

Isospin-symmetry breaking by kaons in HIC

Francesco Giacosa Jan Kochanowski U Kielce – Goethe U Frankfurt

> In collaboration with Wojciech Brylinski, Marek Gazdzicki, Mark Gorenstein, Roman Poberezhnyuk, Subhasis Samanta, Martin Rohrmoser +NA61/SHINE

BIAŁASÓWKA - AGH

23/5/2025

nature communications

Article

6

Evidence of isospin-symmetry violation in high-energy collisions of atomic nuclei

Received: 6 March 2024

Accepted: 14 February 2025

Published online: 23 March 2025

Check for updates

The NA61/SHINE Collaboration*, F. Giacosa ^{(D),2}, M. Gorenstein ^{(D),3,4}, R. Poberezhniuk ^{(D),3,4,5} & S. Samanta ^(D)

Strong interactions preserve an approximate isospin symmetry between up (u)and down (d) quarks, part of the more general flavor symmetry. In the case of K meson production, if this isospin symmetry were exact, it would result in equal numbers of charged (K^+ and K^-) and neutral (K^0 and \overline{K}^0) mesons produced in collisions of isospin-symmetric atomic nuclei. Here, we report results on the relative abundance of charged over neutral K meson production in argon and scandium nuclei collisions at a center-of-mass energy of 11.9 GeV per nucleon pair. We find that the production of K⁺ and K⁻ mesons at mid-rapidity is $(18.4 \pm 6.1)\%$ higher than that of the neutral K mesons. Although with large uncertainties, earlier data on nucleus-nucleus collisions in the collision centerof-mass energy range $2.6 < \sqrt{s_{NN}} < 200$ GeV are consistent with the present result. Using well-established models for hadron production, we demonstrate that known isospin-symmetry breaking effects and the initial nuclei containing more neutrons than protons lead only to a small (few percent) deviation of the charged-to-neutral kaon ratio from unity at high energies. Thus, they cannot explain the measurements. The significance of the flavor-symmetry violation beyond the known effects is 4.7σ when the compilation of world data with uncertainties quoted by the experiments is used. New systematic, highprecision measurements and theoretical efforts are needed to establish the origin of the observed large isospin-symmetry breaking.

- 1. Isospin: brief recall
- 2. Kaon productions in heavy-ion collisions
- 3. Theory vs experiment (NA61/SHINE + other)
- 4. Quark coalescence model: post/predictions
- 5. Conclusions

Heisenberg (1932): the nucleon

A nucleon is either a proton or a neutron as a component of an atomic nucleus

Proton and neutron merge into the nucleon Masses very similar.

Wigner (1932): isotopic spin, thus isospin

Nucleon doublet: I=1/2

$$\left(\begin{array}{c}p\\n\end{array}\right) \to \hat{O}\left(\begin{array}{c}p\\n\end{array}\right)$$

 \hat{O} is a 2 × 2 unitary matrix. $\hat{O} = e^{i\theta_i \sigma_i/2}$

A specific isospin transformation is the so-called **charge transformation**

$$\hat{C} = e^{i\pi\sigma_2/2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
Then under \hat{C} : $p \iff n$

Yukawa (1932) and Kemmer (1939): isospin triplet I=1

 $\begin{pmatrix} \pi^+ \\ \pi^0 \\ \pi^- \end{pmatrix}$

under \hat{C} :

 $\pi^+ \iff \pi^-$

Kaons

20 DECEMBER 1947 Clifford Butler and George Rochester discover the kaon; first strange particle

Kaons form isospin doublets, just as the nucleon

$$\left(\begin{array}{c}p\\n\end{array}\right) \left(\begin{array}{c}K^+\\K^0\end{array}\right) \left(\begin{array}{c}-\bar{K}^0\\K^-\end{array}\right) \dots$$

under \hat{C} :

$$p \iff n$$
$$K^+ \iff K^0$$
$$\bar{K}^0 \iff K^-$$

Quarks and QCD

Quarks and QCD, isospin:

In terms of quarks:

$$\left(egin{array}{c} u \\ d \end{array}
ight)
ightarrow \hat{O} \left(egin{array}{c} u \\ d \end{array}
ight)$$

Then under $\hat{C}: \ u \Longleftrightarrow d$

Isospin is an approximate symmetry of QCD

- Mesonic multiplets (nucleon doublet, pion triplet, kaon doublets).
- Reactions: if an initial state has a certain (I,Iz), then the final state is also such. Indeed, pion-pion, pion-nucleon and nucleon-nulceon scattering conserve isospin (to a good level of accuracy).

 $p+p \to \Lambda + K^+ + p$

- Isospin symmetry is good, but not exact. Masses of u and d not equal (explicit symmetry breaking).
- Isospin transformations are a subset of flavor transformations.

Example of isospin breaking/1

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP/84-27

March 8th, 1984

THE ISOSPIN-VIOLATING DECAY $\eta' \rightarrow 3\pi^{\circ}$

IHEP¹-IISN²-LAPP³ Collaboration

$$BR(\eta' + 3\pi^{\circ}) = 5.2 \left(1 - \frac{m_u}{m_d}\right)^2 \quad 10^{-3}$$

Example of isospin breaking/2

ϕ (1020) DECAY MODES

	Mode	Fraction (Γ _i /Γ)	Scale factor/ Confidence level
Г ₁	K+K-	$(49.1 \pm 0.5)\%$	S=1.3
Г ₂	K ⁰ _L K ⁰ _S	$(33.9 \pm 0.4)\%$	S=1.2

More on the resonance $\phi(1020)$

$$I^{G}(J^{PC}) = 0^{-}(1^{--})$$

.

VALUE (MeV)	EVTS	DOCUMENT IL	D TECN	COMMENT		φ(102	20) DECAY MODES		
1019.461±0.010	6 OUR AVERAGE					Mode	Fraction	(Γ _i /Γ)	Scale factor/ Confidence level
					Γ_1	K^+K^-	(49.1	±0.5)%	6 S=1.3
	ϕ	(1020) WIDTI	4		Γ2	$K_L^0 K_S^0$	(33.9	±0.4)%	6 S=1.2
	r	()	-		Г ₃	$\rho\pi + \pi^+\pi^-\pi^0$	(15.4	±0.4)%	6 S=1.2
VALUE (MeV)	EVTS DO	OCUMENT ID	TECN COM	MENT					
4.249±0.013 OU	R AVERAGE Error	includes scale fa	actor of 1.1.						

$$\frac{\Gamma_{K^+K^-}}{\Gamma_{K^0\bar{K}^0}} = \frac{g_{K^+K^-}^2}{g_{K^0\bar{K}^0}^2} \frac{\left(\frac{m_{\phi}^2}{4} - m_{K^+}^2\right)^{3/2}}{\left(\frac{m_{\phi}^2}{4} - m_{K^0}^2\right)^{3/2}} = \frac{g_{K^+K^-}^2}{g_{K^0\bar{K}^0}^2} 1.52 \stackrel{\text{PDG}}{=} 1.45 \pm 0.03$$

$$\frac{g_{K^+K^-}}{g_{K^0\bar{K}^0}} = 0.98 \pm 0.01$$

At the freeze-out, the emission of hadrons is well described by e.g. thermal models.

- Kaon production: unexpected large violation of isospin in charged to neutral kaon ratio
- Adhikary et al. [NA61/SHINE], Excess of Charged Over Neutral K Meson Production in High-Energy Collisions of Atomic Nuclei, [arXiv:2312.06572 [nucl-ex]] (Nat. Comm.)
- ...as well as to a compilation of other experiments
- Previous theoretical considerations: Brylinski et al., Large isospin symmetry breaking in kaon production at high energies, [arXiv:2312.07176 [nucl-th]].

Nucleus-nucleus collion with equal numbers of protons and neutrons

Q/B = 1/2 $Z = N = A/2^{2}$

 $|A+A\rangle$

 $I_z = 0$ (typically also I =0 for each nucleus, thus total isospin also vanishing)

Expected kaon multiplicities

Charge symmetry means that strong interactions are invariant under the inversion of the third component of the isospin of hadron of the initial and final states.

Then:

 $\langle K^+ \rangle = \langle K^0 \rangle$ $\langle K^- \rangle = \langle \bar{K}^0 \rangle$

Bit Etransform

This is the C-transformed version fo the previous reaction.

Here, the protons are spectactors and the neutrons interact.

Just as mm scattering! More K° than Kt

21

Averaging leads to...

If both initial states one equally probably $\langle \chi^+ \rangle = \langle \kappa^+ \rangle$ holde

Formally: $\hat{\rho} = \sum p_n \left| \Psi_n \right\rangle \left\langle \Psi_n \right|$ $\hat{C}\hat{\rho}\hat{C}^{\dagger}=\hat{\rho}$

This is a genual result?

22

Neutral kaons and the ratio Rk

$$\begin{pmatrix} \left| K_{S}^{0} \right\rangle \\ \left| K_{L}^{0} \right\rangle \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \left| K^{0} \right\rangle \\ \left| \bar{K}^{0} \right\rangle \end{pmatrix}$$

$$\langle K_S^0 \rangle = \frac{1}{2} \langle K^0 \rangle + \frac{1}{2} \langle \bar{K}^0 \rangle = \langle K_L^0 \rangle \qquad \langle K^+ \rangle + \langle K^- \rangle = 2 \langle K_S^0 \rangle$$

$$\begin{array}{l} Q/B=1/2\\ \text{+ isospin exact...} \end{array} \quad R_K\equiv \frac{\langle K^+\rangle+\langle K^-\rangle}{\langle K^0\rangle+\langle \bar{K}^0\rangle}=\frac{\langle K^+\rangle+\langle K^-\rangle}{2\langle K_S^0\rangle}=1 \end{array}$$

Theoretical approaches

 HRG (hadron resonance gas approach) $\ln Z = \sum_{k} \ln Z_{k}^{\text{stable}} + \sum_{k} \ln Z_{k}^{\text{res}}$ $\ln Z_{k}^{\text{stable,}} = f_{k} V \int \frac{d^{3}p}{(2\pi)^{3}} \ln \left[1 \pm e^{-E_{p}/T}\right]^{\pm 1}$

 UrQMD (Hadron-String transport model, fully integrated Monte Carlo simulation of nucleusnucleus simulations)

Hadron resonance gas vs lattice results

• All baryons and mesons (m < 2.5 GeV) from PDG $_{\mbox{[Borsnayi et al.]}HEP11(2010)077]}$

If we enforce isospin symmetry to be exact, $R\kappa = 1$ for any energy. 26

Experiment	Collision system	$\sqrt{s_{NN}}$ (GeV)	R_K	σ_{stat}	σ_{total}
NA61/SHINE	Ar+Sc	11.9	1.1839	0.0138	0.0615
HADES	Ar+KCl	2.6	1.2483	0.1027	0.1545
STAR (BES I)	Au+Au	7.7	1.1247	-	0.0819
STAR (BES I)	Au+Au	11.5	1.1707	-	0.0973
STAR (BES I)	Au+Au	19.6	1.1584	-	0.0910
STAR (BES I)	Au+Au	27	1.1553	-	0.0819
STAR (BES I)	Au+Au	39	1.1446	-	0.1079
		-			

NA49	Pb+Pb	7.6	1.1758	0.0198	0.1325
NA49	Pb+Pb	8.7	1.1447	0.0295	0.1263
CERES	Pb+Au	17.3	1.2052	0.0539	0.1340
NA35	S+S	19.4	0.9238	-	0.1533
STAR	Au+Au	62.4	1.2774	-	0.1525
STAR	Au+Au	130	1.2994	-	0.2331
STAR	Au+Au	200	1.1586	-	0.1214
ALICE	Pb+Pb	2760	0.9909	-	0.1071

Experimental results (NA61/SHINE plus others)

Latest NA61/SHINE result: $R\kappa = 1.184 \pm 0.061$

Note, however, most experiments have Q/B < 0.5

Experiment vs theory (HRG): ratio

 1.129 ± 0.027 .

 $\chi^2_{min}/\text{dof} \approx 0.3$

The exp/th missmatch is 4.7σ .

- HRG and UrQMD agree with each other
- Q/B <1/2 favors neutral kaons
- charged kaons are lighter than neutral ones: this favors charged kaons

- Non-QCD effects: weak processes are negligible
- Non-QCD effects: electromagnetic processes are small, of the order of α^2 . However, nonperturbative effects possible for soft charged kaons?
- Decays of $\phi(1020)$ meson generates quite small effects.
- Role of a0(980) and f0(980) is also small.

Toward a simple 'quark counting' model

- Provided the large isospin-symmetry breaking is true, two questions can be asked: why and which are its consequences.
- 'Why' is, as usual, a difficult question. Can electromagnetic interaction enhance K+K-? We argued that this is not the case. But...
- What about a sum over many small effects? All phi-fo-ao etc effects would lead to the measured results.
- Eventually a combination of both QED and many small contributions...

Quark recombination model: references

Joanna Stepaniak and Damian Pszczel. On the relation between K_s^0 and charged kaon yields in proton-proton collisions. Eur. Phys. J. C, 83(10):928, 2023.

M. Bonesini, A. Marchionni, F. Pietropaolo, and T. Tabarelli de Fatis. On Particle production for highenergy neutrino beams. <u>Eur. Phys. J. C</u>, 20:13–27, 2001. As reported in Ref. [25] the model was developed by N. Doble, L. Gatignon, P. Grafstrom, NA31 Internal note 83 (1990). According to the authors, the formula and its derivation are due to Horst Wachsmuth.

Valence and sea quarks

$$n_u = n_u^{val}$$

$$n_d = n_d^{val}$$

$$\alpha = n_u^{sea} = n_{\bar{u}}^{sea}$$

$$\beta = n_d^{sea} = n_{\bar{d}}^{sea}$$

$$\gamma = n_s^{sea} = n_{\bar{s}}^{sea}$$

 $n_{tot} = n_u + n_d + 2\alpha + 2\beta + 2\gamma$

$$p(u) = \frac{n_u + \alpha}{n_{tot}}$$

Kaon probabilities

 $p(K^+) \propto n_u \gamma + \alpha \gamma$ $p(K^0) \propto n_d \gamma + \beta \gamma$

 $p(K^-) \propto \alpha \gamma$ $p(\bar{K}^0) \propto \beta \gamma$

'Grundschulmathematik' leads to:

$$R_K = \frac{\langle K^+ \rangle + \langle K^- \rangle}{\langle 2K_S^0 \rangle} = \frac{n_u + 2\alpha}{n_d + 2\beta}$$

isospin-symmetric limit ($\alpha = \beta$)

$$R_K = 1 \quad \text{if } n_u = n_d$$

$$Q/A = 1/2$$

From RK to RtildeK

$$\tilde{R}_K = R_K + \left(\frac{1 - 2\frac{Q}{A}}{1 + \frac{Q}{A}}\right) \frac{\langle K^+ \rangle - \langle K^- \rangle}{2 \langle K_S^0 \rangle} = \frac{n_d + 2\alpha}{n_d + 2\beta}$$

2504.02113

isospin-conserved

 $\alpha = \beta \quad \longrightarrow \quad [\tilde{R}_K = 1]$

For pp collisions Q/A = 1

$$\left\langle K^{+}\right\rangle + 3\left\langle K^{-}\right\rangle = 4\left\langle K_{S}^{0}\right\rangle$$

See J. Stepaniak and D. Pszczel, EPJC 83 2023

Proton-proton results: isospin ok

Nucleus-nucleus results for RtildeK: constant but not 1

Nucleus-nucleus results for RK: constant, not 1, and compatible with RtildeK

 $R_K = 1.152 \pm 0.027$

Predictions

Ratio	Estimated value
$R_K = \frac{K^+ + K^-}{K^0 + K^0}$	$r=1.185\pm0.029$
p/n	$r = 1.185 \pm 0.029$
π^{+}/π^{0}	$\frac{2r}{1+r^2} = 0.986 \pm 0.004$
Σ^+/Σ^0	$r = 1.185 \pm 0.029$
Σ^+/Σ^-	$r^2 = 1.404 \pm 0.068$

Predictions

Pion-nucleus scattering antiquarks in the initial state

$$R_K = \frac{\langle K^+ \rangle + \langle K^- \rangle}{\langle 2K_S^0 \rangle} = \frac{n_u + n_{\bar{u}} + 2\alpha}{n_d + n_{\bar{d}} + 2\beta}$$

 $R_K = 1 \text{ in the isospin limit } (\alpha = \beta)$ for $n_u + n_{\bar{u}} = n_d + n_{\bar{d}}$.

This is the case for pion-carbon. (In fact for π +C: n_u = 18+1, n_ubar =0, n_d =18, n_bbar = 1)

But isospin-symmetry is broken.

Hence our predcition for pion-carbon:

$$R_K^{\pi^+ C} = R_K^{\pi^- C} \simeq 1.185 \pm 0.029$$

See NA61/SHINE PRD 107 (2023) 062004 Where RK is about 1.2

RtildeK for (anti)quarks u and d

$$\tilde{R}_K = R_K + \frac{n_d + n_{\bar{d}} - n_u - n_{\bar{u}}}{n_u - n_{\bar{u}}} \frac{\langle K^+ \rangle - \langle K^- \rangle}{\langle 2K_S^0 \rangle}$$
$$= \frac{n_d + n_{\bar{d}} + 2\alpha}{n_d + n_{\bar{d}} + 2\beta}$$

 $\hat{R}_{K} = 1$ in the isospin-symmetric limit valid also for initial states with $n_{s} = n_{\bar{s}}$ η, η' , and $\phi, \qquad K^{+}\Lambda$

Most general case

In the most general case with arbitrary $n_{u,d,s}$ and $n_{\bar{u},\bar{d},\bar{s}}$ the quantity \tilde{R}_K reads

$$\tilde{R}_K = \frac{\left(n_d + \alpha\right)\left(n_{\bar{s}} + \gamma\right) + \left(n_{\bar{d}} + \alpha\right)\left(n_s + \gamma\right)}{\left(n_d + \beta\right)\left(n_{\bar{s}} + \gamma\right) + \left(n_{\bar{d}} + \beta\right)\left(n_s + \gamma\right)} \,.$$

However, it cannot be expressed as a function of the three multiplicities $\langle K^+ \rangle$, $\langle K^- \rangle$, and $\langle K_S^0 \rangle$, but it involves separately $\langle K_0 \rangle$ and $\langle \bar{K}_0 \rangle$ [38]. This fact is not convenient because only K_S^0 is usually detected. Moreover, even measuring K_L^0 would not help, since (neglecting a very small *CP*-breaking) $\langle K_L^0 \rangle = \langle K_S^0 \rangle$, implying that the multiplicities $\langle K_0 \rangle$ and $\langle \bar{K}_0 \rangle$ cannot be obtained.

Summary and conclusions

- Theory (HRG) cannot explain experiment(s) on charged-vs-neutral kaons
- UrQMD: new paper 2503.10493 increased ratio via a novel parameter.
- A simple quark-counting scheme valid for any Q/A shows: protonproton data agree with isospin symmetry, nucleus nucleus do not.
- This model reproduces data for a large isospin breaking (about 20% more u than d quarks from QCD vacuum)
- $\pi^- + C$ and $\pi^+ + C$ of nuclei with Z = N = A/2 highly desired.
- Study ratios of other isospin multiplets (nucleons, hyperons)

Thanks!

Quarks and QCD, flavor symmetry:

Flavor transformation is a rotation in the (u,d,s) space. Isospin is a subgroup of flavor.

Historical recall: "Shmushkevich" rule

An initial 'uniform' ensemble of hadronic state (that is, one with an equal mean number of each member of any isospin multiplet, such as the scattering of two isosinglet nuclei) evolves into a uniform final-state ensemble.

Uniform stays uniform

Shmushkevich, I.: . Dokl. Akad. Nauk SSSR 103, 235 (1955)

Dushin, N., Shmushkevich, I.: . Dokl. Akad. Nauk SSSR 106, 801 (1956)

MacFarlane, A.J., Pinski, G., Sudarshan, G.: Shmushkevich's method for a charge independent theory. Phys. Rev. 140, 1045 (1965) https://doi.org/10.1103/ PhysRev.140.B1045

Wohl, C.G.: Isospin relations by counting. American Journal of Physics 50(8), 748–753 (1982) https://doi.org/10.1119/1.12743

Pal, P.: An Introductory Course of Particle Physics -CRC Press, (2014)

Important remark:

Initial ensemble C-invariant: probabilities of having initial states related by this transformation are equal.

This is the case of nucleus-nucleus collisions where each nucleus has an equal number of protons and neutrons (thus, $I_z = 0$). Then, the invariance under C-transformation holds also for the final state ensemble.

$$\langle K^+ \rangle = \langle K^0 \rangle$$
$$\langle K^- \rangle = \langle \bar{K}^0 \rangle$$

Chat-GPT and e.m. interaction

- 1. Strong Interaction with Isospin Breaking:
 - Quark mass differences m_u and m_d break isospin symmetry, leading to slightly different couplings for u-quark and d-quark production rates.
 - The effective strong interaction rates now include a dependence on quark masses:

$$lpha_s^u=lpha_s(1-\delta), \quad lpha_s^d=lpha_s(1+\delta),$$

where δ is a small parameter quantifying the isospin-breaking effect due to $m_d > m_u$.

- 2. Electromagnetic Contribution:
 - The electromagnetic terms remain as before:

 $lpha_{
m em}Q_u^2 \quad {
m and} \quad lpha_{
m em}Q_d^2.$

3. Total Rates:

The total rates now include both effects:

$$egin{aligned} &\operatorname{Rate}(uar{u}) = lpha_s^u + lpha_{ ext{em}}Q_u^2, \ &\operatorname{Rate}(dar{d}) = lpha_s^d + lpha_{ ext{em}}Q_d^2. \end{aligned}$$

4. Ratio of Effective Rates:

• Incorporating isospin breaking, the ratio lpha/eta becomes:

$$rac{lpha}{eta} = rac{ ext{Rate}(uar{u})}{ ext{Rate}(ullet)} = rac{lpha_s(1-\delta) + lpha_{ ext{em}}Q_u^2}{lpha_s(1+\delta) + lpha_{ ext{em}}Q_d^2}.$$

Chat-GPT and e.m. interaction /2

Numerical Calculation:

Using the same parameters as before:

- $\alpha_s=0.1$,
- $lpha_{
 m em}=1/137$,
- $\bullet \quad Q_u^2 = 4/9, \, Q_d^2 = 1/9, \,$
- For isospin breaking: $\delta pprox 0.003$ (a typical estimate reflecting $m_d m_u \sim 2 3$ MeV).

We compute:

Numerator:
$$\alpha_s(1-\delta) + \alpha_{em}Q_u^2 = 0.1 \cdot (1-0.003) + \frac{1}{137} \cdot \frac{4}{9} \approx 0.10075.$$

Denominator: $\alpha_s(1+\delta) + \alpha_{em}Q_d^2 = 0.1 \cdot (1+0.003) + \frac{1}{137} \cdot \frac{1}{9} \approx 0.10055.$

The ratio lpha/eta becomes:

$$\frac{\alpha}{\beta} = \frac{0.10075}{0.10055} \approx 1.002.$$

RK as function of Energy

$$R_K = rac{N_u^{initial} + 2lpha}{N_d^{initial} + 2eta} \qquad r = rac{lpha}{eta} \sim 1.2$$

$$R_{K} = \frac{1 + 2\lambda \left(\sqrt{s_{NN}}\right)^{k}}{\frac{2 - Q/A}{1 + Q/A} + \frac{2\lambda}{r} \left(\sqrt{s_{NN}}\right)^{k}}$$

Radiative phi decays with derivative interactions

Francesco Giacosa (Frankfurt U.), Giuseppe Pagliara (Frankfurt U.) Apr, 2008

11 pages Published in: *Nucl.Phys.A* 812 (2008) 125-139 e-Print: 0804.1572 [hep-ph] DOI: 10.1016/j.nuclphysa.2008.08.011

 $A_{f_0\pi\pi} = 2.88 \pm 0.22 \text{ GeV}, \ A_{f_0KK} = 5.91 \pm 0.77 \text{ GeV}.$

 $A_{a_0\pi\eta} = 3.33 \pm 0.15 \text{ GeV}, \ A_{a_0KK} = 3.59 \pm 0.44 \text{ GeV},$

[24] M. Ablikim et al. [BES Collaboration], Phys. Lett. B 607 (2005) 243 [arXiv:hep-ex/0411001].
[25] D. V. Bugg, V. V. Anisovich, A. Sarantsev and B. S. Zou, Phys. Rev. D 50 (1994) 4412.
[26] D. V. Bugg, Eur. Phys. J. C 47 (2006) 57 [arXiv:hep-ph/0603089]. D. V. Bugg, arXiv:hep-ex/0510014

NA61/SHINE experiment						
	Ar+Sc collisions at $\sqrt{s_{NN}} = 11.9 \text{ GeV}$					
hadron	Yields $(y \approx 0) \pm \sigma_{stat} \pm \sigma_{sys}$	σ_{total}	Centrality	y ranges	Ref.	
<i>K</i> ⁺	$3.732 \pm 0.016 \pm 0.148$	0.15	0-10%	0.0 < y < 0.2	[18]	
<i>K</i> ⁻	$2.029 \pm 0.012 \pm 0.069$	0.070	0-10%	0.0 < y < 0.2	[18]	
K_S^0	$2.433 \pm 0.027 \pm 0.102$	0.11	0-10%	y = 0	this analysis	
	HADE	S experim	ent			
	Ar+KCl collisio	ons at $\sqrt{s_{NN}}$	$\overline{V} = 2.6 \text{ GeV}$			
hadron	Yields $(4\pi) \pm \sigma_{stat} \pm \sigma_{sys}$	σ_{total}	Centrality	y ranges	Ref.	
<i>K</i> ⁺	$0.028 \pm 0.002 \pm 0.0014^{(*)}$	0.0024	0-35%	extrapolated to 4π	[43]	
<u>K</u> -	$0.00071 \pm 0.00015 \pm 0.000032^{(*)}$	0.00015	0-35%	extrapolated to 4π	[43]	
K_S^0	$0.0115 \pm 0.0005 \pm 0.0009$	0.0010	0-35%	extrapolated to 4π	[44]	
	STAR (BI	ES I) exper	riment			
Au+Au collisions at $\sqrt{s_{NN}} = 7.7 \text{ GeV}$						
hadron	Yields $(y \approx 0) \pm \sigma_{stat} \pm \sigma_{sys}$	σ_{total}	Centrality	y ranges	Ref.	
<i>K</i> ⁺	20.8	1.7	0–5%	-0.1 < y < 0.1	[30]	
<i>K</i> ⁻	7.7	0.6	0–5%	-0.1 < y < 0.1	[30]	
K_S^0	$12.67 \pm 0.12 \pm 0.44$	0.46	0–5%	-0.5 < y < 0.5	[31]	

	STAR (BES I) experiment				
Au+Au collisions at $\sqrt{s_{NN}} = 11.5 \text{ GeV}$					
hadron	Yields $(y \approx 0) \pm \sigma_{stat} \pm \sigma_{sys}$	σ_{total}	Centrality	y ranges	Ref.
<i>K</i> ⁺	25.0	2.5	0–5%	-0.1 < y < 0.1	[30]

	K^{-}	12.3	1.2	0–5%	-0.1 < y < 0.1	[30]
Γ	K_{π}^{0}	$1593 \pm 012 \pm 058$	0 59	0-5%	-0.5 < v < 0.5	[31]

	STAR (E	SES I) expe	riment		
	Au+Au collisi	ons at $\sqrt{s_{NN}}$	= 19.6 GeV		D-6
nadron	$\operatorname{Helds}\left(y\approx 0\right)\pm\sigma_{x\alpha}\pm\sigma_{sys}$	ottotal	Centrainty	y ranges	Kel.
K T	29.6	2.9	0-5%	-0.1 < y < 0.1	[30]
K	18.8	1.9	0-5%	-0.1 < y < 0.1	[30]
K_S^0	$20.89 \pm 0.08 \pm 0.67$	0.67	0-5%	-0.5 < y < 0.5	[31]
	SIAK (B	SES I) expe	riment		
hadron	Vialds (u c) (0) + σ + σ	ions at $\sqrt{s_N}$	N = 27 GeV		Daf
madron w+	Helds $(y \approx 0) \pm 0_{stat} \pm 0_{sys}$	Ototal	Centranty	y ranges	Rel.
K 1	31.1	2.8	0-5%	-0.1 < y < 0.1	[30]
X	22.6	2.0	0-5%	-0.1 < y < 0.1	[30]
Kš	$23.24 \pm 0.09 \pm 0.70$	0.71	0-5%	-0.5 < y < 0.5	[31]
	STAR (E	SES I) expe	riment		
hadron	Au+Au collis	tons at $\sqrt{s_N}$	N = 39 GeV	- FRE ADD	Daf
nauron	Helds $(y \approx 0) \pm \sigma_{ga} \pm \sigma_{sys}$	Giotal	Centranty	y ranges	Kel.
Λ'	32.0	2.9	0-5%	-0.1 < y < 0.1	[30]
K	25.0	2.3	0-5%	-0.1 < y < 0.1	[30]
KS	$24.9 \pm 0.1 \pm 1.7$	1.7	0-5%	-0.5 < y < 0.5	[31]
	NA4	9 experime	nt 7.6 Cal		
hadava	PD+PD coms	ons at $\sqrt{s_{NN}}$	/ = 7.0 Gev		Def
nadron	Helds $(4\pi) \pm \sigma_{stat} \pm \sigma_{sys}$	otional	Centrainty	y ranges	Rel.
K ⁺	52.9 ± 0.9 ± 3.5 (*)	3.6	0-7.2%	extrapolated to 4π	[40]
K	$16.0 \pm 0.2 \pm 0.4$	0.45	0-7.2%	extrapolated to 4π	[40]
K_S^0	$29.3 \pm 0.3 \pm 2.9$	2.9	0-7.2%	extrapolated to 4π	[42]
	NA4	9 experime	nt		
	PD+Pb collisi	ons at $\sqrt{s_{NN}}$	i = 8.7 GeV		
hadron	Yields $(4\pi) \pm \sigma_{star} \pm \sigma_{sys}$	σ_{iotal}	Centrality	y ranges	Ref.
K ⁺	$59.1 \pm 1.9 \pm 3$	3.6	0-7.2%	extrapolated to 4π	[41]
<i>K</i> ⁻	$19.2 \pm 0.5 \pm 1.0$	1.1	0-7.2%	extrapolated to 4π	[41]
K_S^0	$34.2 \pm 0.2 \pm 3.4$	3.4	0-7.2%	extrapolated to 4π	[42]
	CER	ES experin	ient		
	Pb+Au collisio	ons at $\sqrt{s_{NN}}$	= 17.3 GeV		
hadron	Yields $(y \approx 0) \pm \sigma_{ga} \pm \sigma_{sys}$	σ_{total}	Centrality	y ranges	Ref.
K ⁺	$31.8 \pm 0.6 \pm 2.5$	2.6	0-7%	y = 0	[27]
K-	$19.3 \pm 0.4 \pm 2.0$	2.0	0-7%	y = 0	[27]
K_S^0	$21.2 \pm 0.9 \pm 1.7$	1.9	0-7%	y = 0	[28, 29
	NA 3	5 experime	nt		
	S+S collision	is at √snn =	= 19.4 GeV		
hadron	Yields $(4\pi) \pm \sigma_{star} \pm \sigma_{sys}$	σ_{total}	Centrality	y ranges	Ref.
K ⁺	$12.5 \pm 0.4 \pm 0.375$ (*)	0.55	0-2%	extrapolated to 4π	[38]
K-	$6.9 \pm 0.4 \pm 0.207$ (*)	0.45	0-2%	extrapolated to 4π	[38]
Kg	10.5	1.7	0-2%	extrapolated to 4π	[39]

Example of isospin breaking/3

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

$$I(J^P) = \frac{1}{2}(1^-)$$

 I, J, P need confirmation

J consistent with 1, value 0 ruled out (NGUYEN 77).

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

 $I(J^P) = \frac{1}{2}(1^-)$ I, J, P need confirmation.

D*(2007)⁰ DECAY MODES

 $\overline{D}^*(2007)^0$ modes are charge conjugates of modes below.

	Mode	Fraction (Γ _i /Γ)	
Г ₁	$D^{0} \pi^{0}$	$(64.7 \pm 0.9) \%$	-3
Г ₂	$D^{0} \gamma$	$(35.3 \pm 0.9) \%$	
Г ₃	$D^{0} e^{+} e^{-}$	$(3.91\pm 0.33) \times 10$	

D*(2010)[±] DECAY MODES

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	
Γ ₁ Γ ₂ Γ ₃	$D^{0} \pi^{+} D^{+} \pi^{0} D^{+} \gamma$	(67.7±0.5) % (30.7±0.5) % (1.6±0.4) %	

More on the resonances f0(980)

$$I^{G}(J^{PC}) = 0^{+}(0^{++})$$

See the related review(s): Scalar Mesons below 1 GeV

f_0(980) T-MATRIX POLE \sqrt{s} ModeFraction (Γ_i/Γ) Note that $\Gamma = -2 \operatorname{Im}(\sqrt{s})$. $\Gamma_1 \quad \pi \pi$ seenVALUE (MeV)DOCUMENT IDTECNCOMMENT

 $\frac{\Gamma(\pi \pi)}{\Gamma(\pi \pi)} + \frac{\Gamma(K\overline{K})}{EVTS}$

(980-1010) - i (20-35) OUR ESTIMATE (see Fig. 64.4 in the review)

 \bullet \bullet \bullet We do not use the followin

 $\begin{array}{cccc} 0.52 \pm 0.12 & 9.9 k \\ 0.75 \substack{+ 0.11 \\ - 0.13} & \\ 0.84 \pm 0.02 \\ \sim 0.68 & \\ 0.67 \pm 0.09 & \\ 0.81 \substack{+ 0.09 \\ - 0.04} & \\ 0.78 \pm 0.03 & \\ \end{array}$

The $\pi\pi$ mode dominates. Similar consideration as for the a0(980) mesons.

Even including threshold effects, **no significant change of RK.**

f₀(980) DECAY MODES

A simple 'quark counting' model

$$egin{aligned} &lpha = N_u^{vac} = N_{ar{u}}^{vac} \ η & = N_d^{vac} = N_{ar{d}}^{vac} \ η & = N_d^{vac} = N_{ar{d}}^{vac} \ &\gamma = N_s^{vac} = N_{ar{s}}^{vac} \end{aligned}$$

$$r=rac{lpha}{eta}\sim 1.2$$

Preliminary!!!

Ratio	large $\sqrt{s_{NN}}$ result
$R_K = \frac{K^+ + K^-}{K^0 + \bar{K}^0}$	$r\sim 1.2$
$\frac{p}{n}$	$r\sim 1.2$
$\frac{\pi^+}{\pi^0}$	$rac{2r}{1+r^2}\sim 0.98$
$\frac{\Sigma^+}{\Sigma^0}$	$r\sim 1.2$
$\frac{\Sigma^+}{\Sigma^-}$	$r^2 \sim 1.4$

Inspired by Joanna Stepaniak Damian Pszczel Eur. Phys. J. C (2023) 83:928

Pion-Carbon

$$R_K = \frac{N_u^{initial} + N_{\bar{u}}^{initial} + 2\alpha}{N_d^{initial} + N_{\bar{d}}^{initial} + 2\beta}$$

For
$$\pi^+C$$
 and π^-C we have:

$$R_K^{\pi^+ C} = \frac{19 + 2\alpha}{19 + 2\beta} = R_K^{\pi^- C}$$

and in the isospin-symmetric limit

$$R_K^{\pi^+ C} = R_K^{\pi^- C} = 1$$

More on the resonance a0(980)

HRG: at first, equal amount for charged and neutral kaons. Including threshold effects, leads to the branching ratio $K^+K^-/K^0\bar{K}^0 \simeq 1.1$ **No significant effect on RK** Toward the general initial state

- For total initial I = 0 it is easy to show that $\langle K^+ \rangle = \langle K^0 \rangle$
- The result can be easily extended to any fixed total initial isospin I=I₀.
- It can be even generalized to initial states that are not isospin eigenstates, provided that an appropriate average is performed.