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Why do we care about Berry phase?

@ Relatively new field of studies
Quantal phase factors accompanying adiabatic changes, M.V. Berry (1983)

@ Relations to:
— quantum Hall effect
— topological insulators, Chern number
— electric polarization in crystals



Adiabatic theorem




Adiabatic theorem

Instantaneous energy eigenbasis |n(t)) given by time-independent Schrédinger
equation for each time t:

H(t)In(t)) = En(t)|n(t))
After projection and differentiation, for m # n:

d_ mlAln)
dt E,—E,

(m|
The diagonal element defines Berry connection:

(n(e)) S n(1) = —iA(1)



Adiabatic theorem

Full solution to time-dependent Schrddinger equation:

With initial condition |W(t = 0)) = |k) and for m # k the transition to different
states:

|(k[Hm)/?
()P ~ B
(0 ~ g
For slowly varying Hamiltonian (m|H(t)|k) < (Ex — Em) we can neglect
transitions to other eigenstates, m = k:
ifAk(t’)dt’ ifAk(t’)dt’ —%fEk(t/)dt'
c(t) =e o = V(1)) =ec e o k(1))

State evolves with additional phase factor, apart from the dynamical one.



Fast and slow processes in physics

|(k|Hm)[?

2
|Cm(t)‘ ~ h(Em — Ek)g

o Fast processes: What is fast?
A Him|? > (Em — Ex)?

'frozen system':
— measurement, deep inelastic scattering

— critical slowing down (the AE — 0 at critical point, KZ mechanism)



Fast and slow processes in physics

|(k|Hm)[?

2
|Cm(t)‘ ~ h(Em _ Ek)2

o Fast processes: What is fast?
B Him|? > (Em — Ex)?
'frozen system':
— measurement, deep inelastic scattering
— critical slowing down (the AE — 0 at critical point, KZ mechanism)

@ Slow processes: adiabatic evolution — a state initially prepared in some
eigenstate of H(t = 0) remains in this eigenstate.



Berry phase
in simple setup of spin in magnetic field




Spin in varying magnetic field

A

A(t) = pB(t) - 3(t) = Q A(t) - 3(t)

d=(0c",0,0%), f(t)=(sin(f)cos(p),sin(f)sin(y),cos(d))

ZA
Y
n
We assume that 6(t) = const = 6 and
0 ©(t) = wt, meaning that magnetic field
- is oscillating around the z-axis with frequ-
o ency w.
0
9 y
X




Instantenuous energy eigenstates and Berry phase

oy, #O)s e

Eigenenergies and eigenstates:

_ [ cos(36) _ (—sin(30)e "
Ev = +uB, Yt = (sin(é@)ei“’ ’ ¥- = cos(30) '
The eigenvector are not well-defined for 6 = 0.

New set of eigenvectors ¢/, = T/, which are not well-defined for § = 7.

Phases of eigenvectors are not well-defined — typical behaviour for systems
with non-trivial Berry phase



Instantenuous energy eigenstates and Berry phase
cos(9) sin(fe ¥\ - [ -
B <sin(6)e"“’ —cos(f) V=EV
Eigenenergies and eigenstates:

cos(

- B 19) _ [—sin(30)e ¥
EiL = +uB, Py = (sin ég)ehp) ) Y- = ( cosQ(%G) ) '

From the definition of the Berry connection:

Aslt) = =i (O o () = 2 5n? (3)

In general Berry connection depends on gauge transformation.
Integral over the closed path in the parameter space — gauge independent Berry

phase
N = f A(t)dt
C



Berry phase from Schrodinger equation
Time-dependent Schrodinger equation for the spinor (7 = tQ, p = §):
cos(f) e PTsin(0)\ [V, (1) \Il+(7')
(eiPT sin(f)  —cos(h) ) V_(71) V(1)

This can be reduced to one second order differential equation for W, (7):

W, +ipVy + (1 —pcos(d))W,. =0



Berry phase from Schrodinger equation

Time-dependent Schrodinger equation for the spinor (7 = tQ, p = §):

cos(d) e Psin(A)\ (Vi(r)\ . [(Vi(7)
e”Tsin(f)  — cos() v_(r)) ! V_(7)
This can be reduced to one second order differential equation for W, (7):
W, +ipVy + (1 —pcos(d))W,. =0

Solving by substitution W, = e leads to a? + ipa+ (1 — pcos(f)) =0 .



Berry phase from Schrodinger equation

Time-dependent Schrodinger equation for the spinor (7 = tQ, p = §):

(o et (D) =1 (5

This can be reduced to one second order differential equation for W, (7):
W, +ipVy + (1 —pcos(d))W,. =0

Solving by substitution W, = e leads to a? + ipa+ (1 — pcos(f)) =0 .

Assuming that the state was prepared with a spin up: W, (0) =1, ¥_(0) = 0:
—ilr ﬂ =+ COS(Q) -5 —iBT ﬁ - COS(@) + 8 iBT
U (r) = e'% <252e B +T265
e (sin(0) _; sin(0) ;
v _ i2r iBr _ iBT
() e'? (Qﬂ e 25 e

with 3 = /1 — pcos(d) + p2/4.




Slowly oscillating magnetic field p < 1, w <

Att=T
v (

v_(

Z)

2

= = expand in terms of p — 0 limit, in the lowest order:

cos (g) o2mid —im(l-cos(6)) 1 sin? (Q) o2mid —im(Licos(9))

w

T) =

T) =

%sin(@) (efzm'g oim(ltcos(0)) _ 2mi

St

«Y

Dynamical phase 27ri%

2

eiw(lfcos(ﬂ)))

=iQT



Slowly oscillating magnetic field p < 1, w <

Att=T=2 expand in terms of p — 0 limit, in the lowest order:

w
V. (T) = cos? (g) o2mid o im—cos(®) | g2 (g) o2mid —im(Licos(9))
\IL(T) _ 1 sm(9) (672771'% ef7r(1+cos(9)) _ e27rf% ei7r(17cos(6)))
2
Dynamical phase 27ri% =iQT
zZ
A Surface area outlined by the unit vector:
o L 2 0
n 1 r o 1
5 dp | d&'sin(0") = EQst =7 (1 — cos(0))
0 0
8 but also there is a surface 'outside’ of this loop:
o)
0 27 T
1 P 1
- 5 de [ dO'sin(0") = m (14 cos(9)) = 5(471' — Q)
¢ y 0 0
X Purely geometrical feature depends only on the path

in the parameter space.



Berry phase from adiabatic theorem

Time evolution of energy eigenstates: |+),|—) (corr. to E = £Q = £uB):

= (o) P ()



Berry phase from adiabatic theorem
Time evolution of energy eigenstates: |+), |—) (corr. to E = £Q = +uB):

= (o) P ()

Obtain set of 2 differential equations for ¢y, c_ coefficients.

(20) - (s S gty )

Which leads to second order differential equation for c;:
" : ! .2 4
c} —i(2—p)c +2psin 5 ¢ =0

Solving by substitution ¢, (7) = /™ leads to —a? + (2 — p)a + 2p sin’ (%) =0



Berry phase from adiabatic theorem

Time evolution of energy eigenstates: |+), |—) (corr. to E = £Q = +uB):

= (o) P ()

Obtain set of 2 differential equations for ¢, c_ coefficients.
S(Ee(m)) _ (sin () cp(7) +sin (§) cos (§) e ™5 c_(7)
¢ (7) —sin (&) c_(7) +sin (§) cos (§) ™ ¥ 7 ci(r)

Which leads to second order differential equation for c;:
" : ! .2 4
c} —i(2—p)c +2psin 5 ¢ =0

Solving by substitution c, (7) = €'® leads to —a? + (2 — p)a + 2psin? (%) =0
Imposing initial conditions ¢, (0) =1 and ¢_(0) = 0:
.2— 7 0 —_ 2 - ’ —_ 9 2 H /
c. (') = o5 <ﬂ+pc§;( ) =2 o B pcg;( )+ e,f;T>
2—p s in(@ B in(@ B
(') = —eiEET (psg; ) 2 _ p5|2ng( ) e_,gT)




Adiabatic limit p = & < 1

In the lowest order approximation (0-th and 1-st in p):

for t=T=2%

C+(t) _ e—i%t(l—cos(g)) +O(p2) w e—i‘/r(l—cos(B))
0 2iQtti for t=T=22 0 _oj i -
C,(t) — COS4( )p (e 2iQt+iwt _ 1) or w coi( )p (e 2iQT+27i _ 1) p—0 0
2\
S L L _ _

n Adiabatic theorem tells us that if the evolution of the
systems is slow enough, slow in comparison with the
energy gap then the system initially in an eigenstate

2 will remain in the same eigenstate and transitions
o to other states are supressed. Therefore the system
0 initially in [+) remains in this state |c; (t = 2Z)[? =
> 1 but acquires a phase - Berry phase.
e y
X



o
Instantaneous limit p = & > 1

ZA
wY -
n Very fast oscillations of magnetic field p = § > 1.
Expand for p — oo, after one full revolution of the
Q magnetic field B around z-axis T = 2T (which is
., a very short period of time in this regime!) we see
3 o that spin remains frozen, it doesn't even have time
to acquire any phase:
@ y
X
. . cos(6) _ . cos(6)
c (2£) ~ e/w(%fl) 1 + cos(0) em’(lf%) . 1 — cos(6) e/w(%fl)
w 2 2
~ L1t c205(0) n 1- czos(e) o2 _ 1

2r . in [ —sin(@) . sin(0) _ix\
c_( ) X~ e < 5 e’ + > e =0



Magnetic monopole and Chern number




Magnetic monopole and Chern number

Time dependance t — path in the parameter space A(t) = (6(t), o(t))
. . —'_ . _ . L

Berry connection: A = (Ap, A,) with Ay = —i(n|g5-[n).

Berry curvature is a curl of Berry connection (gauge independent):

DA OA

FilN =55 ~ o

1 . k
fe(ﬂ = E sm(9) = ‘/,:'U = Eijk2|7§‘3

This is a magnetic monopole in parameter space! (with charge g = %)



Magnetic monopole and Chern number

This is a magnetic monopole in parameter space! (with charge g = %)

for a closed surface S J FjdSV = 4rg = 2m
52



Magnetic monopole and Chern number

This is a magnetic monopole in parameter space! (with charge g = 3)
for a closed surface S J FjdSV = 4rg = 2m
$2
for any surface S bounded by closed path C:
e’ = e_ifs Fyds? _ e
or its complement S’, where solid angle Q' = 47 — Q:
e = e_ifs/ Fyds? _ N _ iy

Last requires that 2g € Z.



Magnetic monopole and Chern number

This is a magnetic monopole in parameter space! (with charge g = 3)

for a closed surface S f]-",-de"f =4ng =27
S
for any surface S bounded by closed path C:
e = e_ifs Fyds? _ o3
or its complement S’, where solid angle Q' = 47 — Q:
o1 = o Jo TS M iy

Last requires that 2g € Z.

Chern theorem: integral of Berry curvature over any closed 2D manifold is
quantized

/}',-de"j =27C, where Chern number C € Z



Physical examples

@ Aharonov-Bohm effect

Effect of gauge potential on a particle moving around
the solenoid:

V(X) = eTU(X), &7 = o $. A)-dz _ oia®/h

Predicted in 1959.

(sl



Physical examples

o Aharonov-Bohm effect 0"
Effect of gauge potential on a particle moving around
the solenoid: B=0
V(x) = e"”’\ll()?), e = e% §c AlR)-d% _ ela®/h ¢

Predicted in 1959.

e Anyons

Exchange of particles in 2D:

e bosons 1)) — |¢) e
o fermions [¢) — e |y) = —|¢) L @

e anyons |[¢)) — e/?|1p), ¢ takes any value




Physical examples

@ Quantum Hall Effect: Integer, Fractional

Quantized Hall conductivity

2
%, n=2 [ Fk)ak

Oxy = N =
ol 27 BZ

K. v Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45 494
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48
(1982) 1559

Magnetic field (T)



Physical examples

@ Quantum Hall Effect: Integer, Fractional

Quantized Hall conductivity

2
%, n=2 [ Fk)ak

Oxy = N =
ol 27 BZ

K. v Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45 494
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48
(1982) 1559

Magnetic field (T)

o Polarization in crystals
Definition of polarization as Berry phase in reciprocal space:
ie

P = ele(R)lr = RIG(R) = 5= | (w(IVilu(k)

where ¢(R) are localized (at R) Wannier orbitals:

(PR = [ e M0 u(i)



Conclusions

@ Adiabatic theorem: fast and slow processes in physics:

|(k|Hm)?

2~
|Cm(t)| ~ h(Em _ Ek)2



Conclusions

@ Adiabatic theorem: fast and slow processes in physics:

|(k|Hm)?

2~
|Cm(t)| ~ h(Em _ Ek)2

o Berry phase: When hi|Him|? < (En — Ex)*:

if.Ak(t')dt' —%fEk(t’)dt’
W(t) =e> e o k(1))
is gauge independent if the integral is over a closed loop in parameter space.



Conclusions

@ Adiabatic theorem: fast and slow processes in physics:

|(k|Hm)?

2
|Cm(t)| ~ h(Em _ Ek)2

o Berry phase: When hi|Him|? < (En — Ex)*:

if.Ak(t')dt' —%fEk(t’)dt’
W(t) =e> e o k(1))
is gauge independent if the integral is over a closed loop in parameter space.

@ Relations to:
e crystals and their electric polarization
o Aharonov-Bohm effect
e QHE, topological order and anyons



2. GENERAL FORMULA FOR PHASE FACTOR
Let the Hamiltonian / be changed by varying parameters R = (X, ¥,...) on
which it depends. Then the excursion of the system between times ¢ = 0 and ¢t = 7'
can be pictured as transport round a closed path R(t) in parameter space, with
Hamiltonian 4 (R(t)) and such that R(T') = R(0). The path will henceforth be called
a circuit and denoted by C. For the adiabatic approximation to apply, 7 must be

large.
The state |(t)) of the system evolves ding to Schrédinger’s eq
AR®) [y(0)) = i | 0)- )
At any instant, the natural basis ists of the ei |n(R)) ( d

discrete) of AI(R) for R = R(t), that satisfy
A(R) [n(R)) = E,(R) [n(R)), @)

with energies Z,(R). This eigenvalue equation implies no relation between the
phases of the eigenstates |n(R)) at different R. For present purposes any (differen-
tiable) choice of phases can be made, provided |n(R)) is single-valued in a parameter
domain that includes the circuit C.

Adiabatically, a system prepared in one of these states |z(R(0))) will evolve with
A and s0 be in the state |[n(R(t))) at t.

Thus |/) can be written as

w0 = exp( 7 [ ar LR exp G, e)lcRO))- ®

The first exponential is the familiar dynamical phase factor. In this paper the object
of attention is the second exp ial. The crucial point will be that its phase y,(¢) is
non-integrable; v, cannot be written as a function of R and in particular is not
ingle-valued under i ion around a circuit, i.e. y,(7') # 7,(0).
The function y,(t) is d ined by the req that |y(t)) satisfy Schro-
dinger’s equation, and direct substitution of (3) into (1) leads to

Vull) = i(n(R(1) | Ven(R(1))- R(0). (4)
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