Developing the framework for combined fits of

CGC observables

Piotr Korcyl

ey

L
\

Pa%
g Y

UNIWERSYTET
JAGIELLONSKI
W KRAKOWIE

work done by Hau Le,

in collaboration with F. Cougoulic, F. Salazar, and T. Stebel

Biataséwka, AGH WFilS, 30 maja 2025
[\ Matignat serenes Centre Thig \work is supported by NCN grant nr 2022/46/E/ST2/00346.



eveloping the framework for combined fits of CGC
bservables

Explaining the title

@ Developing: work in progress, partial preliminary results

o framework: numerical setup consisting of many small elements with
the possible potential for further extensions

@ combined fit: the goal is to describe simultaneously several sets of
experimental data

@ CGC: Color Glass Condensate is an effective description of processes
in pp and pA collisions at high energies <= small x

@ observables: different cross-sections
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Color Glass Condensate framework

@ access to unintegrated parton distribution functions
@ nonperturbative initial condition - model

@ perturbative evolution equation
o

predictions of cross-sections at high-energies/small-x
v
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Y. Kovchegov, Brief Review of Saturation Physics, Acta Phys. Pol. B, 45 (2014) 224IJ
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Color Glass Condensate framework

cross-sectiohs

Wilson
lines

JIMWLK

@ TMD: Transverse-Momentum-Dependent structure functions
o BK: Balitsky-Kovchegov evolution equation

o JIMWLK: Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, and
Kovner evolution equation
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Virtual photon-proton cross section for transverse (T) and longitudinal

(L) polarization of the virtual photon

proton —
P £ k+q X _q2

. X =

! q (P+q)2—q2—M2
electron

T
E. lancu, QCD in heavy ions collisions
1
2 f 2 2

GT,L(Xvo ) = Oo Z A dZdr|WT7L(ef7mfvz7Q 7r)| NF(X,F)

f=u,d,s

Initial condition
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Comparison with experimental data for the reduced cross sections in

different @2 bins

\ Fit with only light quarks \
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J. L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga Arias, C.A. Salgado, AAMQS: A
non-linear QCD analysis of new HERA data at small-x including heavy quarks, Eur.
Phys. J. C 71, 1705 (2011)
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Negatively charged hadron and #° yields in proton-proton collisions at

vV SNN =200 GeV
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Q2 = 0.4 GeV? at xg = 0.02 was the only fitted parameter

J. Albacete, C. Marquet, Single inclusive hadron production at RHIC and the LHC
from the Color Glass Condensate, Phys.Lett.B687:174-179,2010
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Negatively charged hadron and 7° yields in proton-proton collisions at

SNN =200 GeV

dhN K 1dz
dyhdgpt = / {Z [Xl q/p(lept)NF(X27 )Dh/q(z Pr)}
q

+
+ [leg/ (x, pt)NA(X% )Dig(2:P¢ H

J. Albacete, C. Marquet, Single inclusive hadron production at RHIC and the LHC
from the Color Glass Condensate, Phys.Lett.B687:174-179,2010
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Framework: requirements

@ evolution equation

initial condition

minimization algorithm =- levmar library

o
@ access to gluon dipole amplitude in position and momentum spaces
o
o

access to fragmentation functions and PDFs = LHAPDF library

Framework: features

@ BK evolution equation with kinematical constraint

Balitsky/daughter/mother dipole prescription for the running
coupling

Euler/Runge integration scheme

uncertainty estimation

parallelization = short running time

v
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Balitsky-Kovchegov evolution equation

The LO BK equation reads

0S5z Q. _
B—J;,'l(n) = ﬁ/dzzl- '%)_‘J_YLZL [S)_(LEL(”)SEJ_}_'L(T’) _S)_‘J_J_’L(n)L

where _ _
(X1 —-¥1)
(X1 —Z1)2(ZL-y.)?

'///7‘1_ yiz, —

Rewritten in radial variables

aS(r,n)
an

r2

_ %
Y /d¢ drz Iz r2(r2+r2 —2rrycos¢) X
X [S(rz,n)S (\/r2+rz2—2rrzcos¢,n) —S(r,n)} .

V.
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Balitsky-Kovchegov evolution equation

Account for several additional physical effects, such as the running of the
coupling constant with the energy scale, resummation of subleading
corrections [Ducloue et al., 2019]

85 (r 77) /d(j) dry ry X

Ots( ) r? I f‘S(rZ) 14 rZ 6£S(rzy) 1 »
271'!‘22 I’z2y+82 as(rzy) r22y+£2 aS(rZ)

X [S(ern = 8,:r)S(rzy,m — 8rzy;r) —5(r771)]7

where ry, = \/r2+r2—2rr,cos¢. The shifts in 1 in the dipole

amplitudes are given by &;,., = max{0,2logé} and similarly

6,Zy;, = max {0,2 log é }
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Automatic Differentiation in a nutshell

Allows to evaluate 'analytic’ derivatives of a computer program with
respect to external parameters.

@ numbers are promoted to vectors

X
JA
JB
X — 02

dads

o all arithmetic operators are overloaded

@ functions with derivatives have to be provided

@ works for most algorithms
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Automatic Differentiation for the Balitsky-Kovchegov evolution equation

S(r,m)
3005(f777)
S(r,m)— | 9:5(r.m)
95,5(r,m)
925(r, 1)
Then
(95(r n)

/ i el 5%

os(r) r? as(rz) r2 as(rzy)
X [27”22 <r§y+ez A
X [S(fzﬂ? ~Or,ir)S(rzy,m — 5rzy:r) - S(r,n)},

gives S(r,n) together with the evolved derivatives.

F. Cougoulic, P. Korcyl, T. Stebel, Improving the solver for the Balitsky-Kovchegov
evolution equation with Automatic Differentiation, Comput.Phys.Commun. 313

(2025) 109616
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Automatic Differentiation for the Balitsky-Kovchegov evolution equation

Benefits:
o faster convergence of the fit

o fewer iterations
o less computer time
e can test more parameters in the initial condition

@ access to the Hessian matrix allows easy estimation of uncertainties
@ more reliable estimation of some TMD functions with long tails

o can tell how the initial condition is sensitive to the given
experimental data

Costs:
@ slower code, but less than naively expected
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First derivatives of the longitudinal cross-section G P(x,Q% =10GeV?)
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Sensitivity of the observable to the parameters of the initial condition
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Second derivatives of the cross-section G["p(x, Q2 =10GeV?)
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Hessian method

Assume that xgzlobal is quadratic about the global minimum

2 _ .2 2 0
AXsiobal = Xglobal — Xinin = Z Hij(a; — a7) i —a}),
ij=1

where ) s
1 J xglobal

Hy = - —=22%
Y 2 Ba,-aaj

min

We can diagonalize the covariance matrix C = H™ !,

n
Y Gijvie = Awvi,

=1

n n
=) (Vavi)ze = Afiova = Y, ze =T
k=1

k=1
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Comparison of the uncertainties obtained from the Hessian and Monte

Carlo methods for the PDFs
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Figure 1. Comparison of Hessian and Monte Carlo results at the input scale of Q3 = 1 GeV? for the
(a) gluon distribution and (b) strange asymmetry. Both results allow n = 20 free PDF parameters
and do not apply a tolerance (i.e. T = 1 in the Hessian case). The best-fit (solid curves) and Hessian
uncertainty (shaded region) are in good agreement with the average and standard deviation (thick
dashed curves) of the N, = 40 Monte Carlo replica PDF sets (thin dotted curves).

G. Watt, R. Thorne, Study of Monte Carlo approach to experimental uncertainty
propagation with MSTW2008 PDFs, JHEP 1208:052, 2012

v
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Uncertainty of the DIS cross-section obtained with the Hessian method
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Increased efficiency of the Levenberg-Marquard optimization algorithm

i “AD
symmetric finite difference  *
forward finite difference  ~
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Fitting 4 parameters to the DIS HERA data

V.
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Logarithmic Fourier Transform

Popular in geophysics, cosmology, and signal processing.

o It allows for the Fourier transform of data sampled on a logarithmic
scale rather than linear,

o fits perfectly into our setup as we solve the BK equation on a
logarithmic grid,

@ more reliable than an ordinary 2D Fourier transform,
@ Bessel function is not needed,

o order of magnitude more efficient in computer time.

Main idea:
(k) = C(k) FTIBk[ B(7) FTS5* | Ax) () | ]

where A(x), B(t), and C(k) are known functions that can be

precomputed. FT{B”‘ is an ordinary, linear, one-dimensional FT.

4
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Logarithmic Fourier Transform
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The WW TMD structure function obtained with three different methods
with MV model, N = 2000
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Logarithmic Fourier Transform
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Back to BRAMHS data: negatively charged hadron and #° yields in
proton-proton collisions at /Syy = 200 GeV
v
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C. Marquet, E. Petreska, C. Roiesnel, Transverse-momentum-dependent gluon
distributions from JIMWLK evolution, JHEP10 (2016) 065
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TMD approximated in terms of the dipole amplitude S

N, ridr
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Back to Automatic Differentiation again
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@ uncertainty analysis and model selection: Bayesian analysis based on
the calculation of evidence; comparison of uncertainties from the
Hessian method, Markov Chain Monte Carlo, and Nested Sampling
algorithms

o testing the stability: impact of different running coupling
prescriptions, different implementations of the kinematical constraint

@ inclusion of other data/cross-section

@ TMD functions from JIMWLK
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Automatic Differentiation for JIMWLK
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Gluon dipole amplitude obtained from JIMWLK, together with the first
and second derivatives with respect to Qo

y
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| have presented elements of the framework that allow for the
efficient fitting of several observables

| have discussed the benefits of using automatic differentiation

@ | have shown how to increase the performance by employing the
logarithmic Fourier transform

@ | have presented preliminary results of the fit to the DIS from HERA
and single inclusive hadron production from BRAHMS

| have highlighted future steps

Thank you very much for your attention!
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