{\nu\mu} - \sigma\mathcal{A}^{\mu} + i\pi\mathcal{V}^{\mu} = \frac{i\hbar}{2} \Big[i\left(\partial_{\nu}\pi\right) \left(\partial_{k}^{\nu}\mathcal{V}^{\mu}\right) - \left(\partial_{\nu}\sigma\right) \left(\partial_{k}^{\nu}\mathcal{A}^{\mu}\right) \Big],\tag{45}$$

$$i(\mathcal{K}^{\mu}\mathcal{V}^{\nu}-\mathcal{K}^{\nu}\mathcal{V}^{\mu})-\epsilon^{\mu\nu\tau\sigma}\mathcal{K}_{\tau}\mathcal{A}_{\sigma}-\pi\tilde{\mathcal{S}}^{\mu\nu}+\sigma\mathcal{S}^{\mu\nu}=\frac{i\hbar}{2}\Big[\left(\partial_{\gamma}\sigma\right)\left(\partial_{k}^{\gamma}\mathcal{S}^{\mu\nu}\right)-\left(\partial_{\gamma}\pi\right)\left(\partial_{k}^{\gamma}\tilde{\mathcal{S}}^{\mu\nu}\right)\Big].$$
(46)

Here, $K^{\mu} = k^{\mu} + \frac{i\hbar}{2}\partial^{\mu}$ and \tilde{S} is the dual tensor to the tensor S, namely

$$\tilde{\mathcal{S}}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} \mathcal{S}_{\alpha\beta}. \tag{47}$$

Semiclassical expansion of the Wigner function

the decomposition of the Wigner function defined by Eq. (36), leads to a system of coupled equations of the form:

$$\mathcal{K}^{\mu}\mathcal{V}_{\mu} - \sigma\mathcal{F} + \pi\mathcal{P} = \frac{i\hbar}{2} \Big[\left(\partial_{\mu}\pi\right) \left(\partial_{k}^{\mu}\mathcal{P}\right) - \left(\partial_{\mu}\sigma\right) \left(\partial_{k}^{\mu}\mathcal{F}\right) \Big],\tag{42}$$

$$-i\mathcal{K}^{\mu}\mathcal{A}_{\mu} - \sigma\mathcal{P} - \pi\mathcal{F} = -\frac{i\hbar}{2} \Big[\left(\partial_{\mu}\pi\right) \left(\partial_{k}^{\mu}\mathcal{F}\right) + \left(\partial_{\mu}\sigma\right) \left(\partial_{k}^{\mu}\mathcal{P}\right) \Big],\tag{43}$$

$$\mathcal{K}_{\mu}\mathcal{F} + i\mathcal{K}^{\nu}\mathcal{S}_{\nu\mu} - \sigma\mathcal{V}_{\mu} + i\pi\mathcal{A}_{\mu} = \frac{i\hbar}{2} \Big[i\left(\partial_{\nu}\pi\right)\left(\partial_{k}^{\nu}\mathcal{A}_{\mu}\right) - \left(\partial_{\nu}\sigma\right)\left(\partial_{k}^{\nu}\mathcal{V}_{\mu}\right) \Big],\tag{44}$$

$$i\mathcal{K}^{\mu}\mathcal{P} - \mathcal{K}_{\nu}\tilde{\mathcal{S}}^{\nu\mu} - \sigma\mathcal{A}^{\mu} + i\pi\mathcal{V}^{\mu} = \frac{i\hbar}{2} \Big[i\left(\partial_{\nu}\pi\right) \left(\partial_{k}^{\nu}\mathcal{V}^{\mu}\right) - \left(\partial_{\nu}\sigma\right) \left(\partial_{k}^{\nu}\mathcal{A}^{\mu}\right) \Big],\tag{45}$$

$$i(\mathcal{K}^{\mu}\mathcal{V}^{\nu}-\mathcal{K}^{\nu}\mathcal{V}^{\mu})-\epsilon^{\mu\nu\tau\sigma}\mathcal{K}_{\tau}\mathcal{A}_{\sigma}-\pi\tilde{\mathcal{S}}^{\mu\nu}+\sigma\mathcal{S}^{\mu\nu}=\frac{i\hbar}{2}\Big[\left(\partial_{\gamma}\sigma\right)\left(\partial_{k}^{\gamma}\mathcal{S}^{\mu\nu}\right)-\left(\partial_{\gamma}\pi\right)\left(\partial_{k}^{\gamma}\tilde{\mathcal{S}}^{\mu\nu}\right)\Big].$$
(46)

Here, $K^{\mu} = k^{\mu} + \frac{i\hbar}{2}\partial^{\mu}$ and \tilde{S} is the dual tensor to the tensor S, namely

$$\tilde{\mathcal{S}}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} \mathcal{S}_{\alpha\beta}.$$
(47)

$$C = C_{(0)} + \hbar C_{(1)} + \hbar^2 C_{(2)} + \dots \quad ,$$
(48)

where C is one of the coefficients from the set $\{\mathcal{F}, \mathcal{P}, \mathcal{V}^{\mu}, \mathcal{A}^{\mu}, \mathcal{S}^{\mu\nu}\}$.

This when applied to the first dynamical equation yields,

$$k_{\mu}\mathcal{V}^{\mu}_{(0)} - \sigma_{(0)}\mathcal{F}_{(0)} + \pi_{(0)}\mathcal{P}_{(0)} = 0$$
(49)

upto first order in \hbar .

A quick check of the case with $k = (k^0, 0)$ and $q \neq 0$ shows that the equation is not satisfied.

$$C = C_{(0)} + \hbar C_{(1)} + \hbar^2 C_{(2)} + \dots \quad , \tag{48}$$

where *C* is one of the coefficients from the set $\{\mathcal{F}, \mathcal{P}, \mathcal{V}^{\mu}, \mathcal{A}^{\mu}, \mathcal{S}^{\mu\nu}\}$. This when applied to the first dynamical equation yields,

$$k_{\mu}\mathcal{V}^{\mu}_{(0)} - \sigma_{(0)}\mathcal{F}_{(0)} + \pi_{(0)}\mathcal{P}_{(0)} = 0$$
(49)

upto first order in \hbar .

A quick check of the case with $k = (k^0, 0)$ and $q \neq 0$ shows that the equation is not satisfied.

$$C = C_{(0)} + \hbar C_{(1)} + \hbar^2 C_{(2)} + \dots \quad , \tag{48}$$

where *C* is one of the coefficients from the set $\{\mathcal{F}, \mathcal{P}, \mathcal{V}^{\mu}, \mathcal{A}^{\mu}, \mathcal{S}^{\mu\nu}\}$. This when applied to the first dynamical equation yields,

$$k_{\mu}\mathcal{V}^{\mu}_{(0)} - \sigma_{(0)}\mathcal{F}_{(0)} + \pi_{(0)}\mathcal{P}_{(0)} = 0$$
(49)

upto first order in \hbar .

A quick check of the case with $k = (k^0, 0)$ and $q \neq 0$ shows that the equation is not satisfied.

$$C = C_{(0)} + \hbar C_{(1)} + \hbar^2 C_{(2)} + \dots \quad , \tag{48}$$

where *C* is one of the coefficients from the set $\{\mathcal{F}, \mathcal{P}, \mathcal{V}^{\mu}, \mathcal{A}^{\mu}, \mathcal{S}^{\mu\nu}\}$. This when applied to the first dynamical equation yields,

$$k_{\mu}\mathcal{V}^{\mu}_{(0)} - \sigma_{(0)}\mathcal{F}_{(0)} + \pi_{(0)}\mathcal{P}_{(0)} = 0$$
(49)

upto first order in \hbar .

A quick check of the case with $k = (k^0, 0)$ and $q \neq 0$ shows that the equation is not satisfied.

Summary

- We obtained the spinors for chiral spirals by solving the eigenvalues equation present in the literature.
- The canonical quantization of these fields was verified, thus ensuring their applicability in quantum cases.
- The Wigner function and all its components were computed exactly.
- The vector and axial current were extracted from these components and then used to compute currents.
- The $q \rightarrow 0$ limit of the vector and axial vector currents were analyzed, the axial vector current, in particular, displayed a curious twist from the expected free case.
- The computed exact functions were shown to disagree with the semiclassical expansion.

- We obtained the spinors for chiral spirals by solving the eigenvalues equation present in the literature.
- The canonical quantization of these fields was verified, thus ensuring their applicability in quantum cases.
- The Wigner function and all its components were computed exactly.
- The vector and axial current were extracted from these components and then used to compute currents.
- The $q \rightarrow 0$ limit of the vector and axial vector currents were analyzed, the axial vector current, in particular, displayed a curious twist from the expected free case.
- The computed exact functions were shown to disagree with the semiclassical expansion.

- We obtained the spinors for chiral spirals by solving the eigenvalues equation present in the literature.
- The canonical quantization of these fields was verified, thus ensuring their applicability in quantum cases.
- The Wigner function and all its components were computed exactly.
- The vector and axial current were extracted from these components and then used to compute currents.
- The $q \rightarrow 0$ limit of the vector and axial vector currents were analyzed, the axial vector current, in particular, displayed a curious twist from the expected free case.
- The computed exact functions were shown to disagree with the semiclassical expansion.

- We obtained the spinors for chiral spirals by solving the eigenvalues equation present in the literature.
- The canonical quantization of these fields was verified, thus ensuring their applicability in quantum cases.
- The Wigner function and all its components were computed exactly.
- The vector and axial current were extracted from these components and then used to compute currents.
- The $q \rightarrow 0$ limit of the vector and axial vector currents were analyzed, the axial vector current, in particular, displayed a curious twist from the expected free case.
- The computed exact functions were shown to disagree with the semiclassical expansion.

- We obtained the spinors for chiral spirals by solving the eigenvalues equation present in the literature.
- The canonical quantization of these fields was verified, thus ensuring their applicability in quantum cases.
- The Wigner function and all its components were computed exactly.
- The vector and axial current were extracted from these components and then used to compute currents.
- The $q \rightarrow 0$ limit of the vector and axial vector currents were analyzed, the axial vector current, in particular, displayed a curious twist from the expected free case.
- The computed exact functions were shown to disagree with the semiclassical expansion.

- We obtained the spinors for chiral spirals by solving the eigenvalues equation present in the literature.
- The canonical quantization of these fields was verified, thus ensuring their applicability in quantum cases.
- The Wigner function and all its components were computed exactly.
- The vector and axial current were extracted from these components and then used to compute currents.
- The $q \rightarrow 0$ limit of the vector and axial vector currents were analyzed, the axial vector current, in particular, displayed a curious twist from the expected free case.
- The computed exact functions were shown to disagree with the semiclassical expansion.

- We obtained the spinors for chiral spirals by solving the eigenvalues equation present in the literature.
- The canonical quantization of these fields was verified, thus ensuring their applicability in quantum cases.
- The Wigner function and all its components were computed exactly.
- The vector and axial current were extracted from these components and then used to compute currents.
- The $q \rightarrow 0$ limit of the vector and axial vector currents were analyzed, the axial vector current, in particular, displayed a curious twist from the expected free case.
- The computed exact functions were shown to disagree with the semiclassical expansion.

Supplemental slides

$$N_{\pm}^{(r)} = \sqrt{2E_{\rho}^{(r)}} \left[1 + \frac{\left(E_{\rho}^{(r)} \pm (-1)^{r} E_{\rho}^{\parallel} \mp \frac{q}{2}\right)^{2}}{(p^{1})^{2} + (p^{2})^{2}} \right]^{-1/2} \left[1 + \frac{(p^{3})^{2}}{\left(M + (-1)^{r} E_{\rho}^{\parallel}\right)^{2}} \right]^{-1/2}.$$
(50)

To see why this is not something unusual, consider the following example,

$$\begin{pmatrix} 1 & \epsilon \\ \epsilon & 1 \end{pmatrix} \text{ has eigenvectors given by } |1 \pm \epsilon\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$$
(51)

The expectation values, $\langle 1 + \epsilon | \tau^3 | 1 + \epsilon \rangle$ and $\langle 1 - \epsilon | \tau^3 | 1 - \epsilon \rangle$ are zero (Here, $\tau_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$). which in the $\epsilon \to 0$ limit becomes,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 which has eigenvectors given by $|1\rangle_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ (52)

and compute the same expectation value as the previous case to obtain,

$$_{1}\langle 1|\tau^{3}|1\rangle_{1} = 1$$
 $_{2}\langle 1|\tau^{3}|1\rangle_{2} = -1$ (53)

To see why this is not something unusual, consider the following example,

$$\begin{pmatrix} 1 & \epsilon \\ \epsilon & 1 \end{pmatrix} \text{ has eigenvectors given by } |1 \pm \epsilon\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix}$$
 (51)

The expectation values, $\langle 1 + \epsilon | \tau^3 | 1 + \epsilon \rangle$ and $\langle 1 - \epsilon | \tau^3 | 1 - \epsilon \rangle$ are zero (Here, $\tau_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$). which in the $\epsilon \to 0$ limit becomes,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ which has eigenvectors given by } |1\rangle_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |1\rangle_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(52)

and compute the same expectation value as the previous case to obtain,

$$_{1}\langle 1|\tau^{3}|1\rangle_{1} = 1$$
 $_{2}\langle 1|\tau^{3}|1\rangle_{2} = -1$ (53)