
Berry phase from quadratic equation

Anna Francuz

Jagiellonian University

26 czerwca 2020

1 / 21



Why do we care about Berry phase?

Relatively new field of studies
Quantal phase factors accompanying adiabatic changes, M.V. Berry (1983)

Relations to:
– quantum Hall effect
– topological insulators, Chern number
– electric polarization in crystals
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Adiabatic theorem
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Adiabatic theorem

Instantaneous energy eigenbasis |n(t)〉 given by time-independent Schrödinger
equation for each time t:

H(t)|n(t)〉 = En(t)|n(t)〉

After projection and differentiation, for m 6= n:

〈m| d
dt
|n〉 =

〈m|Ḣ(t)|n〉
En − Em

The diagonal element defines Berry connection:

〈n(t)| d
dt
|n(t)〉 ≡ −iA(t)
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Adiabatic theorem

Full solution to time-dependent Schrödinger equation:

|Ψ(t)〉 =
∑
n

cn(t) e
− i

~

t∫
0

En(t′)dt′

|n(t)〉

With initial condition |Ψ(t = 0)〉 = |k〉 and for m 6= k the transition to different
states:

|cm(t)|2 ≈ ~
|〈k |Ḣ|m〉|2

(Em − Ek)2

For slowly varying Hamiltonian 〈m|Ḣ(t)|k〉 � (Ek − Em) we can neglect
transitions to other eigenstates, m = k :

ck(t) = e
i

t∫
0

Ak (t′)dt′

⇒ |Ψ(t)〉 = e
i

t∫
0

Ak (t′)dt′

e
− i

~

t∫
0

Ek (t′)dt′

|k(t)〉

State evolves with additional phase factor, apart from the dynamical one.
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Fast and slow processes in physics

|cm(t)|2 ≈ ~
|〈k |Ḣ|m〉|2

(Em − Ek)2

Fast processes: What is fast?

~|Ḣkm|2 � (Em − Ek)2

’frozen system’:

– measurement, deep inelastic scattering

– critical slowing down (the ∆E → 0 at critical point, KZ mechanism)

Slow processes: adiabatic evolution – a state initially prepared in some
eigenstate of Ĥ(t = 0) remains in this eigenstate.
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eigenstate of Ĥ(t = 0) remains in this eigenstate.

6 / 21



Berry phase
in simple setup of spin in magnetic field
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Spin in varying magnetic field

Ĥ(t) = µ~B(t) · ~σ(t) = Ω ~n(t) · ~σ(t)

~σ = (σx , σy , σz), ~n(t) = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))

z

x

y

We assume that θ(t) = const = θ and
ϕ(t) = ωt, meaning that magnetic field
is oscillating around the z-axis with frequ-
ency ω.
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Instantenuous energy eigenstates and Berry phase

µB

(
cos(θ) sin(θ)e−iϕ

sin(θ)eiϕ − cos(θ)

)
~Ψ = E ~Ψ

Eigenenergies and eigenstates:

E± = ±µB, ψ+ =

(
cos( 12θ)

sin( 12θ)eiϕ

)
, ψ− =

(
− sin( 12θ)e−iϕ

cos( 12θ)

)
.

The eigenvector are not well-defined for θ = 0.

New set of eigenvectors ψ′± = e∓iϕψ±, which are not well-defined for θ = π.

Phases of eigenvectors are not well-defined – typical behaviour for systems
with non-trivial Berry phase
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Instantenuous energy eigenstates and Berry phase

µB
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sin(θ)eiϕ − cos(θ)
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~Ψ = E ~Ψ

Eigenenergies and eigenstates:

E± = ±µB, ψ+ =

(
cos( 12θ)

sin( 12θ)eiϕ

)
, ψ− =

(
− sin( 12θ)e−iϕ

cos( 12θ)

)
.

From the definition of the Berry connection:

A+(t) = −i 〈ψ+(t)| d
dt
|ψ+(t)〉 =

dϕ

dt
sin2

(
θ

2

)
In general Berry connection depends on gauge transformation.
Integral over the closed path in the parameter space – gauge independent Berry
phase

γ ≡
∮
C

A(t)dt
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Berry phase from Schrödinger equation

Time-dependent Schrödinger equation for the spinor (τ = tΩ, ρ = ω
Ω ):(

cos(θ) e−iρτ sin(θ)
eiρτ sin(θ) − cos(θ)

)(
Ψ+(τ)
Ψ−(τ)

)
= i

(
Ψ̇+(τ)

Ψ̇−(τ)

)
This can be reduced to one second order differential equation for Ψ+(τ):

Ψ̈+ + iρΨ̇+ + (1− ρ cos(θ))Ψ+ = 0

Solving by substitution Ψ+ = eατ leads to α2 + iρα + (1− ρ cos(θ)) = 0 .

Assuming that the state was prepared with a spin up: Ψ+(0) = 1,Ψ−(0) = 0:

Ψ+(τ) = e−i
ρ
2 τ

(
β + cos(θ)− ρ

2

2β
e−iβτ +

β − cos(θ) + ρ
2

2β
eiβτ

)
Ψ−(τ) = ei

ρ
2 τ

(
sin(θ)

2β
e−iβτ − sin(θ)

2β
eiβτ

)
with β =

√
1− ρ cos(θ) + ρ2/4.
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Slowly oscillating magnetic field ρ� 1, ω � Ω

At t = T = 2π
ω expand in terms of ρ→ 0 limit, in the lowest order:

Ψ+(T ) = cos2
(
θ

2

)
e−2πi

Ω
ω e−iπ(1−cos(θ)) + sin2

(
θ

2

)
e2πi

Ω
ω e−iπ(1+cos(θ))

Ψ−(T ) =
1
2

sin(θ)
(
e−2πi

Ω
ω eiπ(1+cos(θ)) − e2πi

Ω
ω eiπ(1−cos(θ))

)
z

x

y

Dynamical phase 2πi Ω
ω = iΩT

Surface area outlined by the unit vector:

1
2

2π∫
0

dϕ

θ∫
0

dθ′ sin(θ′) =
1
2

Ωst = π (1− cos(θ))

but also there is a surface ’outside’ of this loop:

1
2

2π∫
0

dϕ

π∫
θ

dθ′ sin(θ′) = π (1 + cos(θ)) =
1
2

(4π − Ωst)

Purely geometrical feature depends only on the path
in the parameter space.
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Berry phase from adiabatic theorem

Time evolution of energy eigenstates: |+〉, |−〉 (corr. to E = ±Ω = ±µB):

|+〉 =

(
cos
(
θ
2

)
sin
(
θ
2

)
eiωt

)
|−〉 =

(
− sin

(
θ
2

)
e−iωt

cos
(
θ
2

) )

Obtain set of 2 differential equations for c+, c− coefficients.

i

(
ċ+(τ)
ċ−(τ)

)
=

(
sin
(
θ
2

)
c+(τ) + sin

(
θ
2

)
cos
(
θ
2

)
e−iτ+2i τρ c−(τ)

− sin
(
θ
2

)
c−(τ) + sin

(
θ
2

)
cos
(
θ
2

)
eiτ−2i

τ
ρ c+(τ)

)
Which leads to second order differential equation for c+:

c ′′+ − i(2− ρ)c ′+ + 2ρ sin2
(
θ

2

)
c+ = 0

Solving by substitution c+(τ) = eiατ leads to −α2 + (2− ρ)α + 2ρ sin2
(
θ
2

)
= 0

Imposing initial conditions c+(0) = 1 and c−(0) = 0:

c+(τ ′) = ei
2−ρ
2 τ ′

(
β + ρ cos(θ)− 2

2β
ei
β
2 τ
′

+
β − ρ cos(θ) + 2

2β
e−i

β
2 τ
′
)

c−(τ ′) = −e−i
2−ρ
2 τ ′

(
ρ sin(θ)

2β
ei
β
2 τ
′
− ρ sin(θ)

2β
e−i

β
2 τ
′
)
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Adiabatic limit ρ = ω
Ω � 1

In the lowest order approximation (0-th and 1-st in ρ):

c+(t) = e−i ωt
2 (1−cos(θ)) +O(ρ2)

for t=T= 2π
ω−−−−−−−→ e−iπ(1−cos(θ))

c−(t) =
cos(θ)

4
ρ
(
e−2iΩt+iωt − 1

) for t=T= 2π
ω−−−−−−−→ cos(θ)

4
ρ
(
e−2iΩT+2πi − 1

) ρ→0−−−→ 0

z

x

y

Adiabatic theorem tells us that if the evolution of the
systems is slow enough, slow in comparison with the
energy gap then the system initially in an eigenstate
will remain in the same eigenstate and transitions
to other states are supressed. Therefore the system
initially in |+〉 remains in this state |c+(t = 2π

ω )|2 =
1 but acquires a phase - Berry phase.
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Instantaneous limit ρ = ω
Ω � 1

z

x

y

Very fast oscillations of magnetic field ρ = ω
Ω � 1.

Expand for ρ → ∞, after one full revolution of the
magnetic field ~B around z-axis T = 2π

ω (which is
a very short period of time in this regime!) we see
that spin remains frozen, it doesn’t even have time
to acquire any phase:

c+

(2π
ω

)
≈ e

iπ
(
2
ρ
−1
) (

1 + cos(θ)

2
e
iπ
(
1− 2 cos(θ)

ρ

)
+

1− cos(θ)

2
e
iπ
(
2 cos(θ)
ρ
−1
))

≈ 1 + cos(θ)

2
+

1− cos(θ)

2
e−2πi = 1

c−

(2π
ω

)
≈ eiπ

(
− sin(θ)

2
eiπ +

sin(θ)

2
e−iπ

)
= 0
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Magnetic monopole and Chern number
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Magnetic monopole and Chern number

Time dependance t → path in the parameter space ~λ(t) = (θ(t), ϕ(t))

Berry connection: ~A = (Aθ,Aϕ) with Ak = −i〈n| d
dλk
|n〉.

Berry curvature is a curl of Berry connection (gauge independent):

Fij(λ) =
∂Ai

∂λj
− ∂Aj

∂λi

Fθϕ =
1
2

sin(θ) ⇒ Fij = εijk
Bk

2|~B|3

This is a magnetic monopole in parameter space! (with charge g = 1
2 )
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Magnetic monopole and Chern number

This is a magnetic monopole in parameter space! (with charge g = 1
2 )

for a closed surface S2:
∫
S2
FijdS

ij = 4πg = 2π

for any surface S bounded by closed path C :

eiγ = e−i
∫
S
FijdS

ij

= e
iΩ
2

or its complement S ′, where solid angle Ω′ = 4π − Ω:

eiγ
′

= e−i
∫ ′
S
FijdS

ij

= e
i(4π−Ω)
2 = eiγ

Last requires that 2g ∈ Z.

Chern theorem: integral of Berry curvature over any closed 2D manifold is
quantized ∫

FijdS
ij = 2πC , where Chern number C ∈ Z
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Physical examples

Aharonov-Bohm effect
Effect of gauge potential on a particle moving around
the solenoid:

Ψ(~x)⇒ eiγΨ(~x), eiγ = e
iq
~

∮
C
~A(~x)·d~x

= eiqΦ/~

Predicted in 1959.

Anyons

Exchange of particles in 2D:

bosons |ψ〉 → |ψ〉
fermions |ψ〉 → eiπ|ψ〉 = −|ψ〉
anyons |ψ〉 → eiϕ|ψ〉, ϕ takes any value
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Physical examples

Quantum Hall Effect: Integer, Fractional

Quantized Hall conductivity

σxy = n
e2

h
, n =

1
2π

∫
BZ

F(k)d2k

K. v Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45 494

D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48

(1982) 1559

Polarization in crystals

Definition of polarization as Berry phase in reciprocal space:

P = e〈ϕ(R)|r − R|ϕ(R)〉 =
ie

2π

∫
BZ

〈u(k)|∇k |u(k)〉

where ϕ(R) are localized (at R) Wannier orbitals:

|ϕ(R)〉 =

∫
BZ

dk

2π
e−ik(R−r)|u(k)〉
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Conclusions

Adiabatic theorem: fast and slow processes in physics:

|cm(t)|2 ≈ ~
|〈k |Ḣ|m〉|2

(Em − Ek)2

Berry phase: When ~|Ḣkm|2 � (Em − Ek)2:

|Ψ(t)〉 = e
i

t∫
0

Ak (t′)dt′

e
− i

~

t∫
0

Ek (t′)dt′

|k(t)〉
is gauge independent if the integral is over a closed loop in parameter space.

Relations to:
crystals and their electric polarization
Aharonov-Bohm effect
QHE, topological order and anyons
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