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Developing the framework for combined fits of CGC
observables

Explaining the title

Developing: work in progress, partial preliminary results

framework: numerical setup consisting of many small elements with
the possible potential for further extensions

combined fit: the goal is to describe simultaneously several sets of
experimental data

CGC: Color Glass Condensate is an effective description of processes
in pp and pA collisions at high energies ⇐⇒ small x

observables: different cross-sections
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Developing the framework for combined fits with CGC

Color Glass Condensate framework
access to unintegrated parton distribution functions
nonperturbative initial condition - model
perturbative evolution equation
predictions of cross-sections at high-energies/small-x

lnQ2 and ln1/x evolution

Y. Kovchegov, Brief Review of Saturation Physics, Acta Phys. Pol. B, 45 (2014) 2241
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Developing the framework for combined fits with CGC

Color Glass Condensate framework

TMD: Transverse-Momentum-Dependent structure functions
BK: Balitsky-Kovchegov evolution equation
JIMWLK: Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, and
Kovner evolution equation
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Developing the framework for combined fits with CGC

Virtual photon-proton cross section for transverse (T) and longitudinal
(L) polarization of the virtual photon

E. Iancu, QCD in heavy ions collisions
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Developing the framework for combined fits with CGC

Comparison with experimental data for the reduced cross sections in
different Q2 bins

Q2
s0 = 0.164 GeV2 at x0 = 0.01, σ0 = 32.324, γ = 1.123, C = 2.48 and

ml = 0.0182

J. L. Albacete, N. Armesto, J.G. Milhano, P. Quiroga Arias, C.A. Salgado, AAMQS: A
non-linear QCD analysis of new HERA data at small-x including heavy quarks, Eur.
Phys. J. C 71, 1705 (2011)
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Developing the framework for combined fits with CGC

Negatively charged hadron and π0 yields in proton-proton collisions at√
SNN = 200 GeV

Q2
s0 = 0.4 GeV2 at x0 = 0.02 was the only fitted parameter

J. Albacete, C. Marquet, Single inclusive hadron production at RHIC and the LHC
from the Color Glass Condensate, Phys.Lett.B687:174-179,2010
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Developing the framework for combined fits with CGC

Negatively charged hadron and π0 yields in proton-proton collisions at√
SNN = 200 GeV
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=

K

(2π)2

∫ 1

xF

dz

z2

{
∑
q

[
x1fq/p(x1,p

2
t )NF (x2,

pt
z
)Dh/q(z ,p

2
t )
]
+

+
[
x1fg/p(x1,p

2
t )NA(x2,

pt
z
)Dh/g (z ,p

2
t )
]}

J. Albacete, C. Marquet, Single inclusive hadron production at RHIC and the LHC
from the Color Glass Condensate, Phys.Lett.B687:174-179,2010
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Developing the framework for combined fits with CGC

Framework: requirements

evolution equation
initial condition
access to gluon dipole amplitude in position and momentum spaces
minimization algorithm ⇒ levmar library
access to fragmentation functions and PDFs ⇒ LHAPDF library

Framework: features
BK evolution equation with kinematical constraint
Balitsky/daughter/mother dipole prescription for the running
coupling
Euler/Runge integration scheme
uncertainty estimation
parallelization ⇒ short running time
. . .
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Developing the framework for combined fits with CGC

Balitsky-Kovchegov evolution equation

The LO BK equation reads

∂Sx̄⊥ȳ⊥(η)

∂η
=

ᾱs

2π

∫
d2z̄⊥ Mx̄⊥ ȳ⊥ z̄⊥

[
Sx̄⊥z̄⊥(η)Sz̄⊥ȳ⊥(η)−Sx̄⊥ȳ⊥(η)

]
,

where

Mx̄⊥ ȳ⊥ z̄⊥ =
(x̄⊥− ȳ⊥)

2

(x̄⊥− z̄⊥)2(z̄⊥− ȳ⊥)
2 .

Rewritten in radial variables

∂S(r ,η)

∂η
=

ᾱs

2π

∫
dφ drz rz

r2

r2
z (r

2+ r2
z −2rrz cosφ)

×

×
[
S(rz ,η)S

(√
r2+ r2

z −2rrz cosφ ,η
)
−S(r ,η)

]
.
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Developing the framework for combined fits with CGC

Balitsky-Kovchegov evolution equation

Account for several additional physical effects, such as the running of the
coupling constant with the energy scale, resummation of subleading
corrections [Ducloue et al., 2019]

∂S(r ,η)

∂η
=

∫
dφ drz rz ×

×
[

ᾱs(r)

2πr2
z

(
r2

r2
zy + ε2 +

ᾱs(rz)

ᾱs(rzy )
−1+

r2
z

r2
zy + ε2

(
ᾱs(rzy )

ᾱs(rz)
−1

))]
×

×
[
S(rz ,η −δrz ;r )S(rzy ,η −δrzy ;r )−S(r ,η)

]
,

where rzy =
√

r2+ r2
z −2rrz cosφ . The shifts in η in the dipole

amplitudes are given by δrz ;r =max
{

0,2 log r
rz

}
and similarly

δrzy ;r =max
{

0,2 log r
rzy

}
.
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Developing the framework for combined fits with CGC

Automatic Differentiation in a nutshell
Allows to evaluate ’analytic’ derivatives of a computer program with
respect to external parameters.

numbers are promoted to vectors

x →



x
∂A

∂B

∂ 2
A

∂A∂B
...


all arithmetic operators are overloaded
functions with derivatives have to be provided
works for most algorithms
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Developing the framework for combined fits with CGC

Automatic Differentiation for the Balitsky-Kovchegov evolution equation

S(r ,η)→


S(r ,η)

∂Q0S(r ,η)
∂rS(r ,η)

∂ 2
Q0

S(r ,η)

∂ 2
r S(r ,η)


Then

∂S(r ,η)

∂η
=

∫
dφ drz rz ×

×
[

ᾱs(r)

2πr2
z

(
r2

r2
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ᾱs(rz)

ᾱs(rzy )
−1+

r2
z

r2
zy + ε2

(
ᾱs(rzy )

ᾱs(rz)
−1

))]
×

×
[
S(rz ,η −δrz ;r )S(rzy ,η −δrzy ;r )−S(r ,η)

]
,

gives S(r ,η) together with the evolved derivatives.

F. Cougoulic, P. Korcyl, T. Stebel, Improving the solver for the Balitsky-Kovchegov
evolution equation with Automatic Differentiation, Comput.Phys.Commun. 313
(2025) 109616
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Developing the framework for combined fits with CGC

Automatic Differentiation for the Balitsky-Kovchegov evolution equation

Benefits:
faster convergence of the fit

fewer iterations
less computer time
can test more parameters in the initial condition

access to the Hessian matrix allows easy estimation of uncertainties
more reliable estimation of some TMD functions with long tails
can tell how the initial condition is sensitive to the given
experimental data

Costs:
slower code, but less than naively expected
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Developing the framework for combined fits with CGC

First derivatives of the longitudinal cross-section σ
γ∗,p
L (x ,Q2 = 10GeV2)
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Sensitivity of the observable to the parameters of the initial condition
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Developing the framework for combined fits with CGC

Second derivatives of the cross-section σ
γ∗,p
L (x ,Q2 = 10GeV2)
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Immediate access to the exact Hessian matrix at the minimum
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Developing the framework for combined fits with CGC

Hessian method

Assume that χ2
global is quadratic about the global minimum

∆χ
2
global ≡ χ

2
global −χ

2
min =

n

∑
i ,j=1

Hij

(
ai −a0

i

)(
aj −a0

j

)
,

where

Hij =
1
2

∂ 2χ2
global

∂ai∂aj

∣∣∣∣∣
min

We can diagonalize the covariance matrix C ≡ H−1,

n

∑
j=1

Cijvjk = λkvik ,

ai −a0
i =

n

∑
k=1

(√
λkvik

)
zk ⇒ ∆χ

2
global =

n

∑
k=1

z2
k ≡ T 2
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Developing the framework for combined fits with CGC

Comparison of the uncertainties obtained from the Hessian and Monte
Carlo methods for the PDFs

G. Watt, R. Thorne, Study of Monte Carlo approach to experimental uncertainty
propagation with MSTW2008 PDFs, JHEP 1208:052, 2012
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Developing the framework for combined fits with CGC

Uncertainty of the DIS cross-section obtained with the Hessian method
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Developing the framework for combined fits with CGC

Increased efficiency of the Levenberg-Marquard optimization algorithm
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Developing the framework for combined fits with CGC

Logarithmic Fourier Transform

Popular in geophysics, cosmology, and signal processing.
It allows for the Fourier transform of data sampled on a logarithmic
scale rather than linear,
fits perfectly into our setup as we solve the BK equation on a
logarithmic grid,
more reliable than an ordinary 2D Fourier transform,
Bessel function is not needed,
order of magnitude more efficient in computer time.

Main idea:

f̃ (k) = C (k) FTτ→k
1D

[
B(τ) FTx→τ

1D

[
A(x) f (x)

] ]

where A(x), B(τ), and C (k) are known functions that can be
precomputed. FTx→k

1D is an ordinary, linear, one-dimensional FT.
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Developing the framework for combined fits with CGC

Logarithmic Fourier Transform
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The WW TMD structure function obtained with three different methods
with MV model, N = 2000

22/ 30



Developing the framework for combined fits with CGC

Logarithmic Fourier Transform
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Time comparison: the logfft approach, numerical integration of the Bessel
functions, and a 2D Fourier transform evaluated using the FFTW3 library.
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Developing the framework for combined fits with CGC

Preliminary results for combined fit

Back to BRAMHS data: negatively charged hadron and π0 yields in
proton-proton collisions at

√
SNN = 200 GeV
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Going further

C. Marquet, E. Petreska, C. Roiesnel, Transverse-momentum-dependent gluon
distributions from JIMWLK evolution, JHEP10 (2016) 065
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Developing the framework for combined fits with CGC

TMD approximated in terms of the dipole amplitude S

F
(1)
qg (k⊥,x) =

Nc

2π2

∫
r⊥dr⊥
2π

J0(k⊥r⊥)∇
2
⊥ [1−S(r⊥,x)]

F
(3)
gg (k⊥,x) =

CF

2π2

∫
r⊥dr⊥
2π

J0(k⊥r⊥)K (r⊥,x)
[
1− (S(r⊥,x))

Nc/CF

]
×

× (S(r⊥,x))
2

FWW (k⊥,x) =
CF

2π2

∫
r⊥dr⊥
2π

J0(k⊥r⊥)K (r⊥,x)
[
1− (S(r⊥,x))

Nc/CF

]

∇
2
⊥ =

∂ 2

∂ r2
⊥
+

1
r⊥

∂

∂ r⊥

K (r⊥,x) =
∇2
⊥Γ(r⊥,x)

Γ(r⊥,x)
where Γ(r⊥,x) =− log [S(r⊥,x)]
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Developing the framework for combined fits with CGC

Back to Automatic Differentiation again
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Functions |K+(r⊥)| and |K−(r⊥)| at initial condition η = 0
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Next steps

uncertainty analysis and model selection: Bayesian analysis based on
the calculation of evidence; comparison of uncertainties from the
Hessian method, Markov Chain Monte Carlo, and Nested Sampling
algorithms

testing the stability: impact of different running coupling
prescriptions, different implementations of the kinematical constraint

inclusion of other data/cross-section

TMD functions from JIMWLK
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Automatic Differentiation for JIMWLK

Gluon dipole amplitude obtained from JIMWLK, together with the first
and second derivatives with respect to Q0
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Summary

I have presented elements of the framework that allow for the
efficient fitting of several observables

I have discussed the benefits of using automatic differentiation

I have shown how to increase the performance by employing the
logarithmic Fourier transform

I have presented preliminary results of the fit to the DIS from HERA
and single inclusive hadron production from BRAHMS

I have highlighted future steps

Thank you very much for your attention!
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