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The problem in question

The current world keeps evolving, and in our era the challenge of "too much data"
keeps popping up, in particular in the world of portfolio optimization, therein lies
the opportunity of providing more accurate results through the use of the relatively
new tools developed in the random matrix theory literature to reduce the bias in
the sample covariance matrix of some financial data (real or simulated). In this
work we will present a couple of these tools and a brief summary of the results
that can be achieved with them. We must also extend our gratitude to the works
of [1] and [2] for being the major inspirations.
Suppose that the inputs of a large n× p matrix X are independent and identically
distributed random variables with distributionN(0, 1), and that {λ1, . . . , λp} are the
eigenvalues in descending order of the covariance matrix E = n−1XX ′. And if
limn,p→∞

p
n = γ where γ ∈ (0, 1] then the eigenvalues density behave converges

to the Marcenko-Pastur distribution.

Clipping method

First developed by [4], the clipping method consists of using the Marcenko-Pastur
law to create a λ+ an upper bound of the eigenvalues of the empirical covariance
matrix E = n−1XX ′ =

∑N
i=1 ξiuiu

′
i (where ui are the eigenvectors and ξi the

eigenvalues). We consider that any eigenvalue greater than or equal to the upper
bound λ+ = (1 +

√
q)2 it is interpreted as a signal and the rest as pure noise.

Then, with this information our new diagonal matrix is built, where the signals
remain with their original value, but the values called noise are replaced by a
constant value λ̄ which only restriction is that this constant must ensure that the
trace of the new resulting covariance matrix must be equal to the trace of the
original TrΞclip. = TrE. The method uses the mean of the noise values as a
constant.

Ξclip. :=

N∑
i=1

ξ
clip.
i uiu

′
i, ξ

clip.
i =

{
λi ifλi > (1 +

√
q)2

λ̄ otherwise

Thus, we have created a new diagonal matrix, and by substituting with the original
in the eigendecomposition we have completed the clipping method and obtained
a new sample covariance matrix reducing bias to the underlying "true" covariance
matrix.

Tracy-Widom method

The Tracy-Widom method or Tracy-Widom test is very similar to the clipping
method with the only difference being the way to identify the signals between the
eigenvalues. This estimator uses the Tracy-Widom distribution to build a statisti-
cal test and compare normalized data against a probability density, this method
is done according to the proofs of [3].

µnp = (
√
n− 1 +

√
p)2, σnp =

√
n− 1 +

√
p

(
1√
n− 1

+
1
√
p

)1
3

λ1 − µnp
σnp

dist−−→ W1 ∼ F1

We find the corresponding percentile to the statistic and then compare it against
our confidence level (in our case α = 0.01), if the percentile is bigger we identify
the eigenvalue as a signal.

Linear shrinkage method

The linear shrinkage method proposed by [6] determines an asymptotic optimal formula to
estimate αs directly from the data and is defined as:

β :=
1

p
Tr
[(
E − Ip

) (
E − Ip

)∗]
γ := max

β, 1

n2

n∑
k=1

1

p
Tr
[(
yky
∗
k − E

) (
yky
∗
k − E

)∗]
αs := 1− β

γ
Ξlin =

p∑
i=1

ξlinuiu
∗
i , ξlin = 1 + αs(λi − 1)

Non-linear shrinkage method

In [7] the authors define the function QuEST Qp,n as a multivariate deterministic function
that maps [0,∞)p on itself, in which given a set of population eigenvaluesL = {l1, . . . , lp} as
input, the function returns a deterministic equivalent of the sample eigenvalues Qp,n(L) =

(q1
p,n(L), q2

p,n(L), ..., q
p
p,n(L)). Therefore, the eigenvalues of the population can be estimated

by numerically inverting the QuEST function:

τ̃ := argmin
L∈[0,∞)p

1

p

n∑
i=1

[
qip,n(L)− λi

]2
. (1)

Where τ̃ = (τ̃1, τ̃2, ..., τ̃p)) represents the estimated population eigenvalues. Then making
use of the work done by [5] we can find an asymptotically optimal formula, which gives us an
estimator λ̃(τ̃ ) consistent for the variance out of sample under large-dimension asymptotic
situations.

About the data

We have 2 cases:
• Synthetic gaussian N(0,Σ) data with p = 500 variables and n = 5000 observations.

Then, we modify the covariance matrix to add 100 [8].

• Real data from p = 96 S&P500’s stock profits from (January 01, 2020 to May 05, 2021)
for a total of n = 338 daily observations downloaded from Yahoo finance.

Reduction results

Figures 1-2. Modified eigenvalues comparison for synthetic and real data, respectively.

Markowitz model

The portfolio model used is the Markowitz model with only 1 restriction.
Markowitz’s basic portfolio finds an allocation vector w that minimizes risk while
maximizing expected return:

maxwµ
Tw − 1

2
wTΣw, subject to Σwi = 1

where µ represents the expected profits and Σ is the covariance matrix. We
consider the ideal case of µ = (1, . . . , 1).

Final Results

Figures 3-6. Efficient frontiers for Synthetic (On the left). Efficient frontiers for real data. (On the right)

We can see in the figures 3-6 that all methods have yield smaller efficient
frontiers than the non-modified covariance matrix, while the figures 7-10 show
that real data gives a similar result with the exception on NL shrinkage.
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